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Many classical sequences have generating functions with well known representations as con-
tinued fractions. Many other important sequences arise from applying transformations to
such sequences with known continued fraction representations. Thus if we can represent the
result of the transformation in continued fraction form, we can infer the continued fraction
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Abstract

We show how various transformations of integer sequences, normally realized by

Riordan or generalized Riordan arrays, can be translated into continued fraction form.
We also examine the Deleham number triangle construction using bi-variate continued
fractions, giving examples from the field of associahedra.

Introduction

representation of the new sequence.

The transformations that we shall discuss in this note will all be described by (ordinary)
Riordan arrays, or generalized Riordan arrays. Thus we shall devote the next section to an

overview of the Riordan group.

Sequences will be referred to by their Annnnnn number, as found in the On-Line Ency-

clopedia of Integer Sequences [10, 11].

The reader is referred to [13] for a general reference on continued fractions.

Example 1. The Catalan numbers. The Catalan numbers A000108

1 (2n>
Cp =
n+1\n
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have generating function

C =
()= =
which can be represented as, for instance,
1
C(LE) = )
x
1—
x
1 —
1 —
or as
1
Cr) = ;
1l—2z— ’
1—-2 v
JR— x J—
2
1 -2 —

1—...

We shall use this notation of C'(z) for the generating function of the Catalan numbers
and ¢, for the n-th Catalan number throughout.
Similzrly, the g.f. of the central binomial coefficients (2:) A000984, ﬁ, may be repre-
sented as

1 1
\/1—495_1 2
X
1_
X
1_
1_
or as
1 1
V1—dr 202
1 — 2z — 5
1-2 *
—_— x_
£L'2
1—2x —
1— ...

In the sequel we will have occasion to use the Iverson bracket notation [5], defined by [P] = 1
if the proposition P is true, and [P] = 0 if P is false. For instance, d;; = [i = j], while
6, = [n=0].

Note also that if we have a sequence ag,aq,as,... then the aeration of this sequence is

the sequence ag, 0, a1, 0, as,0,as,0, ... with interpolated zeros. If a, has generating function
g(z), then the aerated sequence has generating function g(x?).

2 Riordan group

The Riordan group [9, 12], is a set of infinite lower-triangular integer matrices, where each
matrix is defined by a pair of generating functions g(z) = 1 + 12 + g22® + ... and f(z) =

2
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fir + fox® + ... where f; # 0 [12]. The associated matrix is the matrix whose j-th column
is generated by g(z)f(x)? (the first column being indexed by 0). Thus the i-th element of
the j-th column is given by

Ty = ['lg(x) f (x)’

where the operator [z"] [7] extracts the coefficient of 2™ from the power series that it is
applied to. The matrix corresponding to the pair g, f is denoted by (g, f) or R(g, f). The
group law is then given by

(g, /) % (h,1) = (g(ho f), Lo f).

The identity for this law is I = (1,2) and the inverse of (g, f) is (g, f)™' = (1/(g o f), f)
where f is the compositional inverse of f.

A Riordan array of the form (g(z), z), where g(z) = >_,_, axz" is the generating function of
the sequence a,, is called the sequence array of the sequence a,. Its general term is

n—k]

Tk = [2")g(x)2" = [2"F|g(z) = an_s.

Arrays of this form constitute a subgroup of the Riordan group, called the Appell group [6].

If M is the matrix (g, f), and a = (ag,ay,...)" is an integer sequence with ordinary gener-
ating function A (x), then the sequence Ma has ordinary generating function g(x)A(f(x)).
This follows since if M = (T}, ) x>0, We have

ZTn,kak = Z[x"]g(x)f(x)kak

= [a"g(z) Y f(2)"a
= [#"]g(x) A(f(x)).

The (infinite) matrix (g, f) can thus be considered to act on the ring of integer sequences
ZN by multiplication, where a sequence is regarded as a (infinite) column vector. We can
extend this action to the ring of power series Z[[z]| by

(9, 1)+ Alx) — (9, f) - Alz) = g() A(f(2)).

