
Meixner-type results for Riordan arrays and
associated integer sequences

Paul Barry
School of Science

Waterford Institute of Technology
Ireland

pbarry@wit.ie

Aoife Hennessy
Department of Computing, Mathematics and Physics

Waterford Institute of Technology
Ireland

aoife.hennessy@gmail.com

Abstract

We determine which (ordinary) Riordan arrays are the coefficient arrays of a family
of orthogonal polynomials. In so doing, we are led to introduce a family of polynomi-
als, which includes the Boubaker polynomials, and a scaled version of the Chebyshev
poynomials, using the techniques of Riordan arrays. We classify these polynomials in
terms of the Chebyshev polynomials of the first and second kinds. We also examine the
Hankel transforms of sequences associated to the inverse of the polynomial coefficient
arrays, including the associated moment sequences.

1 Introduction

To each Riordan array (A(t), B(t)) we can associate a family of polynomials [19] by

∞∑
n=0

pn(x)t
n = (A(t), B(t)) · 1

1− xt
=

A(t)

1− xB(t)
.

The question can then be asked as to what conditions must be satisfied by A(t) and B(t)
in order to ensure that (pn(x))n≥0 be a family of orthogonal polynomials. This can be
considered to be a Meixner-type question [22], where the original Meixner result is related to
Sheffer sequences (i.e., to exponential generating functions, rather than ordinary generating
functions):

∞∑
n=0

pn(x)t
n = A(t) exp(xB(t)).

In providing an answer to this question, we shall introduce a two-parameter family of orthog-
onal polynomials using Riordan arrays. These polynomials are inspired by the well-known
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Chebyshev polynomials [25], and the more recently introduced so-called Boubaker polyno-
mials [2, 14, 16]. We shall classify these polynomials in terms of the Chebyshev polynomials
of the first and second kinds, and we shall also examine properties of sequences related to
the inverses of the coefficient arrays of the polynomials under study. While partly expos-
itory in nature, the note assumes a certain familiarity with integer sequences, generating
functions, orthogonal polynomials [4, 10, 31], Riordan arrays [26, 30], production matrices
[8, 24], and the integer Hankel transform [1, 6, 17]. Many interesting examples of sequences
and Riordan arrays can be found in Neil Sloane’s On-Line Encyclopedia of Integer Sequences
(OEIS), [28, 29]. Sequences are frequently referred to by their OEIS number. For instance,
the binomial matrix B (“Pascal’s triangle”) is A007318.

The plan of the paper is as follows:

1. This Introduction

2. Preliminaries on integer sequences and Riordan arrays

3. Orthogonal polynomials and Riordan arrays

4. Riordan arrays, production matrices and orthogonal polynomials

5. Chebyshev polynomials and Riordan arrays

6. The Boubaker polynomials

7. The family of Chebyshev-Boubaker polynomials

8. The inverse matrix B−1

9. A curious relation

10. Acknowledgements

2 Preliminaries on integer sequences and Riordan ar-

rays

For an integer sequence an, that is, an element of ZN, the power series f(x) =
∑∞

k=0 akx
k

is called the ordinary generating function or g.f. of the sequence. an is thus the coefficient
of xn in this series. We denote this by an = [xn]f(x). For instance, Fn = [xn] x

1−x−x2 is

the n-th Fibonacci number A000045, while Cn = [xn]1−
√
1−4x
2x

is the n-th Catalan number
A000108. We use the notation 0n = [xn]1 for the sequence 1, 0, 0, 0, . . . , A000007. Thus
0n = [n = 0] = δn,0 =

(
0
n

)
. Here, we have used the Iverson bracket notation [11], defined by

[P ] = 1 if the proposition P is true, and [P ] = 0 if P is false.
For a power series f(x) =

∑∞
n=0 anx

n with f(0) = 0 we define the reversion or composi-
tional inverse of f to be the power series f̄(x) such that f(f̄(x)) = x. We sometimes write
f̄ = Revf .
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For a lower triangular matrix (an,k)n,k≥0 the row sums give the sequence with general term∑n
k=0 an,k while the diagonal sums form the sequence with general term

⌊n
2
⌋∑

k=0

an−k,k.

The Riordan group [26, 30], is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = g0 + g1x + g2x

2 + . . . and
f(x) = f1x + f2x

2 + . . . where g0 ̸= 0 and f1 ̸= 0 [30]. The associated matrix is the matrix
whose i-th column is generated by g(x)f(x)i (the first column being indexed by 0). The
matrix corresponding to the pair g, f is denoted by (g, f) or R(g, f). The group law is then
given by

(g, f) · (h, l) = (g, f)(h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

A Riordan array of the form (g(x), x), where g(x) is the generating function of the se-
quence an, is called the sequence array of the sequence an. Its general term is an−k. Such
arrays are also called Appell arrays as they form the elements of the Appell subgroup.

If M is the matrix (g, f), and a = (a0, a1, . . .)
′ is an integer sequence with ordinary gener-

ating function A (x), then the sequence Ma has ordinary generating function g(x)A(f(x)).
The (infinite) matrix (g, f) can thus be considered to act on the ring of integer sequences
ZN by multiplication, where a sequence is regarded as a (infinite) column vector. We can
extend this action to the ring of power series Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

In [18, 19] the notation T (f |g) is used to denote the Riordan array

T (f |g) =
(
f(x)

g(x)
,

x

g(x)

)
.

Example 1. The so-called binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan group.
Thus

B = T (1|1− x).

This matrix has general element
(
n
k

)
, and hence as an array coincides with Pascal’s triangle.

More generally, Bm is the element ( 1
1−mx

, x
1−mx

) of the Riordan group, with general term(
n
k

)
mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1

1+mx
, x
1+mx

).

Example 2. If an has generating function g(x), then the generating function of the sequence

bn =

⌊n
2
⌋∑

k=0

an−2k
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is equal to
g(x)

1− x2
=

(
1

1− x2
, x

)
· g(x),

while the generating function of the sequence

dn =

⌊n
2
⌋∑

k=0

(
n− k

k

)
an−2k

is equal to
1

1− x2
g

(
x

1− x2

)
=

(
1

1− x2
,

x

1− x2

)
· g(x).

The row sums of the matrix (g, f) have generating function

(g, f) · 1

1− x
=

g(x)

1− f(x)

while the diagonal sums of (g, f) (sums of left-to-right diagonals in the North East direc-
tion) have generating function g(x)/(1 − xf(x)). These coincide with the row sums of the
“generalized” Riordan array (g, xf):

(g, xf) · 1

1− x
=

g(x)

1− xf(x)
.

For instance the Fibonacci numbers Fn+1 are the diagonal sums of the binomial matrix B
given by

(
1

1−x
, x
1−x

)
: 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .


while they are the row sums of the “generalized” or “stretched” (using the nomenclature of

[5] ) Riordan array
(

1
1−x

, x2

1−x

)
:

1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 4 3 0 0 0 . . .
...

