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Abstract

We show that the generating function of the symmetric group with respect to five
particular statistics gives rise to an exponential Riordan array, whose inverse is the
coefficient array of the associated orthogonal polynomials. This also provides us with
an LDU factorization of the Hankel matrix of the associated moments.

1 Introduction

In this note, we shall re-interpret some of the results of [30] in terms of exponential Riordan
arrays. For this, we let Sn denote the set of permutations of {1, 2, . . . , n}. Given a permu-
tation σ ∈ Sn, each value x = σ(i), 1 ≤ i ≤ n, can be classified according to one of the five
following cases:

1. a peak (“pic de cycle”), if σ−1(x) < x > σ(x);

2. a valley (“creux de cycle”), if σ−1 > x < σ(x);

3. a double rise (“double montée de cycle”), if σ−1(x) < x < σ(x);

4. a double descent (“double descente de cycle”), if σ−1(x) > x > σ(x);

5. a fixed point (“point fixe”), if σ(i) = i.

Using the notation of [30], we denote the number of peaks, valleys, double rises, double
descents, and fixed points of σ respectively by pic σ, cc σ, dm σ, dd σ, and fix σ. We shall
also denote by cyc σ the number of cycles of σ. We set

µn =
∑
σ∈Sn

uccσ
1 upicσ

2 udmσ
3 uddσ

4 αfixσβcycσ.

We then have the following theorem.
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Theorem 1. We let α1 and α2 be such that α1α2 = u1u2 and α1 + α2 = u3 + u4. Then the
exponential Riordan array

L =

[
eαβx

(
α1 − α2

α1eα2x − α2eα1x

)β

,
eα1x − eα2x

α1eα2x − α2eα1x

]

is the inverse of the coefficient array for the family of orthogonal polynomials for which µn

are the moments. The elements of the first column of L are given by µn. The Hankel matrix
H = (µi+j)i,j≥0 has LDU factorization

H = LDLt.

While partly expository in nature, this note assumes a certain familiarity with integer
sequences, generating functions, orthogonal polynomials [5, 11, 26], Riordan arrays [21, 25],
production matrices [10, 18], and the integer Hankel transform [1, 7, 16]. Many interesting
examples of sequences and Riordan arrays can be found in Neil Sloane’s On-Line Encyclo-
pedia of Integer Sequences (OEIS), [23, 24]. Sequences are frequently referred to by their
OEIS number. For instance, the binomial matrix B (“Pascal’s triangle”) is A007318.

The plan of the paper is as follows:

1. This Introduction

2. Integer sequences, exponential Riordan arrays and orthogonal polynomials

3. Proof of the theorem

4. A matrix product

2 Integer sequences, exponential Riordan arrays and

orthogonal polynomials

For an integer sequence an, that is, an element of ZN, the power series fo(x) =
∑∞

k=0 akx
k is

called the ordinary generating function or g.f. of the sequence, while fe(x) =
∑∞

k=0
ak
k!
xk is

called the exponential generating function or e.g.f. of the sequence. an is thus the coefficient
of xn in fo(x). We denote this by an = [xn]fo(x). Similarly, an = n![xn]fe(x). For instance,
Fn = [xn] x

1−x−x2 is the n-th Fibonacci number A000045, while n! = n![xn] 1
1−x

, which says

that 1
1−x

is the e.g.f. of n! A000142. For a power series f(x) =
∑∞

n=0 anx
n with f(0) = 0

and f ′(0) ̸= 0 we define the reversion or compositional inverse of f to be the power series
f̄(x) = f [−1](x) such that f(f̄(x)) = x. We sometimes write f̄ = Revf .

