

Investigation of factors that determine the ability of

computer information systems to be self-healing.

By

Sean Ryan, BSc (Honours)

Waterford Institute of Technology

INSTITIÚID TEICNEOLAÍOCHTA PHORT LÁIRGE

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of

Science

Research Supervisor Research Supervisor

Dr. Noreen Quinn-Whelton Michael McCarthy

Submitted to Waterford Institute of Technology

September 2013

 ii

Waterford Institute of Technology

INSTITIÚID TEICNEOLAÍOCHTA PHORT LÁIRGE

Declaration:

I declare that the writing of this thesis and the research contained within is my own

work. Any assistance received has been acknowledged where appropriate.

Signed:

 Sean Ryan

Date:

 iii

Abstract

Self-healing features within future system designs could potentially help reduce

computer system operational costs and allow for a reduction in complexity. When this

research was conceived, reduction of operational costs within the IT field was a

challenge. With today’s shrinking IT budgets, it has become a necessity. Automation

and reduction of human interaction in system administration through the use of self-

healing designs is one such method that can help reduce the overall cost, while

improving utilisation can reduce the potential impact in relation to system downtime

and performance.

This thesis is concerned with the design, evaluation and analysis of a self-healing

mechanism and its effects on a real-world computer data system’s availability and

performance. The results from the analysis demonstrate the effects and benefits of

using such a system in a real-world environment. It discusses what worked and what

failed within the design and looks forward into what features and design could

improve a self-healing system’s abilities.

 iv

Table of Contents

Abstract ..iii

Table of Contents .. iv

List of Figures .. vii

Acknowledgements .. xiv

Glossary.. xvi

Chapter 1: Introduction. .. 1

1.1 Introduction .. 2

1.2 Background and objectives .. 3

1.3 Outline of the thesis ... 4

Chapter 2: Literature Review. .. 7

2.1 Introduction.. 1

2.2 Information system evolution .. 1

2.2.1 Initial developments in self-healing: .. 8

2.3 Self-Control and Self-Management: 29

2.4 Benefits of Self-healing. ... 31

2.5 Future enhancements to self-healing. 41

2.6 Autonomic Computing:.. 49

2.7 Standards and policies: The need for open design standards.

 53

2.8 Learning from non-computer systems. 56

2.9 Self-healing and learning from experience 57

Chapter 3: Materials and methods used to design and build the healing

engine. .. 59

 v

3.1 Introduction .. 60

3.2 Defining health and repairs ... 60

3.3 Overall Research Strategy ... 61

3.4 Human vs. Computer: choosing the best element to use 61

3.5 Building the S.H.A.D.E engine – from first to final build. 68

3.6 Refining a solution: example of space deficit 96

3.7 Autonomic agents and the platform of choice. 98

3.8 The final build ... 105

3.9 Summary ... 110

Chapter 4: Results and Evaluation ... 111

4.1 Introduction.. 112

4.2 The research question ... 113

4.3 Downtime and performance loss analysis............................ 113

4.4 System comparison of variance ... 113

4.5 Measure phase .. 114

4.6 Analysis phase ... 114

4.6.1 System comparisons: self-healing vs. stand-alone system. ... 114

4.8 Control phase .. 180

4.9 Summary ... 180

Chapter 5: Discussion. ... 183

5.1 Introduction .. 184

5.2 Overheads of self-healing designs 185

 vi

5.3 Design needs ... 185

5.4 Where the S.H.A.D.E engine failed 186

5.5 Where the S.H.A.D.E engine succeeded 187

5.6 Summary ... 187

Chapter 6: Conclusions and future work. ... 189

6.1 Introduction .. 190

6.2 Future Work .. 191

6.3 Conclusions .. 192

Chapter 7: Appendices. .. 195

7.1 Bibliography ... 196

7.2. Other referenced material during agent design. 207

7.3 APPENDICES ... 209

7.3.1 Database repository for the S.H.A.D.E engine. 209

7.4 Appendix 2 – Commercial Software with Self-Healing

Capabilities (present and future versions). 223

7.5 Products tested, researched and utilised during engine design.

 224

 vii

List of Figures

Fig 1.0: The five levels (IBM, 2001). .. 11

Fig 2.0: Self-management (Tosi, 2004). 12

Fig 3.0: An autonomic element's closed control loop (Hermann, et

al., 2005). ... 21

Fig 4.0: SMART application illustrating a healthy disk................ 26

Fig 5.0: Google Apps Status Dashboard: illustrating the Gmail

outage in February 2009 .. 31

Fig 6.0 : Data management challenges 2007 (McKendrick, 2007).