Example 2. The binomial matrix B is the element (-, ) of the Riordan group. It

l—z’ 1—x

has general element (7). More generally, B" is the element (=, 1%-) of the Riordan

n

k)r”_k. It is easy to show that the inverse B™" of B" is given by

group, with general term (

1
( 1+rx? lJrzr:p ) :

If fi = 0 we call the matrix a “generalized” Riordan array. Such a matrix is not invertible.



3 The Binomial transform b, =Y, _, (Z) r"kay.

A common transformation on integer sequences is the so-called “binomial transform”, which
maps the sequence with general term a,, to the sequence with general term b, defined by

bn = i (Z) ay..
k=0

More generally, for r € Z, we can define the “r-th binomial transform” of a, to be the
sequence with general term

k=0
The theory of Riordan arrays now tells us that this transformation can be represented by

the matrix
1 T
l—rx’1—1rx/)"

We recall that if g(x) is the g.f. of the sequence a,, then the g.f. of the sequence b, will be

given by
1 T (z) = 1 T
1l—rx’1—rx gm_l—rxg 1—rx/)’

Applying this to the continued fraction representations above, we obtain the following ex-
pressions for the generating function of the r-th binomial transform of the Catalan numbers.

Firstly
1 x 1 1
.C —
(1—7".13’1—7“56) (z) 1—7“56’1 =
1 — 1—rz
T
1 1—rz
1—
1
B T
1—rz— -
1— 1—7’J:m
1 — 1—rxz
1—.-.
1
B x
1—re—
x
1—
x
1 —rz—
x
1—
x
1—rz—




and secondly,

1 x 1 1
(1—7’:16’1—7":13) (@) 1—rx 2
1 & _ (1—rz)
1—rz 2
x 1—rz)?
1 - 2177“3: - ( ) 2
z (1—rz)?
1_21—r:c_ 1—..
1
l—rz—x— Lore =
x 1—rz)?
1— 2177‘1 ( ) x2
x (1-rz)?
1_2171%_ 1—..
1
l—rz—o—
I2

1—rx—2x—
22

1 —rx—2x—

Generalizing this example in an obvious way, we obtain the following two propositions.

Proposition 3. Let a, be a sequence with generating function g(x) expressible in the form

1
g(x) =
a1
1—
1_ o
1—-...
Then the r-th binomial transform of a, has generating function given by
1
a1x
1—rx— -
1_ Qo
3T
1—rx— ’
1_ QT
5T
1—rg — —

Proposition 4. Let a, be a sequence with generating function g(z) expressible in the form

1

g(r) = G2

52952
1—...

1— a2 —

1—agx —



Then the r-th binomial transform of a, has generating function given by

1
ﬁ1$2
1—rz— oz — 5
Pz
1—re—oasr —
By
1l—re—a3x — ———mM
1l—rx—---
We note that the last expression may be written as
1
2
x
1—(oq+r)z— b o
x
1 —(ag+7r)z — 2 v
x
1—(az+r)r— e
1l—re—---

Thus the form of the continued fraction in this case does not change: only the coefficient of x
in each case is incremented (or decremented). It can be shown that through the mechanism
of series reversion, this translates the fact that

1 x 1 x B
1 —ar— P22’ 1 — ar — B2 l—rz'1—rz)

1 T
(1—(04+7‘)x—6m2’1—(a+r)x—ﬁx2>'

Example 5. The central trinomial coefficients. The central binomial coefficients (2:)
have g.f. expressible as

1

1 — ...

Thus the central trinomial coefficients A002426, which are the (first) inverse binomial trans-
form of (2:), have g.f expressible as
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Example 6. The Motzkin numbers. The Motzkin numbers M, A001006 are given by
the binomial transform of the “aerated” Catalan numbers 1,0,1,0,2,0,5, ..., which have g.f.
C(2?). Now

1
C(z%) = 5
- x
22
1—
1 —
and so the Motzkin numbers have g.f. given by
1
M(x) = 3
l—2— !
1 -
— I‘ J—
72
l—2—

Example 7. The central trinomial coefficients (revisited). The central trinomial
coefficients may also be expressed as the binomial transform of the aerated central binomial
coefficients. These latter have g.f. expressible as