The exponential Riordan group [2, 10, 8], is a set of infinite lower-triangular integer
matrices, where each matrix is defined by a pair of generating functions g(x) = g0 + g1x +
g2x

2 + . . . and f(x) = f1x + f2x
2 + . . . where g0 ̸= 0 and f1 ̸= 0. The associated matrix

is the matrix whose i-th column has exponential generating function g(x)f(x)i/i! (the first
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column being indexed by 0). The matrix corresponding to the pair f, g is denoted by [g, f ].
It is monic if g0 = 1. The group law is given by

[g, f ] ∗ [h, l] = [g(h ◦ f), l ◦ f ].

The identity for this law is I = [1, x] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f . We use the notation eR to denote this group. If M is the
matrix [g, f ], and u = (un)n≥0 is an integer sequence with exponential generating function U
(x), then the sequence Mu has exponential generating function g(x)U(f(x)). Thus the row
sums of the array [g, f ] are given by g(x)ef(x) since the sequence 1, 1, 1, . . . has exponential
generating function ex.

Example 2. The binomial matrix is the matrix with general term
(
n
k

)
. It is realized by

Pascal’s triangle. As an exponential Riordan array, it is given by [ex, x]. We further have

([ex, x])m = [emx, x].

As an example of the calculation of an inverse, we have the following proposition.

Proposition 3.

L−1 =

(1 + α2x

1 + α1x

) αβ
α1−α2

(
(1 + α2x)

α1
α1−α2

(1 + α1x)
α2

α1−α2

)−β

,
1

α2 − α1

ln

(
1 + α2x

1 + α1x

) .

Proof. This follows since with

f(x) =
eα1x − eα2x

α1eα2x − α2eα1x

we have

f̄(x) =
1

α2 − α1

ln

(
1 + α2x

1 + α1x

)
.

We note that we can then write L−1 as

L−1 =

(1 + α2x)
β(α−α1)
α1−α2

(1 + α1x)
β(α−α2)
α1−α2

,
1

α2 − α1

ln

(
1 + α2x

1 + α1x

) .

An important concept for the sequel is that of production matrix. The concept of a
production matrix [9, 10] is a general one, but for this work we find it convenient to review
it in the context of Riordan arrays. Thus let P be an infinite matrix (most often it will have
integer entries). Letting r0 be the row vector

r0 = (1, 0, 0, 0, . . .),
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we define ri = ri−1P , i ≥ 1. Stacking these rows leads to another infinite matrix which we
denote by AP . Then P is said to be the production matrix for AP . If we let

uT = (1, 0, 0, 0, . . . , 0, . . .)

then we have

AP =


uT

uTP
uTP 2

...


and

DAP = APP

where D = (δi,j+1)i,j≥0 (where δ is the usual Kronecker symbol). In [18, 22] P is called the
Stieltjes matrix associated to AP . In [10], we find the following result concerning matrices
that are production matrices for exponential Riordan arrays.

Proposition 4. Let A = (an,k)n,k≥0 = [g(x), f(x)] be an exponential Riordan array and let

c(y) = c0 + c1y + c2y
2 + . . . , r(y) = r0 + r1y + r2y

2 + . . . (1)

be two formal power series such that

r(f(x)) = f ′(x) (2)

c(f(x)) =
g′(x)

g(x)
. (3)

Then

(i) an+1,0 =
∑
i

i!cian,i (4)

(ii) an+1,k = r0an,k−1 +
1

k!

∑
i≥k

i!(ci−k + kri−k+1)an,i (5)

or, defining c−1 = 0,

an+1,k =
1

k!

∑
i≥k−1

i!(ci−k + kri−k+1)an,i. (6)

Conversely, starting from the sequences defined by (1), the infinite array (an,k)n,k≥0 defined
by (6) is an exponential Riordan array.

A consequence of this proposition is that P = (pi,j)i,j≥0 where

pi,j =
i!

j!
(ci−j + jrr−j+1) (c−1 = 0).

4



Furthermore, the bivariate exponential generating function

ϕP (t, z) =
∑
n,k

pn,kt
k z

n

n!

of the matrix P is given by
ϕP (t, z) = etz(c(z) + tr(z)).