...
...

...
...

...
. . .


.
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It is often the case that we work with “generalized” Riordan arrays, where we relax some of
the defining conditions above. Thus for instance [5] discusses the notion of the “stretched”
Riordan array. In this note, we shall encounter “vertically stretched” arrays of the form
(g, h) where now f0 = f1 = 0 with f2 ̸= 0. Such arrays are not invertible, but we may
explore their left inversion. In this context, standard Riordan arrays as described above are
called “proper” Riordan arrays. We note for instance that for any proper Riordan array
(g, f), its diagonal sums are just the row sums of the vertically stretched array (g, xf) and
hence have g.f. g/(1− xf).

Each Riordan array (g(x), f(x)) has bi-variate generating function given by

g(x)

1− yf(x)
.

For instance, the binomial matrix B has generating function

1
1−x

1− y x
1−x

=
1

1− x(1 + y)
.

For a sequence a0, a1, a2, . . . with g.f. g(x), the “aeration” of the sequence is the sequence
a0, 0, a1, 0, a2, . . . with interpolated zeros. Its g.f. is g(x2).

The aeration of a (lower-triangular) matrix M with general term mi,j is the matrix whose
general term is given by

mr
i+j
2

, i−j
2

1 + (−1)i−j

2
,

where mr
i,j is the i, j-th element of the reversal of M:

mr
i,j = mi,i−j.

In the case of a Riordan array (or indeed any lower triangular array), the row sums of the
aeration are equal to the diagonal sums of the reversal of the original matrix.

Example 3. The Riordan array (c(x2), xc(x2)) is the aeration of (c(x), xc(x)) A033184. Here

c(x) =
1−

√
1− 4x

2x

is the g.f. of the Catalan numbers. Indeed, the reversal of (c(x), xc(x)) is the matrix with
general element

[k ≤ n+ 1]

(
n+ k

k

)
n− k + 1

n+ 1
,

which begins
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

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 2 0 0 0 . . .
1 3 5 5 0 0 . . .
1 4 9 14 14 0 . . .
1 5 14 28 42 42 . . .
...

...
...

...
...

...
. . .


.

This is A009766. Then (c(x2), xc(x2)) has general element(
n+ 1
n−k
2

)
k + 1

n+ 1

(1 + (−1)n−k

2
,

and begins 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 2 0 1 0 0 . . .
2 0 3 0 1 0 . . .
0 5 0 4 0 1 . . .
...

...
...

...
...

...
. . .


.

This is A053121. We have

(c(x2), xc(x2)) =

(
1

1 + x2
,

x

1 + x2

)−1

.

We note that the diagonal sums of the reverse of (c(x), xc(x)) coincide with the row sums of
(c(x2), xc(x2)), and are equal to the central binomial coefficients

(
n

⌊n
2
⌋

)
A001405.

An important feature of Riordan arrays is that they have a number of sequence charac-
terizations [3, 15]. The simplest of these is as follows.

Proposition 4. [15] Let D = [dn,k] be an infinite triangular matrix. Then D is a Riordan
array if and only if there exist two sequences A = [a0, a1, a2, . . .] and Z = [z0, z1, z2, . . .] with
a0 ̸= 0 such that

• dn+1,k+1 =
∑∞

j=0 ajdn,k+j, (k, n = 0, 1, . . .)

• dn+1,0 =
∑∞

j=0 zjdn,j, (n = 0, 1, . . .).

The coefficients a0, a1, a2, . . . and z0, z1, z2, . . . are called the A-sequence and the Z-
sequence of the Riordan array D = (g(x), f(x)), respectively. Letting A(x) and Z(x) denote
the generating functions of these sequences, respectively, we have [20] that

f(x)

x
= A(f(x)), g(x) =

d0,0
1− xZ(f(x))

.
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We therefore deduce that
A(x) =

x

f̄(x)
,

and

Z(x) =
1

f̄(x)

[
1− d0,0

g(f̄(x))

]
.

A consequence of this is the following result, which was originally established [19] by Luzón:

Lemma 5. Let D = (g, f) be a Riordan array, whose A-sequence, respectively Z-sequence
have generating functions A(x) and Z(x). Then

D−1 =

(
A− xZ

d0,0A
,
x

A

)
.

3 Orthogonal polynomials and Riordan arrays

By an orthogonal polynomial sequence (pn(x))n≥0 we shall understand [4, 10] an infinite
sequence of polynomials pn(x), n ≥ 0, of degree n, with real coefficients (often integer
coefficients) that are mutually orthogonal on an interval [x0, x1] (where x0 = −∞ is allowed,
as well as x1 = ∞), with respect to a weight function w : [x0, x1] → R :∫ x1

x0

pn(x)pm(x)w(x)dx = δnm
√

hnhm,

where ∫ x1

x0

p2n(x)w(x)dx = hn.

We assume that w is strictly positive on the interval (x0, x1). Every such sequence obeys a
so-called “three-term recurrence” :

pn+1(x) = (anx+ bn)pn(x)− cnpn−1(x)

for coefficients an, bn and cn that depend on n but not x. We note that if

pj(x) = kjx
j + k′

jx
j−1 + . . . j = 0, 1, . . .

then

an =
kn+1

kn
, bn = an

(
k′
n+1

kn+1

− k′
n

kn

)
, cn = an

(
kn−1hn

knhn−1

)
,

where

hi =

∫ x1

x0

pi(x)
2w(x) dx.

Since the degree of pn(x) is n, the coefficient array of the polynomials is a lower triangular
(infinite) matrix. In the case of monic orthogonal polynomials the diagonal elements of this
array will all be 1. In this case, we can write the three-term recurrence as

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), p0(x) = 1, p1(x) = x− α0.
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The moments associated to the orthogonal polynomial sequence are the numbers

µn =

∫ x1

x0

xnw(x)dx.

We can find pn(x), αn and βn from a knowledge of these moments. To do this, we let ∆n be
the Hankel determinant |µi+j|ni,j≥0 and ∆n,x be the same determinant, but with the last row
equal to 1, x, x2, . . .. Then

pn(x) =
∆n,x

∆n−1

.

More generally, we let H

(
u1 . . . uk

v1 . . . vk

)
be the determinant of Hankel type with (i, j)-th

term µui+vj . Let

∆n = H

(
0 1 . . . n
0 1 . . . n

)
, ∆′ = H

(
0 1 . . . n− 1 n
0 1 . . . n− 1 n+ 1

)
.

Then we have

αn =
∆′

n

∆n

−
∆′

n−1

∆n−1

, βn =
∆n−2∆n

∆2
n−1

.

Of importance to this study are the following results (the first is the well-known “Favard’s
Theorem”), which we essentially reproduce from [13].