 ... 33

Fig 7.0: Vendors with the most disclosures of vulnerabilities (IBM,

2008).. 38

Fig 8.0: The structure of the service: (Hewlett Packard, 2005). ... 42

Fig 9.0: The Twitter interface displaying disabled features because

of system load .. 43

Fig 10.0: Twitter overloaded to the point that it cannot process any

transactions. .. 44

Fig 11.0: Effects of disk fragmentation on performance (Executive

Software International, 2005). ... 47

Fig 12.0: Retail website performance (Jupiter Research, 2006). .. 64

Fig 13.0: Breakdown of DBA time (figures taken from same

survey) (Kumar, 2006). .. 69

Fig 14.0: Feedback loops in self-managed systems (Tosi, 2004). . 71

Fig 15.0: The Oracle 10g infrastructure. 72

Fig 16.0: Top IT challenges (BMC, 2006). 75

Figure 17.0: S.H.A.D.E. process flow .. 80

 viii

Fig 18.0: The user Interface: S.H.A.D.E. Alpha: Build 1.0 – Initial

EUI .. 88

Fig 19.0: Illustrated is setting the sga_target to high level 500 m

(giving more cache to db) when cache hit rate is low 92

Fig 20.0: The database parameter defined in repository. 93

Fig 20.1: Database cache size. .. 93

Fig 20.2: Error alerted in S.H.A.D.E. interface. 94

Fig 20.3: Parameter held in database repository: heal code. 94

Fig 20.4: Verify cache hit rate. .. 95

Fig 20.5: Still alerted in S.H.A.D.E. interface. 95

Fig 20.6: Database repository logfile displays events. 96

Fig 21.0: The flowchart for this operation: 98

Fig 22: Aspects of self-management under autonomic computing

(Kephart et al., 2003). .. 101

 ix

List of Tables

Table 1.0: Results of USCD Failure Analysis of 4,000 SATA Drives,

December 2004 (Burniece, 2005). ... 24

Table 2.0: BMC: Sample Questionnaire (Armstrong, 2005). 76

Table 3.0: The costs of mass viruses (as calculated by Computer

Economics) (Bloor, 2007). ... 78

Table 4.0: Initial list of proposed monitoring/healing elements 83

Table 5.0: List of final watches with self-healing options (final build). 90

 x

List of Graphs

Graph 1.0: Watch #1: Free disk space on c:\ volume comparison between

systems. .. 116

Graph 2.0: Watch #2: Free disk space on d:\ volume comparison between

systems. .. 117

Graph 3.0: Watch #3: Free disk space on L:\ volume comparison between

systems. .. 118

Graph 4.0: Watch #4: Free disk space on M:\ volume comparison

between systems. .. 119

Graph 5.0: Watch #5: Free disk space on N:\ volume comparison

between systems. .. 120

Graph 6.0: Watch #6: Free disk space on O:\ volume comparison

between systems. .. 121

Graph 7.0: Watch #7: Free disk space on P:\ volume comparison

between systems. .. 122

Graph 8.0: Watch #8: Free disk space on Q:\ volume comparison

between systems. .. 123

Graph 9.0: Watch #9: Number of detected memory leaks in both systems.

... 124

Graph 10.0: Watch #10: Max. number of open cursors compared between

databases. .. 126

 xi

Graph 11.0: Watch #11: High CPU usage levels between database

servers. .. 128

Graph 12.0: Watch #12: Amount of free physical server memory between

database servers. ... 130

Graph 13.0: Watch #13: Level on disk usage (I/O) between database

servers. .. 132

Graph 14.0: Watch #14: Level of invalid database objects between

database servers. ... 134

Graph 14.1: Watch #14: Level of invalid database from older time

sample .. 135

Graph 15.0: Watch #15: Level of sys users’ connections between

database servers. ... 136

Graph 16.0: Watch #16: Level files stuck in “online” back-up mode

between database servers. .. 138

Graph 17.0: Watch #17: Level of active user sessions between database

servers. .. 140

Graph 18.0: Watch #18: Session deadlock levels between database

servers. .. 142

Graph 19.0: Watch #19: Processor queue usage between database

servers. .. 143

Graph 20.0: Watch #20: Virtual bytes usage for database process

between database servers. .. 145

 xii

Graph 21.0: Watch #21: SMART alert levels between database servers.

 ... 147

Graph 22.0: Watch #22: Objects with missing statistics levels between

database servers. ... 148

Graph 23.0: Watch #23: Large database datafiles levels between

database servers .. 150

Graph 24.0: Watch #24: Possible extent failures’ levels between database

servers ... 152

Graph 25.0: Watch #25: Number of database objects with logging turned,

compared on both database servers ... 154

Graph 26.0: Watch #26: Global transactions levels between both

database servers .. 155

Graph 27.0: Watch #27: Potential datafile space issue levels between

both database servers... 157

Graph 28.0: Watch #28: Potential buffer cache hit ratio issues between

both database servers... 159

Graph 29.0: Watch #29: Potential log switch frequency issues between

both database servers... 161

Graph 30.0: Watch #30: Hot back-up frequency issues between both

database servers. ... 163

Graph 31.0: Watch #31: High level of user sessions’ connected issues

between both database servers. .. 165

 xiii

Graph 32.0: Watch #32: Hung user sessions issues between both

database servers. ... 167

Graph 33.0: Watch #33: DDL lock issues between both database servers.

... 169

Graph 34.0: Watch #34: Hung user sessions issues between both

database servers. ... 171

Graph 35.0: Watch #35: Lack of log switches compared between both

database servers. ... 173

Graph 36.0: Watch #36: Corrupt database block issues between both

database servers. ... 175

Graph 37.0: Watch #37: Memory fragmentation between both database

servers. .. 177

Graph 38.0: Watch #38: Windows memory leak levels between both

database servers. ... 179

 xiv

Acknowledgements

I would like to thank my wife and our four daughters for their patience and support

during the course of this research. I would also like to thank Bausch and Lomb for

their support and for giving me the opportunity to undertake this research project.

I would like to thank David Lee for his continued support, technical assistance and

guidance with all things relating to the software engine.

I would also like to thank the following list of professionals, both inside and outside

WIT, who helped during the various stages of this project, through their guidance,

feedback and support:

Waterford Institute of Technology staff who helped with this research project:

Dr. Mícheál Ó hÉigeartaigh.

Michael McCarthy.

Dr. Noreen Quinn-Whelton.

Staff consulted external to Waterford Institute of Technology:

Dr. Gabriel J. Byrne (University College Dublin).

Dr. Kevin Ryan (University College Galway).

Experts consulted during construction of this research:

Paul M. Horn (IBM Senior Vice-President & Director of Research).

Dr. Jeff Kephart (Mgr., Agents and Emergent Phenomena, IBM Research).

Dr. Klaus Herrmann (Berlin University of Technology).

Rean Griffith (Columbia University).

Dr. Yixin Diao (IBM Research Staff).

Rob Pike (Principal Engineer: Google Labs).

Kevin Schofield (General Manager, Microsoft Research, Microsoft Corporation).

Dr. Ian Bond (Senior Lecturer in Aerospace Materials, University of Bristol:

Department of Aerospace Engineering)

 xv

Other Acknowledgements:

Mandy Regenass (Corporate Account Manager, Diskeeper Corporation Europe)

Jennifer Massaro (SupportSoft Inc).

Mark Rein (Epic Games Inc)

Ruban Gilbert (Market Development Specialist, Akamai Technologies, Inc.)

Johan G. van de Groenendaal (Chief Manageability Architect, Intel Corporation).

Vijay Tewari (Senior Architect, Intel Corporation).

Mazin Yousif (Principal Engineer, Intel Corporation)

Jim Hobbs (Senior Architect in Strategy (retired), Intel Corporation)

 xvi

Glossary

ACI Autonomic Computing Initiative.

DBA Database Administrator.

DMAIC Define, Measure, Analyse, Improve, Control

HDD Hard Disk Drive.

HP Hewlett Packard.

IBM International Business Machines.

I/O Input/Outputs (within a computer system (read and writes))

IT Information Technology.

.NET Windows software framework.

SLA Service Level Agreement.

SQL Structure Query Language.

VB Visual Basic - a third generation programming language.

 1

Chapter 1: Introduction.

 2

1.1 Introduction

The increasing complexity in maintaining information technology (IT) systems is

adding to the cost of operations and ownership of these computer systems. In a world

where system outages are becoming much more expensive and user expectations more

demanding, IT managers are being challenged to improve system “up-time” while

also reducing overall operational costs. This has introduced a new set of challenges: to

remain operationally efficient without incurring wastage by operating with human or

computer resources that are not fully utilised and thus adding to expenditure (Vilja,

1990). One possible method to assist in this challenge is to reduce the operational

complexity through design and implementation of self-healing/self-management

systems. This would effectively reduce the amount of time and effort needed for the

human operator/administrator to interface and maintain the system in use. In this age

of “credit crunch” or “recession”, whichever label we use, it means the same thing.