Note in particular that we have
r(x) = f ′(f̄(x))

and

c(x) =
g′(f̄(x))

g(f̄(x))
.

Example 5. We consider the exponential Riordan array L = [ 1
1−x

, x], A094587. This array
has elements

L =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .


and general term [k ≤ n]n!

k!
with inverse

L−1 =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .


which is the array [1− x, x]. In particular, we note that the row sums of the inverse, which
begin 1, 0,−1,−2,−3, . . . (that is, 1 − n), have e.g.f. (1 − x) exp(x). This sequence is thus
the binomial transform of the sequence with e.g.f. (1 − x) (which is the sequence starting
1,−1, 0, 0, 0, . . .). In order to calculate the production matrix P of L = [ 1

1−x
, x] we note

that f(x) = x, and hence we have f ′(x) = 1 so f ′(f̄(x)) = 1. Also g(x) = 1
1−x

leads to

g′(x) = 1
(1−x)2

, and so, since f̄(x) = x, we get

g′(f̄(x))

g(f̄(x))
=

1

1− x
.

Thus the generating function for P is

etz
(

1

1− z
+ t

)
.
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Thus P is the matrix [ 1
1−x

, x] with its first row removed.

Example 6. We consider the exponential Riordan array L = [1, x
1−x

]. The general term of
this matrix may be calculated as follows:

Tn,k =
n!

k!
[xn]

xk

(1− x)k

=
n!

k!
[xn−k](1− x)−k

=
n!

k!
[xn−k]

∞∑
j=0

(
−k

j

)
(−1)jxj

=
n!

k!
[xn−k]

∞∑
j=0

(
k + j − 1

j

)
xj

=
n!

k!

(
k + n− k − 1

n− k

)
=

n!

k!

(
n− 1

n− k

)
,

with

L =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 6 1 0 0 . . .
0 24 36 12 1 0 . . .
0 120 240 120 20 1 . . .
...

...
...

...
...

...
. . .


.

Thus its row sums, which have e.g.f. exp
(

x
1−x

)
, have general term

∑n
k=0

n!
k!

(
n−1
n−k

)
. This is

A000262, the ‘number of “sets of lists”: the number of partitions of {1, .., n} into any number
of lists, where a list means an ordered subset’. Its general term is equal to (n−1)!Ln−1(1,−1).
The inverse of

[
1, x

1−x

]
is the exponential Riordan array L−1 =

[
1, x

1+x

]
, A111596. The row

sums of this sequence have e.g.f. exp
(

x
1+x

)
, and start 1, 1,−1, 1, 1,−19, 151, . . .. This is

A111884. To calculate the production matrix of L =
[
1, x

1−x

]
we note that g′(x) = 0, while

f̄(x) = x
1+x

with f ′(x) = 1
(1+x)2

. Thus

f ′(f̄(x)) = (1 + x)2,

and so the generating function of the production matrix is given by

etzt(1 + z)2.
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Thus the production matrix of the inverse begins

0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 2 4 1 0 0 . . .
0 0 6 6 1 0 . . .
0 0 0 12 8 1 . . .
0 0 0 0 20 10 . . .
...

...
...

...
...

...
. . .


.

Example 7. The exponential Riordan array A =
[

1
1−x

, x
1−x

]
, or

A =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .


has general term

Tn,k =
n!

k!

(
n

k

)
.

Its inverse is A−1 =
[

1
1+x

, x
1+x

]
with general term (−1)n−k n!

k!

(
n
k

)
. This is A021009, the triangle

of coefficients of the Laguerre polynomials Ln(x). The production matrix of A is given by

1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
0 4 5 1 0 0 . . .
0 0 9 7 1 0 . . .
0 0 0 16 9 1 . . .
0 0 0 0 25 11 . . .
...

...
...

...
...

...
. . .


.

Example 8. The exponential Riordan array L =
[
ex, ln

(
1

1−x

)]
, or

L =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 8 6 1 0 0 . . .
1 24 29 10 1 0 . . .
1 89 145 75 15 1 . . .
...