Theorem 6. [13] (Cf. [32], Théorème 9 on p.I-4, or [33], Theorem 50.1). Let (pn(x))n≥0

be a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then
the sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn ̸= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βn(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.

Theorem 7. [13] (Cf. [32], Proposition 1, (7), on p. V-5, or [33], Theorem 51.1). Let
(pn(x))n≥0 be a sequence of monic polynomials, which is orthogonal with respect to some
functional L. Let

pn+1 = (x− αn)pn(x)− βn(x), for n ≥ 1,

be the corresponding three-term recurrence which is guarenteed by Favard’s theorem. Then
the generating function

g(x) =
∞∑
k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.
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Given a family of monic orthogonal polynomials

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), p0(x) = 1, p1(x) = x− α0,

we can write

pn(x) =
n∑

k=0

an,kx
k.

Then we have
n+1∑
k=0

an+1,kx
k = (x− αn)

n∑
k=0

an,kx
k − βn

n−1∑
k=0

an−1,kx
k

from which we deduce
an+1,0 = −αnan,0 − βnan−1,0 (1)

and
an+1,k = an,k−1 − αnan,k − βnan−1,k (2)

The question immediately arises as to the conditions under which a Riordan array (g, f) can
be the coefficient array of a family of orthogonal polynomials. A partial answer is given by
the following proposition.

Proposition 8. Every Riordan array of the form(
1

1 + rx+ sx2
,

x

1 + rx+ sx2

)
is the coefficient array of a family of monic orthogonal polynomials.

Proof. By [12], the array
(

1
1+rx+sx2 ,

x
1+rx+sx2

)
has a C-sequence C(x) =

∑
n≥0 cnx

n given by

x

1 + rx+ sx2
=

x

1− xC(x)
,

and thus
C(x) = −r − sx.

Thus the Riordan array
(

1
1+rx+sx2 ,

x
1+rx+sx2

)
is determined by the fact that

an+1,k = an,k−1 +
∑
i≥0

cidn−i,k for n, k = 0, 1, 2, . . .

where an,−1 = 0. In the case of
(

1
1+rx+sx2 ,

x
1+rx+sx2

)
we have

an+1,k = an,k−1 − ran,k − san−1,k.

Working backwards, this now ensures that

pn+1(x) = (x− r)pn(x)− spn−1(x),

where pn(x) =
∑n

k=0 an,kx
n.
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We note that in this case the three-term recurrence coefficients αn and βn are constants.
We can strengthen this result as follows.

Proposition 9. Every Riordan array of the form(
1− λx− µx2

1 + rx+ sx2
,

x

1 + rx+ sx2

)
is the coefficient array of a family of monic orthogonal polynomials.

Proof. We have(
1− λx− µx2

1 + rx+ sx2
,

x

1 + rx+ sx2

)
= (1− λx− µx2, x) ·

(
1

1 + rx+ sx2
,

x

1 + rx+ sx2

)
,

where (1− λx− µx2, x) is the array with elements

1 0 0 0 0 0 . . .
−λ 1 0 0 0 0 . . .
−µ −λ 1 0 0 0 . . .
0 −µ −λ 1 0 0 . . .
0 0 −µ −λ 1 0 . . .
0 0 0 −µ −λ 1 . . .
...

...
...

...
...

...
. . .


.

We write

B = (bn,k) =

(
1− λx− µx2

1 + rx+ sx2
,

x

1 + rx+ sx2

)
,

and

A = (an,k) =

(
1

1 + rx+ sx2
,

x

1 + rx+ sx2

)
,

where
an+1,k = an,k−1 − ran,k − san−1,k. (3)

We now assert that also,
bn+1,k = bn,k−1 − rbn,k − sbn−1,k.

This follows since the fact that

B = (1− λx− µx2, x) · A

tells us that

bn+1,k = an+1,k − λan,k − µan−1,k,

bn,k−1 = an,k−1 − λan−1,k−1 − µan−2,k−1,

bn,k = an,k − λan−1,k − µan−2,k,

bn−1,k = an−1,k − λan−2,k − µan−3,k.
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Then using equation (3) and the equivalent equations for an,k and an−1,k, we see that

bn+1,k = bn,k−1 − rbn,k − sbn−1,k

as required. Noting that

p0(x) = 1, p1(x) = x− r − λ, p2(x) = x2 − (2r + λ)x+ λr − µ+ r2 − s, . . . ,

we see that the family of orthogonal polynomials is defined by the α-sequence

α0 = r + λ, r, r, r, . . .

and the β-sequence
β1 = s+ µ, s, s, s, . . . .

Proposition 10. The elements in the left-most column of

L =

(
1− λx− µx2

1 + rx+ sx2
,

x

1 + rx+ sx2

)−1

are the moments corresponding to the family of orthogonal polynomials with coefficient array
L−1.

Proof. We let

(g, f) =

(
1− λx− µx2

1 + rx+ sx2
,

x

1 + rx+ sx2

)
.

Then

L = (g, f)−1 =

(
1

g(f̄)
, f̄

)
.

Now f̄(x) is the solution to
u

1 + rx+ sx2
= x,

thus

f̄(x) =
1− sx−

√
1− 2sx+ (s2 − 4r)x2

2rx
.

Then
1

g(f̄(x))
=

1 + rf̄(x) + s(f̄(x))2

1− λf̄(x)− µ(f̄(x))2
.

Simplifying,we find that

1

g(f̄(x))
=

2s

(s+ µ)
√

1− 2rx+ (r2 − 4s)x2 − (r(s− µ) + 2sλ)x+ s− µ
.
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We now consider the continued fraction

g̃(x) =
1

1− (r + λ)x−
(s+ µ)x2

1− rx−
sx2

1− rx−
sx2

1− rx− ·

.

This is equivalent to

g̃(x) =
1

1− (r + λ)x− (s+ µ)x2h(x)
,

where

h(x) =
1

1− rx− sx2h(x)
.

Solving for h(x) and subsequently for g̃(x), we find that

g̃(x) =
1

g(f̄(x))
.

We have in fact the following proposition (see the next section for information on the
Chebyshev polynomials).

Proposition 11. The Riordan array
(

1
1+rx+sx2 ,

x
1+rx+sx2

)
is the coefficient array of the mod-

ified Chebyshev polynomials of the second kind given by

Pn(x) = (
√
s)nUn

(
x− r

2
√
s

)
, n = 0, 1, 2, . . .

Proof. We have
1

1− 2xt+ t2
=

∞∑
n=0

Un(x)t
n.

Thus
1

1− 2x−r
2
√
s

√
st+ st2

=
∞∑
n=0

Un

(
x− r

2
√
s

)
(
√
st)n.

Now

1

1− 2x−r
2
√
s

√
st+ st2

=
1

1− (x− r)t+ st2

=

(
1

1 + rt+ st2
,

t

1 + rt+ st2

)
· 1

1− xt
.