1 1
V1 — 422 B . 222
1 i
2
1
1—

and thus the central trinomial coefficients have g.f. expressible as

1

l—2—

22
2

T

1l—a—
2

1l—a—

4 The transformation b, = Z/E%:Jo (n;k) =2k g,

The matrix that has general term

i3] ()

can be represented by the generalized Riordan array

1 x?
1l—rz’1—rx)

7
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This follows since the general term of

1 x?
1l—rz’1—1rx

1 (27) () = oot

is given by

j=0
= [2" ] Z (n+k) 3 ond
=0 N/
—k
= [n—2k>0] (;_ Qk) 2k

We thus have

Proposition 8. Let a,, be a sequence with generating function expressible in the form

Then the sequence b, with general term

L5

n—k
b, = < )r”_%ak
- k

[

[e=]

has g.f. expressible as

1—re—




Proof. The g.f. of the transformed sequence is given by

1 x? (2) 1 1
. x f—
1—rz'1—rz) 7 vy

11—z 1=
l—rx
11— =
1_042177“:1:
1—-
1
T
1 —rz— 5
Oég—x
1—
1_ Tr
1—---
1
a2
1—rx 5
QAL
1—
Q3T
1—rx— 3
Ay r
1- —
1—7"$—---

]

Example 9. Number of Motzkin paths of length n with no level steps at odd
level. The sequence A090344 with general term

15]
=3 (” ; ’“)

has generating function given by

1
1 -
—
22
1-— o
1l—2— 2
1
1—...
Proposition 10. Let a,, be a sequence with generating function g(x) expressible in the form
1
€Tr) =
g( ) ﬁle
1— o2 — 3
oL
1 — agx — =

Then the g.f. of the sequence
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15 given by

1
1
x
l—re—oa?— b I
Pox
1 —re—axe? —
1—...
Proof. We have
( 1 x? > (2) 1 1
) “g\r) =
l—rx 1—rx 1—7‘x1 - ﬁlﬁ
- l—rz 24
1 22 ﬁ2 (1—rz)?
— &2 1—rz 1—
1
pu— x4
1—re—oa?— hit —
1 22 62 (1—rz)?
— Q2 T—rz 1 —
1
- 1
x
1—re—oa?— b I
_ _ 9 [ox
1—rrx— oz 1

]

Example 11. Number of ordered trees with n edges and having no branches
of length 1. This is given by A026418, which begins 1,0,1,1,2,3,6,11,22,... Now the
sequence which begins 1,1,2,3,6, ... has general term

15]

—k
(n A >rn2k M,
k=0

0[3

and therefore has g.f. given by

.CIZ'4

l—z—2a%—

$4

1—...

11—z —a%2—

5 The transformation b, = > ;_, (") as.

The transformation which maps the sequence with general term a, to the sequence with
general term
" In+k
b, = a
> (")

10
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can be represented by the Riordan array

<1ix’(1—$x)2>'

We then have the following proposition.

Proposition 12. Let a,, be a sequence with generating function g(x) expressible in the form

Then the sequence with general term b, given by

" n+k
bn:Z< ; )
k=0

has g.f. expressible as

(1ix’(1fx>2)'9(m): 1 ar

1—2z—
o
1—93—1_x_
Proof. We have
1 x (z) 1 1
) AvY =
-2 (1—a2) " -2 -
1 x
1_042(1755)2
1—-
1
oS =
1 052(1_x)2
1
1
N 1 a1 r
_l‘_
Qo
1—:U—1 2
_l‘_

11



Example 13. The large Schroder numbers. The large Schroder numbers S,, A006318

can be defined by
" /n+k

k=0

Thus they have g.f. expressible as

S(z) =

l—2—

1l—a—
|
11— —---

Example 14. The central Delannoy numbers. The central Delannoy numbers d,

A001850 can be defined by
“ (n+k\ [(2k
d, = )
" Z( 2k )(k)

k=0

Thus they have g.f. expressible as

2x
l—oz—

l—oz—
|
1—g —---

More generally, we can consider the action of the Riordan array
1 x
1—rz’ (1—rx)?