...
...

...
...

...
. . .


7



is the coefficient array for the polynomials

2F0(−n, x;−1)

which are an unsigned version of the Charlier polynomials (of order 0) [11, 20, 26]. This is
A094816. We have

L = [ex, x] ∗
[
1, ln

(
1

1− x

)]
,

or the product of the binomial array B and the array of (unsigned) Stirling numbers of the
first kind. The production matrix of the inverse of this matrix is given by

−1 1 0 0 0 0 . . .
1 −2 1 0 0 0 . . .
0 2 −3 1 0 0 . . .
0 0 3 −4 1 0 . . .
0 0 0 4 −5 1 . . .
0 0 0 0 5 −6 . . .
...

...
...

...
...

...
. . .


which indicates the orthogonal nature of these polynomials. We can prove this form as
follows. We have [

ex, ln

(
1

1− x

)]−1

=
[
e−(1−e−x), 1− e−x

]
.

Hence g(x) = e−(1−e−x) and f(x) = 1− e−x. We are thus led to the equations

r(1− e−x) = e−x,

c(1− e−x) = −e−x,

with solutions r(x) = 1 − x, c(x) = x − 1. Thus the bi-variate generating function for the
production matrix of the inverse array is

etz(z − 1 + t(1− z)),

which is what is required.

According to Proposition 4, for a Riordan array to have a tri-diagonal production array
P , it is necessary and sufficient that P be of the form

c0 r0 0 0 0 0 . . .
c1 c0 + r1 r0 0 0 0 . . .
0 2(c1 + r2) c0 + 2r1 r0 0 0 . . .
0 0 3(c1 + 2r2) r0 1 0 . . .
0 0 0 4(c1 + 3r2) c0 + 4r1 r0 . . .
0 0 0 0 5(c1 + 4r2) c0 + 5r1 . . .
...

...
...

...
...

...
. . .


.
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We recognize in this the form of Meixner’s solution [19, 12] to the question of which families
of Sheffer polynomials [15] are orthogonal. Thus P corresponds to the family of orthogonal
polynomials (Sn(x))n≥0 that satisfy

Sn+1(x) = (x− (c0 + nr1))Sn(x)− n(c1 + nr2)Sn−1(x).

Of importance to this study are the following results (the first is the well-known “Favard’s
Theorem”), which we essentially reproduce from [14].

Theorem 9. [14] (Cf. [27], Théorème 9 on p.I-4, or [28], Theorem 50.1). Let (pn(x))n≥0

be a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then
the sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn ̸= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βn(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.

Theorem 10. [14] (Cf. [27], Proposition 1, (7), on p. V-5, or [28], Theorem 51.1). Let
(pn(x))n≥0 be a sequence of monic polynomials, which is orthogonal with respect to some
functional L. Let

pn+1 = (x− αn)pn(x)− βn(x), for n ≥ 1,

be the corresponding three-term recurrence which is guarenteed by Favard’s theorem. Then
the generating function

g(x) =
∞∑
k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.

The Hankel transform of µn, which is the sequence with general term hn = |µi+j|0≤i,j≤n,
is then given by

hn = µn+1
0 βn

1 β
n−1
2 · · · β2

n−1βn.

3 Proof of Theorem 1

Proof. We first note that since

g(x) = eαβx
(

α1 − α2

α1eα2x − α2eα1x

)β

,
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by Theorem 1 of [30], the first column of the Riordan array is indeed {µn}n≥0. We now
calculate the production matrix PL of L. We have

r(x) = f ′(f̄(x)) = (1 + α2x)(1 + α1x)

and

c(x) =
g′(f̄(x))

g(f̄(x))
= β(α+ α1α2x).

Thus the bivariate generating function for the production matrix PL of L is given by

etz(β(α+ α1α2x) + t(1 + α2x)(1 + α1x)).