Thus (
1

1 + rt+ st2
,

t

1 + rt+ st2

)
· 1

1− xt
=

∞∑
n=0

(
√
s)nUn

(
x− r

2
√
s

)
tn

as required.
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For another perspective on this result, see [9].

Corollary 12. The Riordan array
(

1−λx−µx2

1+rx+sx2 ,
x

1+rx+sx2

)
is the coefficient array of the gen-

eralized Chebyshev polynomials of the second kind given by

Qn(x) = (
√
s)nUn

(
x− r

2
√
s

)
−λ(

√
s)n−1Un−1

(
x− r

2
√
s

)
−µ(

√
s)n−2Un−2

(
x− r

2
√
s

)
, n = 0, 1, 2, . . .

Proof. We have

Un(x) = [xn]
1

1− 2xt+ t2

By the method of coefficients [21] we then have

[xn]
t

1− 2xt+ t2
= [xn−1]

1

1− 2xt+ t2
= Un−1(x)

and similarly

[xn]
t2

1− 2xt+ t2
= [xn−2]

1

1− 2xt+ t2
= Un−2(x).

A more complete answer to our original question can be found by considering the asso-
ciated production matrix [7, 8] of a Riordan arrray, which we look at in the next section.

4 Riordan arrays, production matrices and orthogonal

polynomials

The concept of a production matrix [7, 8] is a general one, but for this work we find it
convenient to review it in the context of Riordan arrays. Thus let P be an infinite matrix
(most often it will have integer entries). Letting r0 be the row vector

r0 = (1, 0, 0, 0, . . .),

we define ri = ri−1P , i ≥ 1. Stacking these rows leads to another infinite matrix which we
denote by AP . Then P is said to be the production matrix for AP .
If we let

uT = (1, 0, 0, 0, . . . , 0, . . .)

then we have

AP =


uT

uTP
uTP 2

...


and

DAP = APP

13



where D = (δi+1,j)i,j≥0 (where δ is the usual Kronecker symbol).
In [24, 27] P is called the Stieltjes matrix associated to AP .

The sequence formed by the row sums of AP often has combinatorial significance and is
called the sequence associated to P . Its general term an is given by an = uTP ne where

e =


1
1
1
...


In the context of Riordan arrays, the production matrix associated to a proper Riordan array
takes on a special form :

Proposition 13. [8] Let P be an infinite production matrix and let AP be the matrix induced
by P . Then AP is an (ordinary) Riordan matrix if and only if P is of the form

P =



ξ0 α0 0 0 0 0 . . .
ξ1 α1 α0 0 0 0 . . .
ξ2 α2 α1 α0 0 0 . . .
ξ3 α3 α2 α1 α0 0 . . .
ξ4 α4 α3 α2 α1 α0 . . .
ξ5 α5 α4 α3 α2 α1 . . .
...

...
...

...
...

...
. . .


Moreover, columns 0 and 1 of the matrix P are the Z- and A-sequences, respectively, of the
Riordan array AP .

Example 14. We calculate the production matrix of the Riordan array

D = (c(x), xc(x)).

We have
f(x) = xc(x) ⇒ f̄(x) = x(1− x),

and hence

A(x) =
x

f̄(x)
=

x

x(1− x)
=

1

1− x
.

Similarly,

Z(x) =
1

f̄(x)

[
1− d0,0

g(f̄(x))

]
=

1

x(1− x)

[
1− 1

c(x(1− x))

]
=

1

x(1− x)

[
1− 1

1
1−x

]
=

1

x(1− x)
[1− (1− x)]

=
1

1− x
.

14



Thus the production matrix of D = (c(x), xc(x)) is the matrix that begins

1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
1 1 1 1 1 1 . . .
1 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .


.

Example 15. We calculate the production matrix of the Riordan array

(g, f) = (c(x2), xc(x2)) =

(
1

1 + x2
,

x

1 + x2

)−1

.

First, we have

f(x) = xc(x2) ⇒ f̄(x) =
x

1 + x2
,

and hence
A(x) =

x

f̄(x)
= 1 + x2.

Next, since
1

g(f̄(x))
=

1

1 + x2
,

we have

Z(x) =
1

f̄(x)

[
1− d0,0

g(f̄(x))

]
=

1 + x2

x

[
1− 1

1 + x2

]
=

1 + x2

x

[
1 + x2 − 1

1 + x2

]
= x.

Hence the production matrix of (c(x2), xc(x2)) begins

0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
0 0 0 1 0 1 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


.

We can generalize the last result to give the following important result.
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Proposition 16. The Riordan array L where

L−1 =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)
has production matrix (Stieltjes matrix) given by

P = SL =



a+ λ 1 0 0 0 0 . . .
b+ µ a 1 0 0 0 . . .
0 b a 1 0 0 . . .
0 0 b a 1 0 . . .
0 0 0 b a 1 . . .
0 0 0 0 b a . . .
...

...
...

...
...

...
. . .


.

Proof. We let

(g, f) = L =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1

.

By definition of the inverse, we have

f̄(x) =
x

1 + ax+ bx2

and hence
A(x) =

x

f̄(x)
= 1 + ax+ bx2.

Also by definition of the inverse, we have

1

g(f̄(x))
=

1− λx− µx2

1 + ax+ bx2
,

and hence

Z(x) =
1

f̄(x)

[
1− d0,0

g(f̄(x))

]
=

1 + ax+ bx2

x

[
1− 1− λx− µx2

1 + ax+ bx2

]
=

1 + ax+ bx2

x

[
1 + ax+ bx2 − 1 + λx+ µx2

]
= (a+ λ) + (b+ µ)x.

Corollary 17. The Riordan array

L =

(
1 + (a− a1)x+ (b− b1)x

2

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1
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has production matrix that begins

P = SL =



a1 1 0 0 0 0 . . .
b1 a 1 0 0 0 . . .
0 b a 1 0 0 . . .
0 0 b a 1 0 . . .
0 0 0 b a 1 . . .
0 0 0 0 b a . . .
...

...
...

...
...

...
. . .


.

Example 18. We note that since

L−1 =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)
= (1− λx− µx2, x) ·

(
1

1 + ax+ bx2
,

x

1 + ax+ bx2

)
,

we have

L =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1

=

(
1

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1

·
(

1

1− λx− µx2
, x

)
.

If we now let

L1 =

(
1

1 + ax
,

x

1 + ax

)
· L,

then (see [23]) we obtain that the Stieltjes matrix for L1 is given by

SL1 =



λ 1 0 0 0 0 . . .
b+ µ 0 1 0 0 0 . . .
0 b 0 1 0 0 . . .
0 0 b 0 1 0 . . .
0 0 0 b 0 1 . . .
0 0 0 0 b 0 . . .
...

