
Service Group Management facilitated by DSL driven Policies in embedded

Middleware

Christopher Foley, Gemma Power, Leigh Griffin, Chen Chen, Niall Donnelly and Eamonn de Leastar

Telecommunications Software and Systems Group

Waterford Institute of Technology

Waterford, Ireland

{ccfoley, gpower, lgriffin, cchen, ndonnelly, edeleastar} @tssg.org

Abstract— Middleware by its very nature is fundamental to the

functioning of systems as it provides the communication

between software components. It is very much an underlying

technology and is rarely visible to end users. As systems

develop, certain domain semantics, provided by the domain

experts, need to be injected into the behaviour of the

underlying middleware, but in a controlled manner. The

methods used to achieve this are often static in nature, wholly

dependent on how they are implemented, deployed and

managed. An increasingly popular way to manage this

behaviour injection is through the use of policies, a technique

used to govern defined rules, triggered by associated events,

resulting in specific actions when certain conditions are

encountered. Strong efforts have been made throughout the

evolution of software development methods and programming

languages to solve the lack of dynamicity which can arise

through poor practices. Successive language based attempts to

attain a higher level of abstraction in the notations used and

techniques deployed have resulted in the re-discovery of

Domain Specific Languages (DSL). This paper looks at

injecting the dynamicity required in the management of service
groups through a policy based DSL.

Keywords- Middleware; Policy Engine; Domain Specific

Language; Services; Group Communication,

I. INTRODUCTION

The middleware created as part of the IST MORE project
[1] is a Service Orientated (SOA) [2] middleware targeting
the embedded device environment. One of the functional
utilities it provides to developers is group communication.
The middleware allows the formation of groups of services
and the distribution of messages between the group
members. The reason for providing service group
functionality is that one middleware service, by itself,
provides less scope when solving problems. A group of
services, each with different tasks, working together, gives
greater capabilities when developing solutions for larger
more complex problems. Managing and administering these
groups of services, steered by domain semantics, then
becomes a necessity. In order to achieve a valid solution to
this, a number of issues must be addressed:

- Introduce a mechanism to govern the service groups
- Bridge the gap between the domain expert (with

little or no middleware expertise) with the
middleware services, which will allow the insertion
of the domain semantics.

- Add dynamicity to this governance of these service
groups

- Perform all of the above in the embedded
environment. i.e. small memory footprint

A lightweight rules based system was decided upon to
govern and manage the service groups. The design of the key
components supporting this system would address the issues
raised above. Those components, a lightweight Domain
Specific Language (DSL) [3] and the policy processing
middleware service, are freely available from [4], along with
the rest of the software developed.
This paper is broken down into seven sections. This
introduction serves as the first. Section two examines the
technological choices made to support the system. The third
section looks at related work. Section four, the architecture
section, examines the underlying architectural components
developed and deployed. The fifth section focuses on DSL
Group Policies. Section six documents the Testbed created
for validation. The seventh and concluding section also
examines the Future Work to be carried out.

II. TECHNOLOGY (DSL/GROOVY)

In Object Oriented approaches to programming, there is a
movement to attempt to have a strong representation from
problem domain entities within the solution space. Termed
Domain Driven Design [5], this has the benefit of enabling
domain experts validate a design, ensure its consistency and
be sufficiently well informed on the emerging solution to
contribute meaningfully to feature evaluation and ongoing
trade-off decisions.

This Domain Driven Design movement has largely relied
on modelling notations and analysis patterns as the shared
vocabulary between domain and solution experts. An
overlapping and equivalent movement from a language
perspective is the recent re-discovery of Domain Specific
Languages (DSL) [6]. Here the emphasis is specifically on
the programming language itself and on devising a language
that can directly represent domain-oriented concepts and
techniques. With the language very much centre stage the
emphasis moves from modelling to implementation. So, in
solving a problem, a complimentary DSL is selected, or
often devised, to more closely suit the problem domain [7].
The notation of the solution is then potentially capable not
necessarily of being written by domain experts, but at least it
can be read and understood by them. This offers obvious

benefits in verifying correctness, maintenance and overall
flexibility and accuracy of the solution.