Proposition 15. Let a,, be a sequence with generating function g(x) expressible in the form

for r € Z. We obtain

Then the sequence b, with g.f. given by
1 T
1—raz? (1 —rz)?

12
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is the expansion of

o xr

1—rx—
Qo

1—rx—
Q3T

l—re— ——
l—rx—---

“(n+k\
bn:Z(Qk )r Fay,

k=0

In this case,

15 the general element of the transformed sequence.

Example 16. The case r = —1. This case corresponds to the Riordan array

<1—11—93’ (1fx)2)'

= k
(n + )(—1)”_kck = On = 50n7
k=0

Now we have, for instance,

2k

where 0" is the sequence 1,0,0,0, ... with g.f. equal to 1. Thus we obtain the identity

1
1= . (1)
x
14z —
x
14z —
x
42— ———
l4+2—---
Similarly the identity
" (n+k 2k
—-1)" =1
("))
k=0
yields the identity
1 1
= 2
1+2—
x
1+2—
x
142 - ———
l+2—---
Proposition 17. Let a, be a sequence with generating function g(x) expressible in the form
(@) 1
g\r) =
prx
1— a2 — 3
Bz
1—agx — 11—



Then the generating function of the sequence

obtained by applying the transformation represented by

(1 —1m’ 1 —xm)z)

to a, has g.f. given by

1—rx
2
x
(1—rz)?>—agz — b 5o
x
(1 —rx)? —age — =
(I—rx)?—---
Proof. The result follows by considering the expression
1—rx 1
(1 —rz)? ﬁlﬁ
l—ongge — z?
. . ey
Ty T

]

Example 18. Large Schroder numbers (revisited). Since the large Schroder numbers
are given by

1—=x
S(a) = ~
(1—2)?—x— 5
T
(1—2)?—2x— 5
1—2)2 —92p —
(1-2)? =2z ——
or
1—=x
() = >
1 -3 +22— 5
x
1 -4z + 2% — 5
x
1 —4dx + 22 —

14



Note that the above example shows that the partial sums of the large Schroder numbers,
which have g.f. given by ﬁS (x), can be obtained from the expansion of

S(x) = G : (3)

{EQ

1— ...

This can be put in a more general context by observing that the general term of the matrix

((1 —1m)2’ (1 —xm)2>

n+k+1\ n+k+1\ ,
T = rTE
n—k 2k +1

Thus we have the proposition

(1—x)?—2x—

is given by

Proposition 19. Let a,, be a sequence with generating function g(x) expressible in the form

1

g(z) = G2

52962
1—...

1—oaqx —

1 — asx —
Then the generating function of the sequence
~ (n+k+1
bn = ok )
g;<:2k+1 )T i

obtained by applying the transformation represented by

((1 —1m)2’ (1 —xm)2>

to a, has g.f. given by

51$2

(1—rx)?—agx —

By
(I—rz)?2—---

For instance, the g.f. of the partial sums of the large Schroder numbers, which have general
term
jé(n+k+1>
Ck,
pr 2k +1

can be represented as above in Eq. (3). This sequence is A086616.
In a similar fashion, we have the result.

(1 —rx)? — gz —

15
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Proposition 20. Let a, be a sequence with generating function g(x) expressible in the form

1
g(z) = v

1l —oajx —

521'2

1 —apx —

Then the generating function of the sequence

n—1
. n+k+1\ , i
b, =0 —I—E ( %+ 1 )7" "y,
k=0

obtained by applying the transformation represented by
x
1=
(=)

(1 —rx)?

to a, has g.f. given by

ﬁﬁQ

(1 —rz)?>—agx —

Bo®
(1—rx)?—---

(1 —rz)? —agr —

Example 21. Royal paths in a lattice A006319. This is the sequence 1, 1,4, 16, 68,304, 1412, ..

which also gives the number of peaks at level 1 in all Schréder paths of semi-length n, (n > 1).

It has general element
n—1

" n+k+1
0 +kzzo< o 4 1 )Ck+1:

and g.f.
(1—a)?
2
x
(1—x)?—2x— 5
x
(1—x)2—2x— 5
x
1—2)2 — 927 —
(=) =20 = g o =
We note similarly that the sequence with g.f. given by
(1—a2)?
2
x
(1—2)2—x— 5
x
(1—2)2—x— 5
x
1—2)2 — o —
(1-z)f - (1—2)?—x—

*9
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is the transformation of the Motzkin numbers M,, with general element

Finally, the sequence with g.f.