...
...

...
...

...
. . .


.

We have in fact the following general result [23] :

Proposition 19. [23] If L = (g(x), f(x)) is a Riordan array and P = SL is tridiagonal,
then necessarily

P = SL =



a1 1 0 0 0 0 . . .
b1 a 1 0 0 0 . . .
0 b a 1 0 0 . . .
0 0 b a 1 0 . . .
0 0 0 b a 1 . . .
0 0 0 0 b a . . .
...

...
...

...
...

...
. . .


17



where

f(x) = Rev
x

1 + ax+ bx2
and g(x) =

1

1− a1x− b1xf
,

and vice-versa.

Of central importance to this note is the following result.

Proposition 20. If L = (g(x), f(x)) is a Riordan array and P = SL is tridiagonal of the
form

P = SL =



a1 1 0 0 0 0 . . .
b1 a 1 0 0 0 . . .
0 b a 1 0 0 . . .
0 0 b a 1 0 . . .
0 0 0 b a 1 . . .
0 0 0 0 b a . . .
...

...
...

...
...

...
. . .


, (4)

then L−1 is the coefficient array of the family of orthogonal polynomials pn(x) where p0(x) =
1, p1(x) = x− a1, and

pn+1(x) = (x− a)pn(x)− bnpn−1(x), n ≥ 2,

where bn is the sequence 0, b1, b, b, b, . . ..

Proof. (We are indebted to an anonymous reviewer for the form of the proof that follows).
The form of the matrix P in (4) is equivalent to saying that A(x) = 1 + ax + bx2 and that
Z(x) = a1 + b1x. Now Lemma 5 tells us that if (d, h) is a Riordan array with A and Z the
corresponding A-sequence and Z-sequence, respectively, then

(d, h)−1 =

(
A− xZ

d0,0A
,
x

A

)
.

Note that by assumption, d0,0 = 1 here. Thus

L−1 =

(
1 + (a− a1)x+ (b− b1)x

2

1 + ax+ bx2
,

x

1 + ax+ bx2

)
= T (1+(a−a1)x+(b−b1)x

2|1+ax+bx2).

Theorem 5 of [19] now yields the required form of the three-term recurrence for the associated
polynomials with coefficient array L−1. That these are orthogonal polynomials then follows
by Favard’s theorem.

We note that the elements of the rows of L−1 can be identified with the coefficients of the
characteristic polynomials of the successive principal sub-matrices of P .

Example 21. We consider the Riordan array(
1

1 + ax+ bx2
,

x

1 + ax+ bx2

)
.
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Then the production matrix (Stieltjes matrix) of the inverse Riordan array
(

1
1+ax+bx2 ,

x
1+ax+bx2

)−1

left-multiplied by the k-th binomial array(
1

1− kx
,

x

1− kx

)
=

(
1

1− x
,

x

1− x

)k

is given by

P =



a+ k 1 0 0 0 0 . . .
b a+ k 1 0 0 0 . . .
0 b a+ k 1 0 0 . . .
0 0 b a+ k 1 0 . . .
0 0 0 b a+ k 1 . . .
0 0 0 0 b a+ k . . .
...

...
...

...
...

...
. . .


and vice-versa. This follows since(

1

1 + ax+ bx2
,

x

1 + ax+ bx2

)
·
(

1

1 + kx
,

x

1 + kx

)
=

(
1

1 + (a+ k)x+ bx2
,

x

1 + (a+ k)x+ bx2

)
.

In fact we have the more general result :(
1 + λx+ µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)
·
(

1

1 + kx
,

x

1 + kx

)
=(

1 + λx+ µx2

1 + (a+ k)x+ bx2
,

x

1 + (a+ k)x+ bx2

)
.

The inverse of this last matrix therefore has production array

a+ k − λ 1 0 0 0 0 . . .
b− µ a+ k 1 0 0 0 . . .
0 b a+ k 1 0 0 . . .
0 0 b a+ k 1 0 . . .
0 0 0 b a+ k 1 . . .
0 0 0 0 b a+ k . . .
...

...
...

...
...

...
. . .


.

We note that if L = (g(x), f(x)) is a Riordan array and P = SL is tridiagonal of the
form given in Eq. (4), then the first column of L gives the moment sequence for the weight
function associated to the orthogonal polynomials whose coefficient array is L−1.

As pointed out by a referee (to whom we are indebted for this important observation),
the main results of the last two sections may be summarized as follows:

Proposition 22. Let L = (d(x), h(x)) be a Riordan array. Then the following are equivalent:

1. L is the coefficient array of a family of monic orthogonal polynomials

2. d(x) = 1−λx−µx2

1+rx+sx2 and h(x) = x
1+rx+sx2 with s ̸= 0.
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3. The production matrix of L−1 is of the form

P = SL−1 =



r1 1 0 0 0 0 . . .
s1 r 1 0 0 0 . . .
0 s r 1 0 0 . . .
0 0 s r 1 0 . . .
0 0 0 s r 1 . . .
0 0 0 0 s r . . .
...

...
...

...
...

...
. . .


with s ̸= 0.

4. The bivariate generating function of L is of the form

1− λx− µx2

1 + (r − t)x+ sx2

with s ̸= 0.

Under these circumstances, the elements of the left-most column of L−1 are the moments
associated to the linear functional that defines the family of orthogonal polynomials.

5 Chebyshev polynomials and Riordan arrays

We begin this section by recalling some facts about the Chebyshev polynomials of the first
and second kind. Thus the Chebyshev polynomials of the first kind, Tn(x), are defined by

Tn(x) =
n

2

⌊n
2
⌋∑

k=0

(
n− k

k

)
(−1)k

n− k
(2x)n−2k (5)

for n > 0, and T0(x) = 1. Similarly, the Chebyshev polynomials of the second kind, Un(x),
can be defined by

Un(x) =

⌊n
2
⌋∑

k=0

(
n− k

k

)
(−1)k(2x)n−2k, (6)

or alternatively as

Un(x) =
n∑

k=0

(
n+k
2

k

)
(−1)

n−k
2
1 + (−1)n−k

2
(2x)k. (7)

In terms of generating functions, we have

∞∑
n=0

Tn(x)t
n =

1− xt

1− 2xt+ t2
,
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while
∞∑
n=0

Un(x)t
n =

1

1− 2xt+ t2
.

The Chebyshev polynomials of the second kind, Un(x), which begin

1, 2x, 4x2 − 1, 8x3 − 4x, 16x4 − 12x2 + 1, 32x5 − 32x3 + 6x, . . .

have coefficient array

1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
−1 0 4 0 0 0 . . .
0 −4 0 8 0 0 . . .
1 0 −12 0 16 0 . . .
0 6 0 −32 0 32 . . .
...

...
...

...
...

...
. . .