Now this is equal to

etz(αβ + βu1u2x+ t(1 + (u3 + u4)x+ u1u2x
2)).

But this implies that PL is precisely the Jacobi tri-diagonal matrix corresponding to the
continued J-fraction

1

1− αβx−
βu1u2x

2

1− (αβ + u3 + u4)x−
2(β + 1)u1u2x

2

1− (αβ + 2(u3 + u4))x−
3(β + 2)u1u2x

2

1− · · ·

which by [30] is equal to the generating function

∞∑
k=0

µkx
k.

The matrix PL begins:

αβ 1 0 0 0 0 . . .
βu1u2 αβ + u3 + u4 0 0 0 0 . . .

0 2(β + 1)u1u2 αβ + 2(u3 + u4) 0 0 0 . . .
0 0 3(β + 2)u1u2 αβ + 3(u3 + u4) 0 0 . . .
0 0 0 4(β + 3)u1u2 αβ + 4(u3 + u4) 0 . . .
0 0 0 0 5(β + 4)u1u2 αβ + 5(u3 + u4) . . .
...

...
...

...
...

...
. . .


This implies that L−1 is indeed the coefficient array of the set of orthogonal polynomials
which correspond to the tri-diagonal array PL. The results of [17, 18] now imply that if
H = (µi+j)i,j≥0 then

H = LDLt.
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As pointed out by an anonymous referee, this result could also have been arrived at using
the theory of orthogonal Sheffer polynomials, as the µn are seen to be the moment sequence
of the orthogonal polynomials defined by

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x),

with P−1(x) = 0 and P1(x) = 1, where bn = αβ + n(u3 + u4) and λn = n(β + n)u1u2.
Thus (Pn(x))n≥0 is a sequence of orthogonal Sheffer polynomials [12]. Note that the inter-
relationship between Riordan arrays and Sheffer polynomials is comprehensively studied in
[15].

The elements of the diagonal matrix D are the successive products of the elements of the
sub-diagonal of PL:

βu1u2, 2β(β + 1)u2
1u

2
2, 6β(β + 1)(β + 2)u3

1u
3
2, . . .

Corollary 11. The Hankel transform of µn is given by

hn = (u1u2)
(n+1

2 )
n∏

k=0

k!(β + k)n−k.

We notice in particular that this is independent of α, u3 and u4.
We have the following factorization.

L =

[
eαβx

(
α1 − α2

α1eα2x − α2eα1x

)β

,
eα1x − eα2x

α1eα2x − α2eα1x

]

= [eαβx, x]

[(
α1 − α2

α1eα2x − α2eα1x

)β

,
eα1x − eα2x

α1eα2x − α2eα1x

]
= [ex, x]αβL0,

where the matrix L0 has production matrix generated by

etz(βu1u2x+ t(1 + (u3 + u4)x+ u1u2x
2)).

This matrix begins

0 1 0 0 0 0 . . .
βu1u2 u3 + u4 0 0 0 0 . . .

0 2(β + 1)u1u2 2(u3 + u4) 0 0 0 . . .
0 0 3(β + 2)u1u2 3(u3 + u4) 0 0 . . .
0 0 0 4(β + 3)u1u2 4(u3 + u4) 0 . . .
0 0 0 0 5(β + 4)u1u2 5(u3 + u4) . . .
...

...
...

...
...

...
. . .


.

Thus L−1
0 is the coefficient array of the orthogonal polynomials whose moments have gener-

ating function given by

1

1−
βu1u2x

2

1− (u3 + u4)x−
2(β + 1)u1u2x

2

1− · · ·

.
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In fact, we have

L−1
0 =

((1 + α2x)
α1

α1−α2

(1 + α1x)
α2

α1−α2

)−β

,
1

α2 − α1

ln

(
1 + α2x

1 + α1x

) .

Example 12. The exponential Riordan array
[

ex

2ex−e2x
, e2x−ex

2ex−e2x

]
begins:

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
3 5 1 0 0 0 . . .
13 31 12 1 0 0 . . .
75 233 133 22 1 0 . . .
541 2071 1560 385 35 1 . . .
...