Financial investment is now, more than ever, harder to justify. Companies that once

strived for maximum “up-time”
1
, no matter what the cost, are now talking about

acceptable risk and investing less financially. This seems to suggest that perfect “up-

time” in computer systems is now deemed less realistic because of the cost of

obtaining it. Every layer of redundancy in a system has an underlying cost and cost in

this modern age is harder to justify. This doesn’t mean that possible downtime as a

result of these risks costs any less to the business.

The success of self-healing should help aid future systems to become more reliable,

and also allow them to evolve with higher complexity, without making them

increasingly difficult to interface with (IBM, 2006). IT components produced by high-

tech companies over the past few decades are so complex that IT professionals are

challenged to effectively operate a stable IT infrastructure (IBM, 2006). With the

introduction of self-managed and self-healing computer systems, it is envisaged that

computer operators and administrators will be required less to maintain a systems

operation, freeing up their skills and time to use systems, rather than maintain them.

1 Up-time: A reference to the amount of time a system is online and operational or uninterrupted

system availability.

 3

Presently, the main obstacle which is delaying the design and introduction of self-

healing systems is complexity. Dealing with it is the single most important challenge

facing the IT industry (IBM, 2001).

Operational complexity for the end-user/administrator, therefore, is helping to drive

up IT costs as well as reducing how effectively systems operate, but to evolve systems

into self-healing systems’ variants will increase design complexity.The amount of

human intervention required to keep computer information systems operational varies

with the number of, as well as the complexity of, systems in use. The reaction and

repair time can be increased by the complexity in diagnosing problems, as previous

experience and knowledge are essential to repairing such systems. The motivation for

this research pursuit is to explore if manual intervention, and thus, monitoring of

systems, can be reduced by introducing elements of self-healing (Ryan, et al., 2008)

and to build and analyse the effectiveness of an engine that can aid a computer system

to be more self-sufficient and rely less on human intervention.

1.2 Background and objectives

The present evolution of modern systems is towards more self-sustained systems that

react to situations and attempt to continue operations after experiencing a fault. This

evolution towards Autonomic Computing
2
 is a move that allows computers to grow in

complexity by reducing the complexity presented to the human element, either in

usage or in management.

If these systems were to become completely self-healing, they would need to react by

following certain defined rules and options, thus drawing from knowledge and

experience. A truly autonomic system needs detailed knowledge of its components,

current status, ultimate capacity, and all connections with other systems to govern

itself (BMC software, 2006). It cannot simply attempt to react to a fault, unless it is

fully “aware” of the system environment that it is attempting to heal. If the human

expert reacted as such, they could potentially cause more problems than they fix. This

could be compared to a Doctor diagnosing a patient, without all the facts and patient

2 Autonomic Computing: An initiative started by IBM in 2001, of which the ultimate aim is to develop

computer systems capable of self-management.

 4

history to hand. The Doctor is thus ill equipped and there is an increased risk of error

or misdiagnosis as a result.

There are obvious advantages to the use of self-healing systems by businesses and

managers. The first of these is that the systems are easier to manage than systems

which simply alert faults. As a result of this, system administrators are required less

and hence companies can save money. With every advantage, however, there is also a

potential disadvantage – masking complexity can be hazardous, as features hidden

from the administrator/manager means they will have little or no exposure to it and

hence may not have the expertise to diagnose and repair it, if and when the needs

arise. The IT manager/system owner could risk becoming a “slave” to the level of

expertise that the system vendor/contractor has acquired over time and exposure. This

type of support can potentially be more expensive and hazardous, mainly because the

(contract) support personnel do not have the same vested interest in another

company’s success. From a personal experience with computer systems support, if

one does not have sufficient in-house expertise, one is at risk of experiencing

expensive delays and ineffective support.

The objective of this thesis is to determine whether a computer system can better self-

manage its own operations and if a system can be given the ability to heal itself,

which was achieved by examining the routine operations of a data system that has

been monitored and altered by a custom-built self-healing engine (Self-Healing

Autonomic Database Engine: S.H.A.D.E.). It also aims to determine if the design and

introduction of a self-healing agent can improve a system utilisation, by making the

system more automated and thus reducing human interaction. Bausch and Lomb, like

many companies, is constantly challenging its workforce to improve their

productivity, through initiatives such as automation, as well as to research and

implement such initiatives, where possible, and to aid in the reduction of human

intervention, without effecting the system’s operational quality.

1.3 Outline of the thesis

This thesis presents an experiment to detect and heal faults on an Oracle database

system running on the Windows server platform. Initially, a literature review was

 5

conducted (outlined in Chapter 2) whereby other approaches to self-healing systems

were investigated. During this exercise, a moving trend towards self-managing

systems was discovered, not just in commercial products such as Oracle and SQL

server, but also in initiatives like IBM’s autonomic computing.

An experiment was conducted with a software engine to both detect and react to faults

within the system. The software engine detects faults and logs results for two Oracle-

based systems. The healing operations were only conducted for one of the test

systems, allowing for comparisons of results between real-world systems with and

without the ability to self-heal faults. However, this thesis was not conceived to focus

on factors of ‘what if’, but to focus on what could enhance an information systems’

ability to self-heal and help to improve its operational status, thus enhancing its ability

to remain in operation. This thesis investigates industrial databases through a

literature review, by designing a self-healing engine, of which its primary function is

to heal a database system.

Chapter 2: Literature Review.

In this chapter, the author outlines the relevant background theory/material in relation

to self-healing systems. The chapter examines the current trend towards self-healing

systems, by examining what is already in the market as well as what is being

developed and tested in the area of self-healing computers. Existing computer systems

that are moving towards and including self-healing options will be examined and

compared.

Chapter 3: Materials and methods used to design and build the healing engine.

This chapter outlines all the proposed software elements and relevant platforms for

the project. The methodologies that are used are described and explained in this

chapter. The various stages of the design of the self-healing agent will also be

described.

 6

Chapter 4: Results and evaluation

This chapter outlines results gathered from two separate systems and compares both

sets of operations and results. It contains a discussion that outlines both the beneficial

and non-beneficial results of the system running under the self-healing engine

routines.

Chapter 5: Discussion.

An explanation and description of both the beneficial and non-beneficial results of the

system operating with the self-healing engine are given. The author’s own views on

the results will be discussed in this chapter.

Chapter 6: Conclusions and Future Work.

The conclusion chapter will discuss various topics such as problems in system

design/implementation and lessons learned from such. It also looks at possible future

designs in relation to self-healing systems of the future.