(A053117)

This is the (generalized) Riordan array(
1

1 + x2
,

2x

1 + x2

)
.

We note that the coefficient array of the modified Chebyshev polynomials Un(x/2) which
begin

1, x, x2 − 1, x3 − 2x, x4 − 3x2 + 1, . . . ,

is given by 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−1 0 1 0 0 0 . . .
0 −2 0 1 0 0 . . .
1 0 −3 0 1 0 . . .
0 3 0 −4 0 1 . . .
...

...
...

...
...

...
. . .


(A049310)

This is the Riordan array (
1

1 + x2
,

x

1 + x2

)
.

The situation with the Chebyshev polynomials of the first kind is more complicated, since
while the coefficient array of the polynomials 2Tn(x)− 0n, which begins

1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
−2 0 4 0 0 0 . . .
0 −6 0 8 0 0 . . .
2 0 −16 0 16 0 . . .
0 10 0 −40 0 32 . . .
...

...
...

...
...

...
. . .


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is a (generalized) Riordan array, namely(
1− x2

1 + x2
,

2x

1 + x2

)
,

that of Tn(x), which begins

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−1 0 2 0 0 0 . . .
0 −3 0 4 0 0 . . .
1 0 −8 0 8 0 . . .
0 5 0 −20 0 16 . . .
...

...
...

...
...

...
. . .


(A053120)

is not a Riordan array. However the Riordan array(
1− x2

1 + x2
,

x

1 + x2

)
which begins 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−2 0 1 0 0 0 . . .
0 −3 0 1 0 0 . . .
2 0 −4 0 1 0 . . .
0 5 0 −5 0 1 . . .
...

...
...

...
...

...
. . .


(A108045)

is the coefficient array for the orthogonal polynomials given by (2− 0n)Tn(x/2).
Orthogonal polynomials can also be defined in terms of the three term recurrence that

they obey. Thus, for instance,

Tn(x) = 2xTn−1(x)− Tn−2(x),

with a similar recurrence for Un(x). Of course, we then have

Un(x/2) = xUn−1(x/2)− Un−2(x/2),

for instance. This last recurrence corresponds to the fact that the production matrix of(
1

1+x2 ,
x

1+x2

)−1
= (c(x2), xc(x2)) is given by

0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
0 0 0 1 0 1 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


.

Note that many of the above results can also be found in [18]
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6 The Boubaker polynomials

The Boubaker polynomials arose from the discretization of the equations of heat transfer in
pyrolysis [2, 14, 16] starting from an assumed solution of the form

1

N
e

A
H
z +1

∞∑
m=0

ξmJm(t)

where Jm is the m-th order Bessel function of the first kind. Upon truncation, we get a set
of equations

Q1(z)ξ0 = ξ1

Q1(z)ξ1 = −2ξ0 + ξ2

. . .

Q1(z)ξm = ξm−1 + ξm+1

. . .

with coefficient matrix 

0 1 0 0 0 0 . . .
−2 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
0 0 0 1 0 1 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


in which we recognize the production matrix of the Riordan array(

1 + 3x2

1 + x2
,

x

1 + x2

)−1

.

The Boubaker polynomials Bn(x) are defined to be the family of orthogonal polynomials
with coefficient array given by (

1 + 3x2

1 + x2
,

x

1 + x2

)
.

We have B0(x) = 1 and

Bn(x) =

⌊n
2
⌋∑

k=0

(
n− k

k

)
n− 4k

n− k
(−1)kxn−2k, n > 0. (8)

We also have
∞∑
n=0

Bn(x)t
n =

1 + 3t2

1− xt+ t2
.
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The connection to Riordan arrays has already been noted in [19]. The matrix
(

1+3x2

1+x2 ,
x

1+x2

)
begins 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
2 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
−2 0 0 0 1 0 . . .
0 −3 0 −2 0 1 . . .
...

...
...

...
...

...
. . .


,

and hence we have

B0(x) = 1

B1(x) = x

B2(x) = x2 + 2

B3(x) = x3 + 1

B4(x) = x4 − 2

B5(x) = x5 − x3 − 3x, . . .

We can find an expression for the general term of the Boubaker coefficient matrix(
1+3x2

1+x2 ,
x

1+x2

)
as follows. We have(

1 + 3x2

1 + x2
,

x

1 + x2

)
= (1 + 3x2, x) ·

(
1

1 + x2
,

x

1 + x2

)
=

(
3

(
2

n− k

)
− 6

(
1

n− k

)
+ 4

(
0

n− k

))
·
(
−1)

n−k
2

(
n+k
2

k

)
1 + (−1)n−k

2

)
,

where 3
(
2
n

)
− 6
(
1
n

)
+ 4
(
0
n

)
represents the general term of the sequence 1, 0, 3, 0, 0, 0, . . . with

g.f. 1 + 3x2. Thus the general term of the Boubaker coefficient array is given by

n∑
j=0

(
3

(
2

n− j

)
− 6

(
1

n− j

)
+ 4

(
0

n− j

))(
(−1)

j−k
2

( j+k
2

k

)
1 + (−1)j−k

2

)
.

7 The family of Chebyshev-Boubaker polynomials

Inspired by the foregoing, we now define the Chebyshev-Boubaker polynomials with parame-
ters (r, s) to be the orthogonal polynomials Bn(x; r, s) whose coefficient array is the Riordan
array

B =

(
1 + rx+ sx2

1 + x2
,

x

1 + x2

)
.

24



That these are orthogonal polynomials is a consequence of the fact that the production array
of B−1 is the tridiagonal matrix

−r 1 0 0 0 0 . . .
1− s 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
0 0 0 1 0 1 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


.

We immediately note the factorization

B = (1 + rx+ sx2, x) ·
(

1

1 + x2
,

x

1 + x2

)
. (9)

It is clear that we have
∞∑
n=0

Bn(x; r, s)t
n =

1 + rt+ st2

1− xt+ t2
.

We have

Bn(x; 0, 0) = Un(x/2),

Bn(x; 0,−1) = (2− 0n) · Tn(x/2),

Bn(x; 0, 3) = Bn(x).

We can characterize Bn(x; r, s) in terms of the Chebyshev polynomials as follows.

Proposition 23.

Bn(x; r, s) = Un(x/2) + rUn−1(x/2) + sUn−2(x/2). (10)

Proof. This follows from the definition since
(

1
1+x2 ,

x
1+x2

)
is the coefficient array for Un(x/2).

Proposition 24.

Bn(x; r, s) = rUn−1(x/2) + (s+ 1)Un−2(x/2) + 2Tn(x/2)− 0n. (11)

Proof. This follows since

1 + rx+ sx2

1 + x2
= r

x

1 + x2
+ (s+ 1)

x2

1 + x2
+

1− x2

1 + x2
.

Proposition 25.