(1— )

(1—2)?—22—

(1—2)?—2x— o

(1—x)?2—2x—---

(1—2)?—2x—

is the transformation of the shifted Catalan numbers ¢,,1; with general term
n—1
" n+k+1
D D] vy
k=0
. . n n
6 The transformation b, =Y/, (,;) -

The matrix with general element (27;@) is the generalized Riordan array

(atm)

Proposition 22. Let a, be a sequence with generating function expressible in the form

has g.f. expressible in the form




Proof. We have

1 x? B 1 1
1— 27 1-2)2) 1—=x T
1 — =
2
1_a2(1fx)2
1_
1
= 2
oy 2
1_x_ 117$2
1_a2(1 )2
]__
1
- 2
a1xr
1—z— !
Qo
1—z— 2
1l—a—

In similar fashion, we can show that for a,, as above, the sequence

L5] N
b, = <2k‘> r"2kq,
k=0

has g.f. expressible in continued fraction form as

We also have the following :
Proposition 23. Let a,, be a sequence with generating function g(x) expressible in the form

1

g(z) = G2

52$
1—-..

1—oaqx —

1 — sz —

Then the generating function of the sequence

5

k=0

18



is expressible in the form

511'4

(1—12)2—ag2? —

52$4

(1—2)?—agz?—---

(1 —12)? — aga? —

Example 24. The Motzkin numbers M,. We have

k=0

Hence the Motzkin numbers have g.f. expressible as

11—z
Mz) = —
(1—2)?—a%— I
T
1— )2 — 9202 _
( .CE) z (1—1’)2—25C2_
11—z
1—2x — o
1—22 —a2?% — I
x
1—22 — 22—

A simple consequence of this is the fact that the partial sums of the Motzkin numbers,
A086615, have generating function expressible as

1

1—2x—

1'4

1—22 —a2?% —
A

1—..-

1—2x— 22—

7 The transformation b, = >, _, (”2_;) a.

We consider the generalized Riordan array

()

19
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The general term of this matrix is given by

xSk

(1 _ l’)2k+1

o) Ml G [V

=0

2k+1+7—1Y\ .
o n—3k 7
_ ]Z( e
B 2k +n — 3k

a n — 3k

_ (”Q‘k’f>

Proposition 25. Let a,, be a sequence with generating function g(x) expressible in the form

Tnd = [{L‘n}

We then have

1
g(x) =
a1
1—
1_ Qo
1—
Then the sequence
" /n—k
b, =
(')
k=0
has g.f. expressible as
1
3
o
1—x— ! 3
QX
1—xz— ?
1—x—

20



Proof. We have

1 x3 B 1 1
1— 27 1-2)2) 1—=x T
1 — =
3
1_a2(1fx)2
1_
1
= 3
oy —2—
1_'7;_ 117%3
1_a2(1 )2
1 —
1
- 3
a1r
1—x— ! 3
(8%
l1—2— 2t
1—z—

]

Example 26. Generalized Catalan numbers. We take a,, = C,, and form the sequence
" In—k
bn — )
> ("5 )e

with g.f.

Then we can express this g.f. as

1l—x2—

1—x2—
23

1—...

l—o—

These are the generalized Catalan numbers A023431.

Similarly, the sequence with g.f.
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has general term

> (75 (%)

This is A098479.
In general, we can show that the sequence with g.f. given by

1

rr

l—oz—
3

1—a—
3

l1—2—

is the image of the power sequence ™ by the product of Riordan arrays

( ! v 2) - (1,20(x)).