Chapter 7: Appendices.

This chapter outlines papers referenced through this document, as well a bibliography

of books referenced during the engine design. Finally, third party products referenced

and used during the course of this research are also listed.

 7

Chapter 2: Literature Review.

 1

2.1 Introduction

The field of self-stabilising computer systems is not a new topic for computer

designers. The benefits associated with and the abilities required to create a

system that can better “self-manage” have been well documented but as yet little

has moved from the page into real-world systems. Several new systems such as

Oracle and SQL server list “features” that have self-healing elements and thus

benefits, but overall the systems still require substantial amounts of human time to

ensure they remain operational and optimal. Self-managed is often confused with

easier management, where user interfaces are changed and made easier for the

user or features are hidden, making systems easier to interface with (so long as

they are working). But self-healing is more concerned with easy use and masking

complexity, than making systems better able to operate without the human

element(s).

During the course of this literature review, it became clear that some of the

biggest names in the Computer industry such as Oracle, IBM and Microsoft have

shown interest in self-healing systems or at least have made some strides towards

making such options a reality. IBM has made some of the biggest strides, but alas

only on paper, as it attempts to introduce standards in the form of its autonomic

computing initiative. Self-healing is one of the four key properties of autonomic

computer systems. Its ability can enable large-scale software systems to deliver

services on a 24 x 7 basis and to meet its goals without requiring any human

intervention (Czap et al., 2005).

2.2 Information system evolution

The one factor of computer system design that remains constant is that they are

constantly in a state of change. As systems evolve, they become more advanced

and thus more complex. This evolution is not just in relation to systems

components; hardware, software, firm wave. But also in how the system operates

in relation to the data it handles. The data changes (unless it is a data warehouse

system) and thus what is read/written changes along with how it is read/written. A

 2

system that performs optimally today may not tomorrow or next week, without

making any physical changes or experiencing any fault. It may be allowed to

evolve into an unhealthy system by simply not doing anything at all. Its own

operations have allowed it to change so much that it simply cannot perform as

well as it was once able. “In terms of total cost of ownership
3
(TCO), however, the

hardware cost is only a small fraction. The management overhead of dealing with

the complexity of the system rises quickly with the system scale.” (Zhang, et al.,

2005).

The computer game industry has become one of the largest and fastest growing. It

spans across several hardware platforms and runs on numerous custom-enhanced

engines, most of which is largely C++. These range from fairly simple smaller

portable games right up to highly complex physics and AI engines running

thousands of routines and textures on the screen at any given time. Each release

and new system means more complex coding requirements and techniques. One

example is “Gears of War” released in 2006. An internal presentation shows the

game engine running with “250,000 lines C++, script code and 250,000 lines C++

code for the main engine” (Sweeny, 2006), along with components for various

hardware Libraries. It was designed with 10 programmers, 20 artists, 24-month

development cycle and a budget of 10million” (Sweeny, 2006), which translates

into a software house with large resources for a piece of (complex) entertainment.

Can a system so vast in lines of code and developers that worked on it be possibly

released without bugs or issues? Perhaps not and it wasn’t, but it was later patched

automatically. So one could argue it was packaged, shipped, installed (if needed)

and played, but the system Microsoft put in place patched and “healed” the

software before it became or was reported as a major issue. Certain bugs remain

undetected for some time, because modern software is more complex and feature-

driven, that the element with a problem is simply not found until it is in the field.

This costs money for various reasons. Testing is expensive in itself. It requires

people, programs, policies and time. Testing and Quality need to capture as many

issues before they get into the field. Once they get into the field, they cost money

to fix. The cost the user money in lost time and dealing with problems, reporting

3 Total Cost of Ownership: A financial estimate which helps determine direct and indirect costs of

a product or system.

 3

problems and waiting for fixes (Vanden Eynden, 2007), so each issue costs

revenue. Obviously, it is far cheaper to find and fix before release, but due to

complexity, the software still get released with issues. Hence modern system

designers are required to recognise the disadvantages for companies when they

need to run complex, hard-to-manage systems that require expensive expertise.

“BitVault’s main objectives are self-managing, strong scale-out capability and

very high reliability” (Zhang, et al., 2005). “Windows 2000 is not alone in

shipping with bugs; most commercial applications have flaws that can affect the

correctness of their results, or indeed whether they deliver results at all.” (Shaw,

2000).

This issue is not limited to software packages. Even sophisticated hardware such

as Cisco switches and HP disk controllers are fixed with firmware revisions,

which are essentially software patches. As users and consumers, we expect bugs

and issues when computers are involved. We wouldn’t accept a kettle that only

boiled water every now and again. But we reboot our computers on a regular

basis, patch, and install new driver but why? Because it has become an accepted

factor in computer usage. But perhaps instead of introducing more features and

complexity, wouldn’t the experience bring us more value and save us precious

time if the systems managed most of these themselves? In the real world,

however, there is not enough time or enough testers to test every combination of

every variable. Not all bugs will be found, making quality assurance a risk

management discipline (Vanden Eynden, 2007). Almost with some irony, no

software in the history of Microsoft development has ever been through the

incredible, rigorous internal and external testing that Windows 2000 went

through.” (Foley, 2000). Yet the same version of Windows shipped with 63,000

'defects (Foley, 2000). Every IT organisation is unique. Each organisation has its

own change management processes, its own security requirements, its own

technology platforms and standards. As a result of this uniqueness, no single

automation solution could possibly automate every unique process or every

unique environment characteristic out-of-the-box (Opsware, 2006).

The model mentioned whereby Microsoft fixed the software bugs (with a single

user prompt) shows how the user experience can be made easier, because the

 4

console contained common standards in both the software and hardware

components. The user doesn’t even need to know what the patch fixes. You are

just informed you need it to play. You accept the issue. Download the patch and

start the game. The older model for this operation on a similar platform (PC

games) would have required reading up and doing research of what patches were

available; seeing if the listed issues affected you hardware platform or would even

fix the issues you had; and attempting to fix with another software element (driver

or whatever), maybe even an operating system patch (after identifying the patch

you are on). If you found yourself attempting to tweak an issue from a

performance point of view, the average user needed a large amount of

hardware/software knowledge. How much software was purchased that could

even be used at all or to the level of its design. Hence the steps, knowledge and

work for the user were more complex and time consuming. Now you apply and

play. What was the issue and what did it fix? As a user, it’s not really relevant.

You should be more concerned with using rather than fixing. So automation and

standards make the operation from a designer and user easier and cheaper.