Bn(x; r, s) =

⌊n
2
⌋∑

k=0

(
n− k

k

)
n− (s+ 1)k

n− k
(−1)kxn−2k + rUn−1(x/2). (12)
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Proof. Indeed, the polynomials defined by(
1 + sx2

1 + x2
,

x

1 + x2

)
are given by

Bn(x; 0, s) =

⌊n
2
⌋∑

k=0

(
n− k

k

)
n− (s+ 1)k

n− k
(−1)kxn−2k.

This can be shown in a similar fashion to Eq. (8).

We can also use the factorization in Eq. (9) to derive another expression for these
polynomials. The general term of the Riordan array

(
1

1+x2 ,
x

1+x2

)
is given by

an,k = (−1)
n−k
2

(
n+k
2

k

)
1 + (−1)n−k

2
,

while the general term of the array (1+ rx+ sx2, x) is given by f(n− k), where f(n) can be
expressed, for instance, as

f(n) = (s− r + 1)

(
0

n

)
+ (r − 2s)

(
1

n

)
+ s

(
2

n

)
.

Thus the general element of B is given by∑
j=0

f(n−j)aj,k =
∑
j=0

((s−r+1)

(
0

n− j

)
+(r−2s)

(
1

n− j

)
+s

(
2

n− j

)
)(−1)

j−k
2

( j+k
2

k

)
1 + (−1)j−k

2
.

We finish this section by noting that we could have defined a more general family of
Chebyshev-Boukaber orthogonal polynomials as follows: Let

Br,s,α,β =

(
1 + rx+ sx2

1 + αx+ βx2
,

x

1 + αx+ βx2

)
.

Then this array is the coefficient array for the polynomials B(n; r, s;α, β). This is a family
of orthogonal polynomials since the production array of B−1

r,s,α,β is given by

α− r 1 0 0 0 0 . . .
β − s α 1 0 0 0 . . .
0 β α 1 0 0 . . .
0 0 β α 1 0 . . .
0 0 0 β α 1 . . .
0 0 0 0 β α . . .
...

...
...

...
...

...
. . .


.

We have

Proposition 26.

B(n; r, s;α, β) = (
√

β)nUn

(
x− α

2
√
β

)
+ r(

√
β)n−1Un−1

(
x− α

2
√
β

)
+ s(

√
β)n−2Un−2

(
x− α

2
√
β

)
.
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8 The inverse matrix B−1

We recall that the first column of B−1 contains the moment sequence for the weight function
defined by the Chebyshev-Boubaker polynomials B(n; r, s). In this section, we shall be
interested in studying this sequence, including its Hankel transform, as well as looking at
the row sums, and (more briefly) the diagonal sums, of B−1.

The inverse of the matrix
(

1
1+x2 ,

x
1+x2

)
, corresponding to r = s = 0, is the much-studied

Catalan related matrix

(c(x2), xc(x2)), c(x) =
1−

√
1− 4x

2x
,

where c(x) is the generating function of the Catalan numbers Cn = 1
n+1

(
2n
n

)
A000108. The

inverse of
(

1−x2

1+x2 ,
x

1+x2

)
, which corresponds to r = 0, s = −1, is the matrix(

1√
1− 4x2

, xc(x2)

)
,

which again finds many applications. It is A108044.
Using the theory of Riordan arrays, we find that

B−1 =

(
1 + rx+ sx2

1 + x2
,

x

1 + x2

)−1

=

(
1 + x2c(x2)2

1 + rxc(x2) + sx2c(x2)2
, xc(x2)

)
=

(
c(x2)

1 + rxc(x2) + sx2c(x2)2
, xc(x2)

)
.

Note also that

B−1 =

(
1 + rx+ sx2

1 + x2
,

x

1 + x2

)−1

=

(
(1 + rx+ sx2, x) ·

(
1

1 + x2
,

x

1 + x2

))−1

=

(
1

1 + x2
,

x

1 + x2

)−1

· (1 + rx+ sx2, x)−1

= (c(x2), xc(x2)) ·
(

1

1 + rx+ sx2
, x

)
.

Thus for instance the generating function of the first column of the inverse matrix is

c(x2)

1 + rxc(x2) + sx2c(x2)2
=

1−
√
1− 4x2

s+ rx+ 2(1− s)x2 + (s+ rx)
√
1− 4x2

(13)

=
1 + s+ 2rx+ (s− 1)

√
1− 4x2

2(s+ r(s+ 1)x+ (r2 + (s− 1)2)x2
. (14)
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We can find expressions for the general term un of the sequence given by the first column of
B−1 and the general term vn of the row sums B−1 as follows. We start with

B−1 = (c(x2), xc(x2)) ·
(

1

1 + rx+ sx2
, x

)
.

The first matrix has general element(
n+ 1
n−k
2

)
k + 1

n+ 1

1 + (−1)n−k

2
,

while the second matrix is the sequence (Appell) array for the generalized Fibonacci numbers

Fr,s(n) = [xn]
1

1 + rx+ sx2
=

⌊n
2
⌋∑

i=0

(
n− i

i

)
(−r)n−2i(−s)k.

Thus the general term of B−1 is given by

Tn,k =
n∑

j=0

(
n+ 1
n−j
2

)
j + 1

n+ 1

1 + (−1)n−j

2

⌊ j−k
2

⌋∑
i=0

(
j − k − i

i

)
(−r)j−k−2i(−s)i. (15)

Setting k = 0 we obtain

un =
n∑

j=0

(
n+ 1
n−j
2

)
j + 1

n+ 1

1 + (−1)n−j

2

⌊ j
2
⌋∑

i=0

(
j − i

i

)
(−r)j−2i(−s)i. (16)

This last equation translates the fact that

un = [xn]
c(x2)

1 + rxc(x2) + sx2c(x2)2
= [xn](c(x2), xc(x2)) · 1

1 + rx+ sx2
.

Note that another expression for un is given by

un =

⌊n+1
2

⌋∑
k=0

{(
n

k

)
−
(

n

k − 1

)} ⌊n−2k
2

⌋∑
j=0

(
n− 2k − j

j

)
(−r)n−2k−2j(−b)j,

which represents un as the diagonal sums of the Hadamard product of the reversal of
(c(x), xc(x)) and the sequence array of Fr,s(n).