1—2" (1—x)

Thus the g.f. of the image sequence is given by

1 1
1—561—7” 3;330( 23 )

1—x 1—23

8 The transformation b, =), _, (";;f) a.

The general term of the generalized Riordan array

1 x?
l—2" (1—x)3
n—+k
T, , = .
(")

Thus if the sequence a,, has g.f. expressible in the form

is given by

1
g(x) =
o xr
]_ _

1_ QT
1_ Q3T

1

then the sequence
" /n+k
b, =
(")
k=0
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will have g.f.

which is equal to

Thus we arrive at the

Proposition 27. In the circumstances above, the sequence

has g.f. expressible in the form

n

=3

k=0

n+k
3k

Ju

23



Example 28. Number of Dyck paths of semi-length n with no UUDD. We let
a, = ¢,. Then the sequence with general term

k=0

has g.f. ﬁC’ <(1f1)3> expressible as

S G

This is A086581 (number of Dyck paths of semi-length n with no UUDD).

9 Bi-variate continued fractions and number triangles

We have seen that

1 T 1
<1—rx’1—rx>.c(x): T

T

xr
1—...

1 —rz—

Now treating r as an independent variable (and writing it as y), we consider the bi-variate

expression
1
g(z,y) = : (4)

1 —ay—

1—

1 -2y —
x
1—

X
1—...

This is the bi-variate generating function of the number triangle with general term

[k < n] (Z) Cnete

24

1 -2y —
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which begins

1 0 0 0 00
1 1. 0 0 00
2 2 1 0 00
5 6 3 1 00
14 20 12 4 1 0
42 70 50 20 5 1

This is A124644. The image of the sequence r™ by this matrix is given by

b, = z": (Z) Cppr* = Z (Z) ek,
k=0

k=0

using (Z) = (nﬁk) Thus applying the matrix with bi-variate generating function given by
Eq. (4) to the sequence r" is equivalent to calculating the r-th binomial transformation of
the Catalan numbers C,,.

This example may be generalized in many ways.

10 The transformation b, = Z;E;%:Jo (”;k) r2ka, o

Setting y = = in Eq. (4) of the last section gives us the generating function of the diagonal
sums of the matrix. Thus the sequence with general term

L]

n—=k
k Cp—2k
k=0

has generating function expressible as

w3

1—22—
. T

x
1—...
This is A105864. By the construction above, it is the result of applying the Riordan array

1 T
1—a2"1— 22

to the Catalan numbers. In fact, we have the following proposition :

1 —a%—

Proposition 29. Let a, be a sequence with generating function expressible as
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L5] (n—k

Then the sequence b, = » ;2 (", )an_gk which results from applying the Riordan array

1 T
1—rz2’ 1 —ra?

to a, will have g.f. of the form

1
a1
1 —ra?—
o
1—
1 —ra?— st
4
1—
1—ra?— st

1— ...

Example 30. A transform of the large Schroder numbers. The large Schréder num-
bers have g.f. expressible as

has g.f. given by

2x

g2 ...

This is equal to

1—2—2%2—+1—6x—22+ 623+ 24
22:(1 — 22) '
The special case r = —1 which corresponds to the Riordan array (ﬁ, H%) corresponds to

the so-called “Chebyshev transform”. Thus the transform of ¢ for this matrix has general
term

L3]



reminiscent of the formula for the Chebyshev polynomials of the second kind. This sequence
is A101499. By the above, it has generating function

1
14+a2— .-

11 The Deleham construction

The Deleham construction is a means of using bi-variate continued fraction generating func-
tions, based on two base sequences, to construct number triangles. Many triangles of classical
importance may be so constructed. Numerous examples are to be found in [10]. For the pur-
poses of this note, we can define the Deleham construction as follows. Given two sequences
r, and s,,we use the notation

rAs= [7"077'1,’)"2,. . .]A[So,sl,SQ,. . ]
to denote the number triangle whose bi-variate generating function is given by

1
(rox + soxy)
(rz + s12y)
(rox + soxy)
1— ...

1—

We furthermore define
r AW s = [ro, 1,79, .. JAW [s0, 51, 59, .. ]
to denote the number triangle whose bi-variate generating function is given by

1

(rz + s1zy)
(rox + soxy)
1—...

1 — (rox + sozy) —

See A084938 for the original definition.