There has also been considerable recent interest in how to
engineer the DSL. In many ways this is a well understood
technology - ANTLR being a prominent current tool [8] -
and relies on modern incarnations of traditional compiler
technology. However, Fowler has coined the term internal
DSL [9], which contrasts with this approach (which he terms
external DSLs). With an internal DSL, we rely on the
flexible nature of the programming language itself. This
flexibility enables idioms and patterns in the host language to
facilitate a fluency of expression that can be very convincing
in the context of a specific domain. Thus we can invent what
amounts to a dialect of the host language which targets a
specific problem. This dialect is not translated into the host,
or any other language. It is merely an adaptation of the
language along a particular axis, delivering a notation a
domain expert could conceivable read with ease.

While there have been attempts to compose DSLs in Java
[10], the statically typed nature of the language can be a
limitation, enabling what can be termed a more fluent set of
expressions, if not quite a full DSL. Java compatibility is
attractive though, and it is possible to dovetail Java with
DSL capabilities. This is most compellingly done if we can
employ a dynamically typed language that is also java
compatible. Groovy is one of the most prominent of this
breed, and is a hotbed of DSL experimentation and
innovation [11]. Although not exclusive to Groovy by any
means, key language mechanisms such as closures,
dynamically bound scripts, builder pattern, operator
overloading, and meta programming capabilities enable
highly expressive and domain focussed dialects to be
embedded directly into the language, without the need for
complex grammar or translation phases.

III. RELATED WORK

A major requirement for the MORE project was the ability to
dynamically manage groups of services in an embedded
environment. While investigating the use of a policy engine
several existing policy engines were evaluated. These
include [12] [13] [14] [15], the reason these applications
were deemed unsuitable was largely due to their memory
footprint and complexity. For example while [14] actually
has a small footprint it has a significant working memory
requirement, unsuited to the embedded domain.

 Some other projects investigating a similar alternative
include [16] which published an article highlighting the
possible advantages of using Groovy to create a DSL to
build a policy engine. The use of policies associated with a
service group, inspired by Policy Based Network
Management was described by the authors in [17]. [18]
discusses a framework for flexible composed service
charging. The scheme was developed using a Groovy-based
DSL which allowed end-users to change their charging rules,
with the modification rules reflecting the business
relationships between different service providers and their
customers. Our Policy Engine differs from [18] in that the
policies can be dynamically reconfigured, published and

executed in real time. Previous Policy Engines based on
DSLs generally pertain specifically to Security Policies, [19]
[20] or Network Management [21].

No suitable comprehensive policy based solution
appropriate for the embedded domain was freely available.
As such it was decided to develop one.

IV. ARCHITECTURE

A. MORE Middleware

The middleware which is central to the solution is based
on the work conducted during the IST-MORE Project funded
by the European Union in the 6th Framework Programme.
MORE is a cross-platform and service oriented middleware
for distributed communication systems allowing for dynamic
service deployment in pervasive environments. MORE
enables efficient service development for devices like
smartphones, mid-sized embedded systems and normal PCs.
The MORE middleware architecture is based on the Service
Oriented Architecture (SOA) approach.

The MORE middleware is realised through sets of
enabling services. The most basic deployment will consist of
the MORE CORE, which is mandatory for the middleware to
function and contains a minimal set of utility services. The
MORE middleware provides optional functionality through
these utility services. Examples include Group Management
Service, Policy Engine, Security and Compression. The
middleware provides the scope for application developers to
develop their own enabling services which can then make
use of the core and utility functionality provided.

The runtime of the MORE middleware is based on the
Device Profile for Web Services specification [22]. DPWS
identifies a minimal set of Web Service specifications
tailored towards the needs and capabilities of embedded
devices in order to allow for a base level of interoperability
between devices and standard Web Services.