But if we were to embrace a process of transparent automatic patching, the

manufacturing would need to guarantee that the patches themselves would never

cause an issue. So the system would rely on them operating effectively when the

existence of the patch proves they had already failed in that regard. Microsoft

themselves have even been forced to patch patches because of “human error”

(Fontana, 2008). Within the same “Epic Games” presentation, it is also

highlighted by one of the developers that in the future, the amount of power and

thus complexity will obviously grow for home entertainment systems. Trending

on past advances, they see programming platforms using “> 1TeraFlop
4
”

(Sweeny, 2006) of computing power, stressing there is a need for “the next

mainstream programming language” (Sweeny, 2006) or new standards to cope

with the amount of change and power. Hence the experts are planning for more

complex systems, the complexity that should be masked from the end-user.

4 TeraFlop: FLOPS (or flops or flop/s) is an acronym meaning Floating point Operations Per

Second.

 5

Does the end-user really need to know how much ram, the speed of their hard disk

and what patch/driver revision they are on? We are expected to know every single

working component of our computer machines, yet most have no clue how or why

their far more simple-to-operate car works. “With automated back-up, enhanced

troubleshooting, and zero-touch deployment capabilities of Windows Vista, we

can reduce the amount of labour involved in re-building a desktop by at least 50

percent” (Microsoft, 2007). Industry today uses terms like lean to introduce

initiatives to reduce cost, and analysing wastage through repeated steps for

maintaining systems’ health. Investing in platforms that simplify operations and

allow faster recovery or re-builds can greatly reduce costs by avoiding repeating

operations or “fire fighting
5
” where it’s not needed.

Every company would want to reduce the amount of time its staff spend dealing

with computer faults and repairing them. One company discovered that

approximately 70 percent of its staff’s time was spent re-building software, and in

order to minimise this time and free up staff for more strategic endeavours, it was

necessary to implement a more automated re-building process (Microsoft, 2007).

The goal of an autonomic computing architecture is to limit hands-on intervention

to extraordinary situations (Sudhir, et al., 2004) and to reduce the amount of time

the human element spends fixing and reacting to problems. Information systems

are constantly evolving - if not in size, then in complexity. This complexity is

increased by the number of components that make up an average information

system. With each component acting to a list of tasks, each task could potentially

experience an issue or fault and fail. One failure can affect all other components,

and thus, the system as a whole. “Using self-healing technology—a combination

of hardware, software and firmware—IT infrastructures can be more easily

managed” (Hunt, et al., 2003). “With over 27 million servers, over 50 million

network devices, and over 2 million terabytes of storage installed across IT

organisations worldwide, an increasing number of organisations are turning to

Data Centre Automation solutions to automate the management of their IT

environments.” (Opsware, 2006).

5 Fire Fighting: What system administrators must do to correct sudden operational

problems.

 6

In visualising the average information system, one may think of software such as a

database sitting on some form of computer hardware. This model is simple in

definition while being relatively simple to maintain and interface with. “Some

operating systems may constitute over 30 million lines of code, which may be

created by over 4,000 software engineers.”(IBM, 2001). Combining this with the

complexity of a modern database, there are a lot of software elements/features for

a human to interface with, and hence, issues arise when a fault is detected. But

even at this relatively simple design, there are several elements that could cause a

system fault. The database itself, made up of thousands of its own components,

could fail through it owns executions. Lock up, fail to expand, requiring more

memory, are just a selection. If one was to mix these faults with potential

operation system faults, the list could potentially double. If hardware is also taken

into consideration, then the number of faults almost triples.

At present, relatively simple systems present problems in a complex manner,

because you need to both analyse the fault, along with the other problem, of “how

do you fix”. However, these types of simple system designs are rare. The

computer systems of today are largely distributed systems, with complex

middleware and several hardware components outside of the server hardware. As

a result, the complexity for fault diagnosis and repair now becomes very

challenging and time consuming. Traditionally, it takes more than one human

operator or administrator to manage these systems by working together in teams,

each member with different knowledge and skills. In modern systems, the

complexity and distributed structures now means that this model is becoming

increasingly unsuitable. If the human operator was removed from the equation, the

problem focus would shift to how they might be replaced with a computer

solution. On one hand, there is a problem of finding a solution to the issue of

complexity, by either helping or replacing the human operator. On the other hand,

humans offer elements which present A.I. systems have no hope of matching;

“humans can handle unknown situations and learn from their experiences”

(Herrmann, 2005)

 7

IBM has identified the problem. “The computer industry has spent decades

creating systems of marvellous and ever-increasing complexity. But today,

complexity itself is the problem.” (Ganek et al., 2003). The solution, on the other

hand, is going to take some time to achieve. Yixin Diao has shown in his work

that a database can be made to self-optimise. These research results have been

applied to the adaptive self-tuning memory allocation feature in DB2 version 9

(IBM’s Database Management System Version 9) (Diao, 2006). Diao and his

colleagues tried to tackle some of the challenges by building a Deployable Test

Bed for Autonomic Computing (DTAC) which “intended to be a complete end-to-

end system with pluggable components so as to facilitate research in various

aspects of autonomic computing” (Diao, 2004) This will require computer

systems that can adapt, learn, draw on knowledge, process issues and make

changes while ensuring each element of itself interacts and communicates. Thus,

what is required are computer systems that can adapt to be more like humans, and

not just automatically reacting to failures.

Blindly automating responses, if not correctly implemented, can also cause

problems. One such example of automation responses and abilities within a

system that failed in this respect (and in the lack of standards within its design)

was a fatal test flight during the flight of an automated aircraft in 1995. A

combination of factors led to a crash, killing the crew and destroying the aircraft.

Numerous factors where blamed, ranging from the conditions to the design of the

system itself. “A more generic contributing factor in this accident was the

behaviour of the automation which was highly complex, inconsistent and difficult

to understand. These characteristics made it hard for the crew to anticipate the

outcome of the manoeuvre.” (Sarter, 1997).

Situations such as these prompt for changes in the design of automated systems,

ensuring that they are less complex to operate and work as “co-operative agents”.

Automated systems need to adapt as well as be aware, similar to humans. We

cannot expect computers to heal or repair unless we give them the correct skills

and tools for the task(s).

 8

2.2.1 Initial developments in self-healing:

In 1974, Edsger Dijkstra defined a self-stabilising system as, “regardless of its

initial state, it is guaranteed to arrive at a legitimate state in a finite number of

steps” (Dijkstra, 1974). The notion of self-stabilising systems in the 1970s was

new and Dijkstra’s article on the subject was ignored. However, the idea of self-

stabilising re-emerged again in 1984, when Leslie Lamport brought fresh attention

to Dijkstra’s theories, as they added a new dimension to possible ways of dealing

with errors and their recovery. Lamport himself has been quoted “I regard the

resurrection of Dijkstra's brilliant work on self-stabilisation to be one of my

greatest contributions to computer science” (Lamport, 1984). Hence, the theories

and ideas are not new, but it is necessary to understand how systems have evolved

since Dijkstra’s findings, in order to take the next steps required in building self-

sufficient systems to support even more modern and complex environments.