The general term vn of the row sums of B−1 is given by

vn =
n∑

k=0

n∑
j=0

(
n+ 1
n−j
2

)
j + 1

n+ 1

1 + (−1)n−j

2

⌊ j−k
2

⌋∑
i=0

(
j − k − i

i

)
(−r)j−k−2i(−s)i.
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We can deduce from Eq. (13) that the weight function for the first column {un} of the
inverse is given by

− 1

2π

(s− 1)
√
4− x2

(1− s)2 + r2 + r(s+ 1)x+ sx2
+ α(r, s)δ(

(1−s)
√

r2−4s
2s

− r(s+1)
2s

)
+β(r, s)δ(

(s−1)
√

r2−4s
2s

− r(s+1)
2s

),
for appropriate values of α(r, s) and β(r, s). Thus for r = 1, s = 2, we find that the terms
of the first column have integral representation

un = − 1

2π

∫ 2

−2

xn
√
4− x2

2 + 3x+ 2x2
dx+

(
3

4
− 1

4
√
7
i

)(
−3

4
−

√
7

4
i

)n

+

(
3

4
+

1

4
√
7
i

)(
−3

4
+

√
7

4
i

)n

,

while for r = 2, s = 3, we find that the terms of the first column have integral representation

un = − 1

π

∫ 2

−2

xn
√
4− x2

8 + 8x+ 3x2
dx+

(
2

3
−

√
2

6
i

)(
−4

3
− 2

√
2

3
i

)n

+

(
2

3
+

√
2

6
i

)(
−4

3
+

2
√
2

3
i

)n

.

Using the techniques of [1, 6] we can prove the following.

Proposition 27. The Hankel transform of the first column of(
1 + rx+ sx2

1 + x2
,

x

1 + x2

)−1

is given by hn = (1− s)n.

We can recouch this result in the following terms:

Proposition 28. The moments of the Chebyshev-Boubaker polynomials Bn(x; r, s) have
Hankel transform equal to (1− s)n.

Recall that the elements of the first column of B−1 are the moments for the density
measure associated to the polynomials Bn(x; r, s). We also have

Proposition 29. The Hankel transform of the row sums of the Riordan matrix(
1 + rx+ sx2

1 + x2
,

x

1 + x2

)−1

is given by

hn = [xn]
1

1 + (s− r − 1)x+ s2x2
.

Proof. The g.f. of the row sums is given by

c(x2)
1+rxc(x2)+sx2c(x2)2

1− xc(x2)
=

1 + s+ 2rx+ (s− 1)
√
1− 4x2

2(s+ r(s+ 1)x+ (r2 + (s− 1)2)x2

1− 2x+
√
1− 4x2

2(1− 2x)
.

The result again follows from the techniques of [1, 6].
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We note that the g.f. of the row sums may be written as

1

1 + rxc(x2) + sx2c(x2)2
c(x2)

1− xc(x2)
=

c(x2)

1 + rxc(x2) + sx2c(x2)2
1

1− xc(x2)
.

Thus the row sums of the inverse matrix are a convolution of

[xn]
1

1 + rxc(x2) + sx2c(x2)2

and the central binomial coefficients
(

n
⌊n
2
⌋

)
A001405, or alternatively a convolution of

[xn]
c(x2)

1 + rxc(x2) + sx2c(x2)2

and (
n− 1

⌊n−1
2
⌋

)
+ 0n.

Example 30. The Hankel transforms of the row sums of the inverse matrices(
1 + x− x2

1 + x2
,

x

1 + x2

)−1

and

(
1 + 3x+ x2

1 + x2
,

x

1 + x2

)−1

are both given by F2n+2.
In the case of the matrix (

1 + x− x2

1 + x2
,

x

1 + x2

)−1

the row sums are expressible as(
[xn]

√
1− 4x2 − x

1− 5x2

)
∗
((

n− 1

⌊n−1
2
⌋

)
+ 0n

)
= ((−1)n

⌊n+1
2

⌋∑
k=0

((
n

k

)
−
(

n

k − 1

))
Fn−2k+1)∗

((
n− 1

⌊n−1
2
⌋

)
+ 0n

)
,

where the first element of the convolution is (−1)n A098615(n). Note that these constituent
sequences have Hankel transforms of 2n and 1, 0,−1, 0, 1, 0,−1, 0, . . . , respectively. Alterna-
tively the row sums are given by(

[xn]
1− x− 4x2 + (1− x)

√
1− 4x2

2(1− 5x2)

)
∗
(

n

⌊n
2
⌋

)
.

In this case, the Hankel transforms of the constituent elements of the convolution are given
by 1, 1, 1, 1, 0, 0,−1,−1,−1− 1, 0, . . . , and the all 1’s sequence. For the case of the matrix(

1 + 3x+ x2

1 + x2
,

x

1 + x2

)−1

,

we note that
c(x2)

1 + 3xc(x2) + x2c(x2)2
=

1

1 + 3x
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and so the row sums of the inverse in this case are simply given by

n∑
k=0

(−3)n−k

((
k − 1

⌊k−1
2
⌋

)
+ 0k

)
.

We finish this section by noting that the diagonal sums of B−1 are also of interest. They
have generating function

1 + rx− 2(1− s)x2 − (1 + rx)
√
1− 4x2

2x2(s+ rx(1 + s) + (r2 + (s− 1)2)x2)
.

For instance, the diagonal sums of(
1− x− x2

1 + x2
,

x

1 + x2

)−1

,

which begin
1, 1, 4, 6, 18, 32, 85, 165, 411, 839, 2013, . . . ,

have as Hankel transform the 12-period sequence with g.f. 1+3x+x2−x3

1−x2+x4 which begins

1, 3, 2, 2, 1,−1,−1,−3,−2,−2,−1, 1, 1, 3, 2, 2, 1,−1,−1,−3,−2, . . .

Similarly, the diagonal sums of the matrix(
1− 2x− 3x2

1 + x2
,

x

1 + x2

)−1

,

which begin
1, 2, 9, 26, 94, 300, 1025, 3370, 11322, . . . ,

have as Hankel transform the sequence with g.f. 1+5x+3x2−x3

(1+x2)2
and general term

(1− n) cos
(πn

2

)
+ (3n+ 2) sin

(πn
2

)
.

We can conjecture that the Hankel transform of the diagonal sums of B−1 in the general
case is given by

[xn]
1 + (2− s)x− sx2 − x3

1 + (r2 − 2)x2 + x4
.

9 A curious relation

The third column of the Boubaker coefficient matrix
(

1+3x2

1+x2 ,
x

1+x2

)
has general term

tn =
n∑

j=0

(
3

(
2

n− j

)
− 6

(
1

n− j

)
+ 4

(
0

n− j

))
(−1)

j−2
2

( j+2
2

2

)
1 + (−1)j−2

2
.
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This sequence begins

0, 0, 1, 0, 0, 0,−3, 0, 8, 0,−15, 0, 24, 0,−35, 0, 48, 0,−63, 0, 80, . . .

Now the sequence t2n+2 is therefore given by

1, 0,−3, 8,−15, 24,−35, 48, . . .

This is A131386, with general term (1−n2)(−1)n. The interested reader may wish to verify
that

t2n+2 =
1

2π
ℜ
∫ 2

−2

(
1 + x

1− x

)n√
4− x2 dx

(here, ℜ returns the real part of a complex number).
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