In conjunction with DPWS, MORE makes use of the
OSGi [23] platform for managing the MORE middleware
and the user services. OSGi technology provides a service-
oriented, component-based environment for developers and
offers standardised ways to manage the software lifecycle.

B. Policy Engine & Group Management Services

The MORE Group Management Service (GMS) handles
the administration of service groups; group creation, deletion
of groups, and the addition of services to groups. GMS also
handles the forwarding of group messages to all group
members. When a group is created a governing policy can be
assigned to that group or not. This policy defines how this
group is governed, e.g. if a specific message is sent to the
group then a new service of a certain type should be added as
a result.

A Policy Editor which encapsulates the DSL has been
developed which aids in the writing and deployment of
group policies. A policy can be exported to the Policy
Engine Service (PES). The editor discovers the running PES
and exports the policy to it.

The Policy Engine Service is a standalone service which
handles the policy processing based on events supplied to it.
Within the MORE context it is the GMS which provides the
PES with the events. When a message is sent to the group via
GMS, it will be forwarded to the PES if there is a policy
associated with that group in question. The PES will treat the
incoming message as an Event and check if there are Policy
Rules associated with it. If rules exist, they will be
processed. If the rules condition evaluates to true, then the
GMS will be informed by the PES of the subsequent actions
to take. These actions may take the form of group
administration actions which will be performed by the GMS.

Figure 1. Component Architecture View

Failures within the Policy Engine are addressed by

decoupling the Policy Engine from the other system

components and by relevant events.

1. The Policy Editor performs syntax checking on each

policy before exporting. On export from the policy

editor an acknowledgement is received in one of the

following forms:

• Connection failure - if a connection cannot be

established with the Policy Engine

• Syntax failure - if the policy to be exported is not

of the correct syntax

• Successful - if the Policy Engine received the

policy

2. Group Management Service message forwarding. The

GMS will attempt to invoke the Policy Engine service

if there is a policy associated with the group message to

be processed. If this invocation fails in any way then

GMS will still forward the message to all group

members and log an error message indicating the failure

to process the policy.

Further work is needed with respect to failover of the Policy

Engine, primarily with respect to ensuring the service stays

up. A number of methods are being investigated.

V. DSL GROUP POLICIES

A. DSL Policy Scripts and Policy Editor

The end user, being an expert in a specific area, for example

a medical doctor, may not have sufficient programming

knowledge to interpret a policy. Therefore, the user will

need an interface to the policy engine that is centered on the

problem domain, rather than the programming complexity

needed to solve it. The policy scripts that are used by the

end user to build a policy are based on a domain specific

language realised through Groovy. A policy contains a set

of rules, with each rule comprised of a collection of

associated events, conditions and actions.

As part of the MORE project, a diabetes scenario was

documented [24] and will be used here as our policy

example. A diabetologist wants to monitor the glucose level

of a diabetes patient. This patient has a glucose monitor

attached to them, which sends periodic measurements of the

patients blood sugar level to the patients care group. The

diabetologist only requires to be alerted if the glucose level

of the patient exceeds 8mmol/L or if the level falls below

3mmol/L, as shown in Figure 2.

Figure 2. Blood Sugar Range

The Policy Editor is a tool used to facilitate users in the

modification and creation of policy scripts as well as

dynamic script deployment to the policy engine service. The

editor has been developed based on the Eclipse plug-in

Architecture [25]. The main features of the editor plugin

include content assistant and colour context to aid the end

user in the authoring of the policy. The plugin also features

a smart export function to discover any running PES and

subsequently deploy their new script dynamically. Figure 3

shows a screenshot of the plugin running within the Eclipse

IDE. Based on the data from figure 2, the syntax of a sample

user policy created with this plugin can be seen in figure 4.

 Figure 3. Eclipse Plugin

 Figure 4. Sample User Policy

B. Policy Builder

A Policy Builder is used to structure the DSL and to

generate an “event-condition-action” policy. It is utilised

for the interaction of the policy engine and DSL (policy

script).