Elements of this approach are, in fact, an excellent foundation and are regularly

referenced today. Dijkstra’s theories are even more prevalent today as systems

continue to grow in complexity and size. Errors and faults are more numerous and

complex to solve because they contain far more features and are considerably

larger than their predecessors. Because of today’s distributed model of computing,

downtime and faults may now affect users on a more global scale, increasing the

potential cost to the business. With consolidation of data centres to reduce cost

and complexity, the need for stable, reliable systems is needed now more than

ever.

Autonomic computing is the next logical evolution of these past trends to address

the increasingly complex and distributed computing environments (Ganek et al.,

2003). As IBM states, autonomic systems must be “able” to anticipate needs and

allow users to concentrate on what they want to accomplish (IBM, 2001). End-

users would make better use of their time in front of computers if they did not

require the knowledge of the computer system’s inner workings. The end-user

could better use their time on the computer actually using them, rather than spend

time working out why the system is not doing what it normally does, or as well as

it normally does. Server farms and redundant hardware may aid in reducing the

 9

risk of performance degradation and system downtime. But hardware redundancy

requires investment for hardware and real-estate. It also encourages wastage, as

you are investing in hardware that will depreciate over time and you invest in it

with the hope you will never need to use it. To be 100% effective and not simply

reactionary, the system would need to have the ability to record and adapt by

providing the best possible solution, much the same as humans learning from what

they are exposed to and adapting to effective procedures based on previous

experience.

What defines the health of the system will differ with end-user needs. The end-

user, operator, manager, may each have different expectations and needs of the

systems. In other words, what defines a healthy system will differ. If a system

runs slowly but appears to be healthy to the manager because it is online, can it

still be classed as operational? It works but not as well as it could because it is

being pushed too hard, not optimised enough or maybe even requires an upgrade.

Setting standards of how well the system should operate will better define how

healthy it is. Following these standards will then indicate if the system is

unhealthy and needs to be healed. The manager’s needs are different to the end-

user’s needs. So the standards must benefit all users of the systems. This could be

classed much the same as a patient visiting a doctor. Patients may class

themselves healthy if they don’t feel sick, but the doctor’s definition of healthy

would be substantially different, as his/her opinion would be based on experience

as well as knowledge and insight. The argument is similar in how system users

and system administrators define a healthy system, although the speed of system

response times may reverse the argument somewhat. Essentially, what defines a

suitable system response time? Also needed are standards for capturing relevant

data from systems. “Existing standards can help, such as the Open Group's

Application Response Measurement API11 or the Distributed Management Task

Force's Common Information Model.” (Hermann, et al., 2005).

The other main issue is identifying a problem. Within smaller systems, this can be

relatively easy, but in larger distributed systems where components are inter-

dependent, it becomes much more of a problem. A fault can be detected but

localising the component at fault can be a far larger task.

 10

Thus problem localisation is a key ingredient of self-healing. In complex, highly

interconnected systems, attributing the cause of a failure to a particular component

can be difficult (Kephart, 2005). A misdiagnosis may introduce further change,

making it harder to heal the system as it may disguise the root cause. Misdiagnosis

not only increases the risk but also the impact (Borning, 1987). The longer the

system is non-operational or not running optimally, the worse the situation

becomes. Humans dealing in these situations may experience increased pressure

and thus stress to fix the issue, which in turn can lead to mistakes. An automated

computer system is not as exposed to these forms of external stimuli that can alter

how the system reacts or how well they react.

Complexity makes management and administration harder, meaning higher skills

are required, along with human operators to mend/deal with issues as they arise.

The more complex a system, the larger scope for errors and the harder it may be to

fix/improve. Applications and modern environments are made up of tens of

millions of lines of code and, therefore, require skilled people to configure and

maintain them effectively. (Tosi, 2004).

 Delivering system-wide autonomic environments is an evolutionary process

which relies on the implementation of technologies and supporting processes. As

IBM states, the path to autonomic computing can be thought of in five levels. See

Fig 1.0. which starts at basic and continues through managed, predictive, adaptive

and autonomic” (IBM, 2001).

 11

Fig 1.0: The five levels (IBM, 2001).

Through the autonomic computing concept, IBM establishes the term self-

management to re-group four main topic areas. These four areas are: self-

configuring, self-healing, self-optimising, and self-protecting. The main fault in

this classification provided by IBM is in its limitation to explain the interactions

and overlap (similarities) between them (Tosi, 2004). Hence IBM’s five levels are,

at this time, not sufficiently defined or detailed enough to use as a baseline.

Microsoft Research (Asia) has a product called BitVault (a research prototype at

time of writing) “a content-addressable retention platform for large volumes of

reference data” (Zhang, et al., 2005). It makes use of standard peer-to-peer

technology to distribute the main operations/tasks of storing and managing data. It

has central control but it is designed to self-manage. The key features of the

system are to “self-manage” and “self-heal”, while its aim is to continue to

function even in the face of failure. Essentially, the aim for the product is to

continue to function even in the “face of failure” (Zhang, et al., 2005). The main

objectives of any large-scale distributed storage system are its maintainability and

availability (Zhang, et al., 2005). BitVault (research) moves closer towards a

system that can manage itself, making it cheaper and easier to maintain and

increase availability through self-healing.

 12

Fig 2.0: SELF-MANAGEMENT (Tosi, 2004).

Self-healing itself is only one element of self-management as outlined in Fig 2.0

(Tosi, 2004). Self-management is defined as six individual elements which make

up self-management as an overall ability. A self-healing system needs to be as

autonomous as possible, otherwise there is an increased risk of impact to the

system because of the healing operations (Williams et al., 2007). The self-healing

must work similar to the human healing system, i.e. not consciously. The “heal”

itself should work as another key part/element of the system as a whole/entire

system, to be a working element of the system and not just a bolted-on option.

Reliability needs to be the key element of the self-healing system. If changes are

to be managed through healing, it has to work as designed without incurring

further negative effects to the system itself. Achieving high reliability is essential

if self-healing is to be considered for applications with performance systems

(Williams et al., 2007).

Using any form of self-healing on a system will require physical changes and use

of either hardware or software elements that would not normally be in use without

one. This means the self-healing system itself increases the amount of change on

the said system, but any change in itself introduces an element of risk, either large

of small. Hence, any changes need to be monitored and applied through sufficient

and reliable controls. A mature and well-designed self-healing system would have

little or no penalty on performance and the additional mass of the self-healing

system could be traded against a less conservatively-designed structure. Self-

healing systems need to be as efficient in operations as any well-designed

 13

systems; any overhead could only negate the investment justification. (Williams

et al., 2007).