Example 31. The Narayana triangles. Three common versions of the Narayana triangle
can be expressed as follows :

[1,0,1,0,1,0,1,...]A[0,1,0,1,0,1,...]
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which is A131198,
[0,1,0,1,0,1,...]A[1,0,1,0,1,0,1,...],

which is the reverse of that matrix, and
0,1,0,1,0,1,...]AM[1,0,1,0,1,0,1,.. ]

which is A090181.

We have the following result:

Theorem 32. The first column of the Deleham array

(70, 71,72, 73, .. .| A[S0, 51, S2, S3, - . -
has g.f.
1
1_ ToX
1_ ™
1_ o
1 —

The row sums of the array have g.f.

1
1 (To -+ So)iU
1 (7’1 + 81)33
1 (7“2 + 52)1'
1 —
The diagonal sums of the array have g.f.
1

(rox + sox?)
(riz + s12?)
(rox + s91%)
1—--.

1—

1 —

The product of the array with B has generating function

1 1
1_ ((ro + s0)w + so7y) B - rox + soz(1+ )
1 ((ry 4 s1)z + s12y) 1 rz+ s1z(l+y)
) ((ra + s2)x + sp2y) Lt so7(1 +9)
1— ... 1—--.
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and is thus the Deleham array
(r+s)As.

The product of B and the array has generating function

1
(rox + sozy)
(riz + s1xy)
(rox + Soxy)
1— ...

1l—o—

1 —
1l—a—

Proof. The g.f. of the first column is obtained by setting y = 0 in the bivariate g.f. Similarly,
the g.f. of the row sums is obtained by setting y = 1, while that of the diagonal sums is
found by setting y = x.

The product of the array r A s and B has g.f. given by
(L, 2% . ) (rAs)-B(1,y,4%..)".

But this is
(L, 2% ..)(rAs) (1, 14y, (1+y)?..)"
which by assumption is
1
rox + sz (1l + )
rz+ siz(l+y)
,_Te® + s9x(1 4+ 7)
1—.--

The g.f. of the binomial transform of the array (that is, of the product of B and r A's) will
be given by

1 —

1 1
l—xl_ (o + s0Y) 75
(T1+51y)ﬁ
(ra + soy) 7
1_ ...

which simplifies to
1

(rox + sozy)
(1 + sizy)
(rox + soxy)
1— ...

1l—xz—
1 —

l—oz—
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Example 33. A088874. The number triangle
0,2,6,12,20,30,...]A[1,2,3,4,5,6,...]

with g.f.
1
Y
(2x + 2zy)
(62 + 3zy)
(10z + 4zy)
1—--.

is studied in [4].

The Deleham construction leads to many interesting triangular arrays of numbers. The field
of associahedra [1, 2, 3, 8] is rich in such triangles, including the Narayana triangle. We
finish with some examples from this area. An associahedron is a special type of polytope.
The f-vector is a vector (f_1, fo,--., fa_1) where f; denotes the number of i-dimensional
faces. The unique “(—1)-dimensional” face is the empty face. The h-vector (hg, by, ..., hy,)
is determined from the f-vector by a process equivalent to that described below. In the
sequel, A,, and B, refer to standard root systems connected to rotation groups [3].

Example 34. The coefficient array for the f-vector for B,. The triangle with general

term
n\(n+k\ [(n+k\/[(2k
k k S\ 2k k)’
which is A063007, is the coefficient array for the f-vector of B, [2]. In other words, the f-
n+k

vector for B, is given by Y, _, (Z) ( L )xk. By our previous results, the bi-variate generating
function of this triangle is given by

1
2x
l—x— Y
x
1—2— Y
x
1—x— Y
x
l—p—
1l —---
This may also be expressed as
1
2z 7
11—z — Zi
T+
1_ Y
x
- y+
T+
1_ Y
1 —
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which is
[1,0,1,0,1,0,...] AW [0,2,1,1,1,1,..].

Example 35. The h-vector array for B,. Reversing the above array to get the array

0,2,1,1,1,1,...]AW[1,0,1,0,1,0,.. ],

we see that this array, which has general term (})) (2"7:k), has generating function

1
] 2x ’
_x —_—
Y T+ xy
1—
T
1—
T+ 2y
x
1 —
1—
or equivalently,
1
2z
1 -2y —
x
1 -2y —
x
1 -2y —
T
l—2y - ————
1—:1’/’y—...