...
...

...
...

...
. . .


.

Its first column is the sequence A000670, known as the ordered Bell numbers. The production
matrix of this array is 

1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
0 8 7 1 0 0 . . .
0 0 18 10 1 0 . . .
0 0 0 32 13 1 . . .
0 0 0 0 50 16 . . .
...

...
...

...
...

...
. . .


.

Thus the ordered Bell numbers are the moments µn of the family of orthogonal polynomials
whose coefficient array is given by[

ex

2ex − e2x
,
e2x − ex

2ex − e2x

]−1

=

[
1

1 + x
, ln

(
1 + 2x

1 + x

)]
,

and whose generating function is given by

1

1− x−
2x2

1− 4x−
8x2

1− 7x−
18x2

1− · · ·

.
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4 A matrix product

We recall that the matrix [ 1
1−rx

, x
1−rx

] has production matrix

r 1 0 0 0 0 . . .
r2 3r 1 0 0 0 . . .
0 4r2 5r 1 0 0 . . .
0 0 9r2 7r 1 0 . . .
0 0 0 16r2 9r 1 . . .
0 0 0 0 25r2 11r . . .
...

...
...

...
...

...
. . .


.

We use the notation Lag[r] for this matrix
[

1
1−rx

, x
1−rx

]
[3]. We now form the product

L · Lag[r] to get

L · Lag[r] =

[
eαβx

(
α1 − α2

α1eα2x − α2eα1x

)β

,
eα1x − eα2x

α1eα2x − α2eα1x

]
·
[

1

1− rx
,

x

1− rx

]

=

[
eαβx

(
α1 − α2

α1eα2x − α2eα1x

)β
α1e

α2x − α2e
α1x

(α1 + r)eα2x − (α2 + r)eα1x
,

eα1x − eα2x

(α1 + r)eα2x − (α2 + r)eα1x

]
.

For β = 1, this product is equal to[
eαx

α1 − α2

(α1 + r)eα2x − (α2 + r)eα1x
,

eα1x − eα2x

(α1 + r)eα2x − (α2 + r)eα1x

]
.

This matrix has a tri-diagonal production array which starts

α+ r 1 0 0 0 0 . . .
(α1 + r)(α2 + r) α+ α1 + α2 + 3r 1 0 0 0 . . .

0 4(α1 + r)(α2 + r) α+ 2(α1 + α2) + 5r 1 0 0 . . .
0 0 9(α1 + r)(α2 + r) α+ 3(α1 + α2) + 7r 1 0 . . .
0 0 0 16(α1 + r)(α2 + r) α+ 4(α1 + α2) + 9r 1 . . .
0 0 0 0 25(α1 + r)(α2 + r) α+ 5(α1 + α2) + 11r . . .
.
..

.

..
.
..

.

..
.
..

.

..
. . .


.

Thus for β = 1, this product matrix is again the inverse of the coefficient array of a family
of orthogonal polynomials. Taking inverses, we arrive at the following product of orthogonal
polynomial coefficient arrays:

[
1

1 + rx
,

x

1 + rx

]
·

[(
1 + α2x

1 + α1x

) α
α1−α2 (1 + α1x)

α2
α1−α2

(1 + α2x)
α1

α1−α2

,
1

α2 − α1

ln

(
1 + α2x

1 + α1x

)]

=

[
1

1 + rx
,

x

1 + rx

]
·

[
(1 + α2x)

α−α1
α1−α2

(1 + α1x)
α−α2
α1−α2

,
1

α2 − α1

ln

(
1 + α2x

1 + α1x

)]

=

[
(1 + (α1 + r)x)

α2−α
α1−α2

(1 + (α2 + r)x)
α1−α
α1−α2

,
1

α1 − α2

ln

(
1 + (α1 + r)x

1 + (α2 + r)x

)]
.
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