In other words, the healing elements should not impact on the system (in a

negative way) and thus have a minimal or even zero footprint
6
, otherwise the

healing element(s) can cause a decrease in system performance by being

operational, thus negating their reason for operation in the first place.

Automating a response can be difficult, as it may be unclear what a program

should do in response to an error or fault. A response system is forced to

anticipate the intent of the programmer, even if that intent was not well-expressed

or even well-formed. Hence the design of the S.H.A.D.E. system was such as to

include limited responses to limited defaults, defining faults based on real

operations and building responses that were gauged against real-world successes.

Ideally, systems could recover from error(s) without any human intervention, but

the reality is that most response mechanisms are external to the system they

protect and are thus not “aware” enough of the system’s operations. Some simply

restrict network connectivity or resource consumption. None (as yet) provide a

fully acceptable response strategy (Locasto, 2005).

Continuous service “up-time” remains one of the most important goals of today’s

businesses. No matter how well hardware and software are designed, faults

inevitably occur. When things do go wrong, system administrators try to make

sense of the problem by interpreting messages and system log files to help them

fix or prevent a re-occurrence (Sun Microsystems, 2004). Basically, the system

alerts that it can no longer do something but it is not always clear why it can’t or

what the cause may be. It calls for help and relies on the human element to track

down the cause and return the system to optimal health. A human user/expert

determines possible faults through experience, adapting to changes and issues as

they arise. They are able to draw on experience from previous events whenever

possible. But when a system issue arises that they have no experience of or are

unable to diagnose, they must seek external expertise and help to aid them in the

6 Zero Footprint: Computer applications which do not require end-users to install any software.

 14

tasks of accurate diagnose and repair. Hence, designing a system to anticipate

each and every possible fault is a difficult task. The combination and type of faults

cannot be effectively anticipated in on-going systems, as systems, especially data

residing systems, are in a state of constant change. One added line of data can

affect how code executes (Dolev et al., 2005). A single fault can be easier to

diagnose and thus fix, but when a human or computer is attempting to fix multiple

issues at once, the complexity of the problem and the possibility of misdiagnosis

is increased. In order to be in “full control”, the person or machine used to

diagnose and fix the fault, must follow through and ensure the fault has receded

and the change they have made is working without causing further issues.

The amount of fault is also a concern. In the real world, an administrator may

remain constantly effective if they are dealing with single faults and a steady level

of error: i.e. one system with one fault at a time. But in the case of various issues

(especially within one system), the fault diagnosis and thus repair becomes

increasingly more difficult to complete. Our multi-cellular organism is capable of

self-repair: it can automatically replace one or more faulty cells and continue to

function optimally, and can deal with multiple faults (Stauffer et al., 2001).

Designing a healing system with the ability to detect and repair one fault at a time

would indeed be simpler to construct but ineffective in practice. In the real world,

we need to be ready to deal with multiple problems. In an effective self-healing

system, multiple watches (or cells) must work together in maintaining the

system’s health to remain in an optimal state of health. One possible method to

handle this problem is self-replication, which could allow the complete

reconstruction of the original device in case of a major fault (Jonsson, 2006). It

would be a much easier operation when working with the software in the system,

rather than the hardware.

Health monitoring considers multiple aspects of production applications,

including performance, security, connectivity, and application failure (Mushkatin,

2006). This is an interesting statement. It outlines the system’s health as being a

combination of various elements in operation, not just a faulted system. If it was

designed to do all, when it can’t achieve these operations, it could be regarded as

not healthy. As discussed earlier in this thesis, interpretation of what defines

 15

health may be affected by one’s knowledge or ability to diagnose. There can be

great divides between how a patient classes themselves as healthy in comparison

to how a doctor would view the health of a patient. You may class yourself as fit

and underweight but you are judging those facts on how you feel and your

knowledge of the fitness and health. A doctor’s knowledge will be based on

different experiences and facts. This real-world and practical example is not too

different from the problem that divides the end-user’s understanding of a

computer system’s health in comparison to how the administrator views the health

of the system.

One distinction for health may be a system running optimally. In the modern

world, where energy wastage and carbon footprints are as much of a concern as

simply saving money, an optimally-running system has great potential in savings

not just in capital costing. But how is a system gauged as healthy or optimal? The

logical step is checking basic I/O (levels) for CPU, disk and memory. A system

has the potential to use less power if it can take more information from memory

than the moving parts/disks. So more ram and faster disks may cost money, but

using them can reduce cost, operational times and make considerable savings. But

poorly-tuned applications can cause the same wastage because they are simply not

monitored or regularly optimised. The end-user complaining of slow system

response is often the only system health-check that some companies use, after

which considerable time will be spent optimising and fixing until the next

complaint arises. How much time is wasted “staying behind” problems rather than

ahead of them. Financial institutions could save billions of dollars (“as much as

$50 billion”) in unnecessary computer upgrades by simply ensuring that their

computer systems undergo a regular defragmentation check (Middlemiss, 2000).

So health-checks and repair operations can save money. If that is the case then

why don’t all companies carry out such tasks and avoid the ill-health situations in

the first place. The answer is the lack of standards in defining health. Not all

systems are the same, or are made up of the same components. A fragmentation of

a drive in a stand-alone, single disk system will have a much greater negative

effect on health than it would on a SAN with redundancy, multiple drives and

load-balancing operations. They can both suffer from the same problem, but one

will suffer from greater ill-health than the other. Why, because one will operate

 16

slowly and the drop in health will be more obvious. Standards in defining

acceptable response times (much the same as the SMART technology defined

earlier) would alert the problem (and even repair it), as the Diskeeper product

does. This means a defined problem can still exists, but you can invest in

technology that makes it a problem that can be avoided. Narrowly defining what

constitutes a failure is a difficult task in such a large operation. Manufacturers and

end-users often see different statistics when computing failures since they use

different definitions for what a failure actually is. An end user may define a failure

based on the speed of interface with the system. If an operation performs slowly,

they may report it as an error but the administrator will only deem it a failure if

the system is down or inaccessible. Hence, this is why agreement and standards

need to be established and agreed upon for defining when a system or an element

of a system is, in fact, broken.

You can waste hardware, resources and investment by not checking or knowing

what a “healthy” and optimal system actually is. Granted optimal and healthy to

one person may not be sufficient for another, but guidelines and standards may at

least help to minimise waste. Real systems, however, are much more complex.

They are utilitarian, focusing on fitness for purpose even when the problem is not

completely understood and the requirements change unpredictably over time.