Taking the product of this matrix with B™! we obtain the matrix with general term (2)2
This is the h-vector array for B,,. Its generating function is thus expressible as

1
2x ’
l—2(y—1) —
(v ) r+a(y—1)
T
1—
. r+a(y—1)
x
1 —
1 —
or
1
2z
l—azy+o—
x
1— Yy
x
1 —
x
1— Yy
x
1—
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It may also be expressed as

2z

l—azy+2o—

l—a2y+2—

l—a2y+ao—
x

Il —azy+ax—
e l—azy+ax—---

This is thus the Deleham array
[—1,2,0,1,0,1,...]AW[1,0,1,0,1,0,..].
Example 36. The f- and h-vectors for A,. The triangle with general term

1 n\/n+k+2
k+1\k k
[1,0,1,0,1,...] AW [1,1,1,1,...].

This is the coefficient array for the f-vector for A, [1, 2]. We recall that
[1,0,1,0,1,.. JA[1,1,1,1,.. ]

is given by

has generating function
1

T+ zy
Ty

Tr+x
1_ Y
1—-...

1—

1—

and thus the triangle
[1,0,1,0,1,.. JAW[1,1,1,1,.. ]

has generating function

1
Y
1—(z+ —
(2 +2y) T+ xy
—
1
This is the array A033282 that begins
1 0 0 0 0 0
1 2 0 0 0 0
1 5 5 0 0 0
19 21 14 0 0
1 14 56 84 42 0
1 20 120 1300 330 132
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Reversing this triangle to get the triangle with general element

1 n\ (2n—k+ 2
<pl— -
[k_n]n—k+1(k>( n—=k )’

and then forming the product of this matrix and B™!, we obtain the coefficient array of the
h-vector for A, [3]. This turns out to be the version of the triangle of Narayana numbers
which begins

1 0 0 0 0 O
1 1 0 0 0 0
1 3 1 0 0 0
1 6 6 1 0 0 7
1 10 20 10 1 O
1 15 50 50 15 1
and has generating function
1
x
l—oz— id
x
1_
T
1_ Y
T
1
1

Example 37. The Narayana numbers A090181. In this example, we start with the
number array with general element

n+k 1 (n\(n+k
o )* T kr1\k)\ k)
This is A088617, whose terms count the number of Schréder paths from (0,0) to (2n,0) with
k up-steps. It has generating function

Y
Y
Y
Ty

1l—a—

1l—2—

1l—x2—

l—oz—
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This may also be expressed as

1
1l—z— i
1 T+ xy
L
l_x—l—:z:y
1—...

which is
[1,0,1,0,1,0,...] AW [0,1,1,1,1,1,..].
Reversing the above array to get the array

0,1,1,1,1,1,...]AW[1,0,1,0,1,0,.. ],

we see that this array, which has general term

T T

has generating function

1
1 - |
_x J—
Y T+ xy
1—
x
1—
T+ Yy
x
1—
1 —
or equivalently,
1
x
1 —ay—
x
1 -2y —
x
1 —ay—
x
l—2zy - ——m
1_l'y_..-

Taking the product of this matrix with B~! we obtain the matrix of the Narayana numbers
that begins

10 0 0 0 O
01 0 0 0 O
01 1 0 0 0
01 3 1 0 0
01 6 6 1 0
0 1 10 20 10 1
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which is the Narayana triangle A090181. Its generating function is thus expressible as

1
T )
l—2(y—1) —
(y=1) ) r+z(y—1)
x
1—
. r+a(y—1)
x
1—
1 —
or
1
x
l—azy+az—
x
1 Y
x
1 —
x
1_ Y
x
1—
1
It may also be expressed as
1
x
l—2y+ao—
x
l—2y+a—
x
l—azy+z—
1 +x ’
_'Z‘ J—
Y l—2y+ax—---

This is thus the Deleham array
[—1,1,0,1,0,1,...]AM[1,0,1,0,1,0,..].
In fact, it is also expressible as the Deleham array
0,1,0,1,0,1,...]A[1,0,1,0,1,0,...]

with generating function
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