A policy script building approach to policy engine

development allows for this interaction as the builder itself

can be designed for whatever application is needed in the

problem domain (see Figure 5). The user needs to write a

DSL to capture their specific domain requirement. Take this

example user requirement and its associated DSL

interpretation; “the group size of service group A is to be no

larger than ten and have at least one doctor as a member”.

builder.createGroup (GroupName A,GroupSize 10,Number

ofDoctors 1). The builder then takes the attributes set by the

user and converts them to code scripts that can be used by

the policy engine based on the requirement that the user

defines. This code is dictated by the technologies used by

the policy engine and not tied to a specific implementation.

The other objective of the policy building approach is to

allow for a more advanced approach for development of

DSL based scripts. The builders design was architected with

a view to future-proofing and extensibility. Therefore, users

will be able to update the builder through customisable

parameters, taking the form of closures which are passed into

the builder for evaluation. The policy builder is initialised in

a policy script according to a DSL. Method calls on the

builder are intercepted and passed into the policy builder as

invoked on the Node Builder [26]. The node is designed to

decide what methods to use based on the method call to the

policy builder. The builder chooses the method to call (e.g.

createCondition() method) and passes in the attributes of the

rule from the policy script written by the user. The

implementation method takes the attributes and builds

Groovy scripts to process the data according to the format

the data is coming in as. These closures are then added as

attributes to the required entity (event, condition, action).

Rules are then assigned to a policy to be used by the policy

engine.

Figure 5. Policy Building Approach

createEvent(

 commonName: "Measurement_Event",

 identifier: "ReceiveGlucoseMeasurement",

parameters:["BloodSugarMeasurementValue"])

createCondition(

 commonName: "Condition_LessThan3",

 evaluation: [

 var :

 eventValue("Measurement_Event",

"BloodSugarMeasurementValue"

),

 op: "lt",

 val: "3"])

createCondition(

 commonName: "Condition_MoreThan8",

 evaluation: [

 var :

 eventValue("Measurement_Event",

"BloodSugarMeasurementValue"

),

 op: "gt",

 val: "8"])

createAction(

 commonName: "AddDoctor",

 action:[

 operation: "addMember",

 groupName: "Doctor",

 variable: "Michael",

 valueParam:"Diabetologist"])

createRule(

 commonName: "Rule_8",

 priority: "Low/High",

 event: ["Measurement_Event"],

 conditions: ["Condition_MoreThan8"],

 actions: [AddDoctor"])

VI. TESTBED

The MORE services were comprehensively evaluated
using the testbed configuration depicted below in figure 5

__

Figure 6. Testbed Configuration

These services needed to be lightweight enough to run on
resource constrained devices, as such the Openmoko
Smartphone [27] was an integral component of the testbed.
This device has a 400 MHz processor and 128MB of RAM
with Linux kernel 2.2.24. The Testbed was comprised of an
off the shelf blood sugar monitor with Bluetooth capability, a
wireless access point configured to provide connectivity,
three Openmoko Smartphones and one laptop (tested with
both Windows and Linux distributions). Consequently a
variety of hardware devices and software components were
utilised for effective testing of the Policy Engine Service.
The devices and services were chosen to fulfil disparate
application domains. As part of the MORE project, two end
user scenarios were examined, remote monitoring for
healthcare and mitigation management in forestry.
The software components include a subset of the MORE
services. The test configuration shown in figure 6 depicts the
equipment used in validating the MORE health care scenario
which is described throughout this paper, specifically the
GMS, PES, Patient Service, Nurse Service, Doctor Service
and Ambulance Service. The blood sugar ranges for alerting
these parties can be clearly seen in Figure 2. [28] conducted
a similar study with respect to remote monitoring and care
for cardiology patients. The software components and
devices are also visible in Figure 6.

