Goulding, D. and Melnik, S. and Curtin, D. and Piwonski, T. and Houlihan, John and Gleeson, J. P. and Huyet, G.
(2007)
*Kramers' law for a bistable system with time-delayed noise.*
Physical Review E, 76 (3).
p. 5.
ISSN 15502376

Preview |
PDF
pre07.pdf Download (134kB) | Preview |

## Abstract

We demonstrate that the classical Kramers' escape problem can be extended to describe a bistable system under the influence of noise consisting of the superposition of a white Gaussian noise with the same noise delayed by time tau. The distribution of times between two consecutive switches decays piecewise exponentially, and the switching rates for 0 < t <tau and tau < t < 2 tau are calculated analytically using the Langevin equation. These rates are different since, for the particles remaining in one well for longer than tau, the delayed noise acquires a nonzero mean value and becomes negatively autocorrelated. To account for these effects we define an effective potential and an effective diffusion coefficient of the delayed noise.

Item Type: | Article |
---|---|

Additional Information: | ISI Document Delivery No.: 215CL Times Cited: 7 Cited Reference Count: 22 Goulding, D. Melnik, S. Curtin, D. Piwonski, T. Houlihan, J. Gleeson, J. P. Huyet, G. AMER PHYSICAL SOC COLLEGE PK Part 1 |

Uncontrolled Keywords: | STOCHASTIC RESONANCE MOTION |

Departments or Groups: | Optics Research Group |

Divisions: | School of Science > Department of Computing, Maths and Physics |

Depositing User: | John Houlihan |

Date Deposited: | 20 Nov 2012 11:07 |

Last Modified: | 22 Aug 2016 10:26 |

URI: | http://repository-testing.wit.ie/id/eprint/1886 |

## Actions (login required)

View Item |