In Figure 6 the Patient Monitoring Group is comprised of,

the Patient, Nurse, Doctor and an Ambulance. As inferred

from Figure 2, this is an emergency scenario and the

Patient’s blood sugar level is in the emergency range (below

1 or above 20). A less serious blood glucose reading for

example “2” and the policy would dictate that only the

Doctor and the Nurse be added to the group to monitor the

Patient.
This Testbed configuration was also used to verify the
dynamic creation of a policy using the Eclipse IDE and the
automatic deployment of this policy to the policy engine

service running on the Nurses’ device for evaluating new
conditions and acting on them accordingly.

The Policy Engine developed for the MORE project can
be used as a stand alone product for use in any application.
As shown, [28] examined it for use with Cardiology patients.
Rich user guides, including video tutorials on policy creation
and deployment are available from the website [1]. The code
base from the MORE project has also been released as an
open source project and is freely available from [4]. Aspects
of the PE are already being evaluated for other EU Projects
[29] [30].

VII. CONCLUSION AND FUTURE WORK

The MORE project has formally ended and the software
produced and discussed within this paper is freely available
as open source. As such, the future work is in the hands of
the community, however, the authors recommend three
potential extension points which will now be discussed. The
current service selection model is based on a FIFO style
queue for ease of use, as this was not the focus of the
research carried out. An intelligent selection mechanism
should add services more appropriate to the current
requirements and the past history of service interactions
within the group. Therefore, the authors recommend that an
intelligent service is injected into each group managed by the
GMS. The responsibilities of such a service would include
monitoring messages and requests sent within the group and
between the GMS and PE services. Over time such a
monitoring service could build up a historical view of the
group and allow the GMS make more informed decisions
about service selection.
Another potential extension point could be the autonomous
management of the policy engine rule base and associated
conditions. The policy rules specified might initially govern
the general behavior of services. Specific instances which
operate outside of these generic boundaries could be
accommodated far easier if changes could be made by the PE
service without the need for direct intervention by the
domain expert. External influence, be it from a historical
group service, as described above, or from a data mining
service, abstracting contextual information from devices,
could provide the necessary rich semantic information
required to make an informed alteration to a live rule.
The final proposed extension point centers on the resiliency
of the system to service failure. Ensuring that all available
services, particularly those with complex dependencies,
remain accessible after a previous failure would be a key
requirement. The authors therefore recommend
improvements to the current Policy Engine with respect to
failover. The design of the policy engine has allowed for
failures to be handled as discussed earlier but the work
involved for fully securing this area was beyond the time
restricted scope of the tasked research. Provisions were
afforded for this work in the modular design of the system.
 Interpreting a technical vocabulary, already imbued with
architectural semantics can be a daunting experience for a
domain expert. Expressing the solution space as a readable
DSL provides an important bridge between the domain

expert and the system. An added benefit of developing a
customised DSL is the lightweight nature of the design,
making it an ideal candidate language for deployment within
the problem domain. Engineering the core components of
this system to be standalone brings flexibility, scalability and
independence. This separation of concerns allows the
developer, and indeed the domain expert to focus on the task
at hand. This paper has proposed such a lightweight rules
based system for the dynamic management of group
services.

VIII. ACKNOWLEDGMENT

The work described in this paper was partly funded by the

European Union through the MORE project in the 6th

Framework Programme under the Reference-ID FP6-IST-

032939. The authors would also like to acknowledge

funding support from the Irish HEA PRTLI Cycle 4

FutureComm (http://futurecomm.tssg.org) programme.

REFERENCES

[1] IST-MORE [online]. Available from http://www.ist-more.org/

Accessed on 08-JAN-2010.

[2] SOA Service Orientated Architecture[online].Available from
http://www-01.ibm.com/software/solutions/soa/ Accessed on
22-DEC-2009

[3] DomainSpecificLanguage [online] Available from
http://www.martinfowler.com/bliki/DomainSpecificLanguage
.html Accessed on 22-DEC-2009.

[4] Open Source MORE [online] Available from
http://sourceforge.net/projects/mores/ Accessed on 15-JAN-
2010

[5] Evans, E., Domain-Driven Design - Tackling Complexity in
the Heart of Software, 2004, Addison-Wesley

[6] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When
and how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316–344, 2005

[7] Michael Swaine, Language Workbenches: Is This the Era of
the DSL?, Pragpub, October 2009, The Pragmatic
Programmers

[8] Parr, The Definitive ANTLR Reference: Building Domain-
Specific Languages, Pragmatic Programmers, 2007

[9] Fowler, Martin, Language Workbenches: The Killer-App for
Domain Specific Languages?

[10] Subramaniam, DSLs in Java, JavaWord,
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-dsls-
in-java-1.html last accessed January 11, 2010

[11]] König, King, Laforge, Skeet, Groovy In Action, Second
Edition, Manning, 2009

[12] Drools Policy Engine [online] Available from
http://www.jboss.com/products/rules Accessed on 10-JAN-
2010.

[13] Hammurapi Policy Engine [online] Available from
http://www.hammurapi.com/dokuwiki/doku.php Accessed on
16-JAN-2010

[14] Jess Policy Engine [online] Available from
http://www.jessrules.com/jess/docs/index.shtml Accessed on
15-JAN-2010

[15] Pyke Policy Engine [online] Available from
http://pyke.sourceforge.net/ Accessed on 15-JAN-2010

[16] Isocra; [online] Available from
htthttp://www.isocra.com/2008/01/groovy-dsls-and-rules-
engines/ Accessed on 15-JAN-2010

[17] Foley et al, “Distributed Pervasive Services using Group
Service communication supporting Body Area Networks”
Proceedings of BodyNets 2008.

[18] Jennings et al, “Specifying Flexible Charging Rules for
Composable Services”, in Proc. 2008 IEEE Congress on
Services. pp 376-383

[19] Hamdi et al, “A DLS Framework for Policy-based Security of
Distributed Systems”, in Proc. 2009 IEEE International
Conferences on Secure Software integration and Reliability
Improvement. pp 150-158

[20] Nielson et al, “A domain-specific programming language for
secure multiparty computation”, Proceedings of the 2007
workshop on Programming languages and analysis for
security. Pp21-30

[21] Barrett et al, “A Model Based Approach for Policy Tool
Generation and Policy Analysis,” Proc. 1st IEEE Int’l. Global
Information Infrastructure Symp. (GIIS 2007), IEEE, 2007,
pp. 99-106. (2007)

[22] S. Chan et al., “Device Profile for Web Services”, February
2006 [online] Available from
http://schemas.xmlsoap.org/ws/2006/02/devprof/ Accessed
18-DEC-2009.

[23] OSGi Alliance, “OSGi Service Platform” [online] Available
from http://www2.osgi.org/Specifications/HomePage,
Accessed 18-DEC-2009.

[24] Specification of Validation Services / Scenarios [online]
Available from http://www.ist-
more.org/images/stories/d3.2_validationscenarios.pdf , pages
36-91 Accessed on 15-JAN-2010

[25] Eclipse Plug-in Architecture [online] Available from
http://www.eclipse.org/articles/Article-Plug-in-
architecture/plugin_architecture.html Accessed on 15-JAN-
2010

[26] Node Builder [online] Available from
http://groovy.codehaus.org/GroovyMarkup Accessed on 15-
JAN-2010

[27] OpenMoko [online] Available from www.openmoko.org
Accessed on 15-JAN-2010

[28] Power et al “An Adaptive Middleware Applied to the Ad-hoc
Nature of Cardiac Health Care” Proceedings of MobiQuitous
2008.

[29] PERIMETER [online] Available from http://www.ict-
perimeter.eu/index.php Accessed on 16-JAN-2010

[30] EFIPSANS [online] Available from http://www.efipsans.org/
Accessed on 16-JAN-2010.