They are built with under-specified components for use in domains that are only

biddable (Beeler, et al., 2002). This goes back to the fact that a self-managing

system requires the ability to be both adaptive as well as aware of its

environments, as it lacks predictable causality and subject to uncontrolled external

influences on the computation or the system in which it is embedded (Shaw,

2002). Whatever can influence the health of the system, either internal or external

stimuli, the system needs to be made aware of or at least be able to react to it.

In order to investigate the healing process, the term “health” must be defined.

Human health is clearly defined through medical checks backed up by hundreds of

years of medical research. Often a person can tell a medical professional how they

feel. The professional can then draw on experience and attempt to help that person

to heal or suggest a solution to the problem. Investigating this communication,

knowledge and standards help move towards the healing process. The benefits of

 17

defragmentation extend beyond performance improvements to lowering the total

cost of ownership for an enterprise, according to the IDC report. By using a

defragmentation facility, it is possible to achieve performance gains that meet or

exceed many hardware upgrades (Middlemiss, 2000).This is one potential

“health” change that could not only save operational time, but potentially

expensive upgrades that simply “mask” the problem. It could make an argument

into analysing how affecting some systems are being used because of this type of

problem, or how much return the investors of the system are getting from their

investment.

Maintaining the health of practical systems is correspondingly more complex.

First, preservation of health depends on knowing what health is. Since the

designer's understanding of both the properties of the system and the users'

requirements will be incomplete and dynamic, "health" itself will be imprecisely

understood (Shaw, 2002). But how is this activity achieved within computers?

System health-checks and benchmarks are not new concepts. But are these

standard checks or just a selection of potential issues based on past experiences of

what may go wrong? In order to heal, it is necessary to know what to fix. So, as

Mary Shaw states, maintaining system health requires knowing what "health" is

and recognising when the system needs to be healed. The first problem is

establishing the criterion for health, which depends on the way the user is

depending on the system (Shaw, 2002). This is an excellent statement, which

clearly defines why standards are needed. The health of the system will differ

from end-user, to operator, to manager, as each has different expectations of

systems. Even today, when a system runs slowly but appears to be healthy to the

manager, can it still be classed as operational? It works but not as well as it could

because it is being pushed too hard, not optimised enough or maybe even requires

an upgrade. Setting standards of how well the system should operate will better

define how healthy it is. Following these standards will then indicate if the system

is unhealthy and needs to be healed. The manager’s needs are different to the end-

user’s needs. So the standards must benefit all users of the systems. The only way

to so is to standardise what makes a healthy system. A self-healing system

automatically detects, diagnoses and repairs localised hardware and software

problems (Kephart et al., 2003). Maintaining system health requires knowing what

 18

"health" is and recognising when the system needs to be healed. The first problem

is establishing the criterion for health, which depends on the way the user is

depending on the system. This criterion varies from one user to another and from

one situation to another. The second problem is recognising the difference

between "healthy" and "unhealthy" conditions (Shaw, 2002).

The other issue is identifying a problem. Within smaller systems, this can be

relatively easy, but in larger distributed systems where components are inter-

dependent, it becomes much more of a problem. A fault can be detected but

localising the component at fault can be a far larger task, so problem localisation

is a key ingredient of self-healing. In complex, highly interconnected systems,

attributing the cause of a failure to a particular component can be tricky (Kephart,

2005). But without knowing the cause, the manager or management system runs

the risk of getting stuck in a state of continuous repair. Self-healing has the ability

to yield the greatest returns with the field of autonomic computing. Computers

that could one day “self-sustain” themselves have the ability to deliver more

reliable experiences in computer use, reduce the costs of running them and free up

the time of humans who today spend too much time firefighting problems and

reacting to failures and faults.

Of course, there is a starting “initial” cost of development and deployment with

every system design and administration. Human administrators would not be

eliminated from the equation, as there is still no substitute for the human “expert”

now or within the foreseeable future. Instead “self-healing” and autonomic

computer would improve their working environments, reduce complexity and thus

cost. Is the administrator better utilised fixing issues or looking for ways to make

improvements? According to a cost comparison study by IDC, defragmenting

1,000 workstations and 10 servers manually would take 52,520 hours and cost

$2.1 million, based on $40 per hour for IT staff time. Using a network-deployed

defragmentation system, the job would require only 24 hours of staff time at a cost

of $960 (Middlemiss, 2000). With lean incentives being a modern challenge for

most companies, common terms like “so more with less” are used as much in

industry as terms to obtaining high quality. The modern business needs to deliver

the same or better quality but do so by spending less money where possible. “The

 19

ability to adapt is critical for self-healing systems (Kephart et al., 2003). However,

not every system is designed or constructed with all the adaptation mechanisms it

will ever need. As a result, there needs to be some way to enable existing

applications to introduce and employ new self-healing mechanisms (Griffith, et

al., 2006). Otherwise, there will be a continued risk that self-healing systems will

need to be platform-dependent and custom-designed for each and every system in

operation. What works on one may not work effectively on the other, unless the

system is designed to adapt from initial introduction.

Homeostasis is the propensity of a system to automatically resist change from its

normal, or desired, or equilibrium state when the external environment exerts

forces to drive it from that state (Shaw, 2002). One could argue that a percentage

of database issues could be handled by simply restarting the process. This is true

but is severe over-kill and there is always a risk of the process failing to restart

without human intervention (Griffith et al., 2007). This is a modern “fix” for a lot

of system hardware and software, the reboot method. But this would require

expensive recoding of objects to make use of Oracle objects and effectively

caching transactions at the client end until the system becomes available again.

But this is also risky if the client machine crashes and data is lost. A lot of work is

a database is running on low memory and simple autonomic-style “tweak” could

fix it, unknown to the clients at all. (don’t understand this sentence!!)

Although it has become quite an unfortunate practice with modern window

systems to reboot and hence stop the system as part of the first attempt to return

the system to a state of health, it is one option that cannot be in place for a self-

management system. It could easily be a first step option, but would be a waste of

end-user time, along with a risk that the system will fail to come back online. It

would be regarded a much better practice to restart elements of the operating

system/database (if needed) rather than flush the entire system as a whole.

“Periodic refreshing of data-structures, components and sub-systems done using

micro-reboots, which could be performed at a fine granularity e.g., restarting

individual components or sub-systems, or at a coarse granularity e.g., restarting

entire processes periodically.” (Griffith, et al., 2006).

 20

Unfortunately, most monitoring systems tend to show only the symptoms rather

than the underlying problem. They act as alerting systems that pass on possible

faults, with no understanding of how to deal with or identify the root cause of the

problem. The system actually provides sufficient data to predict that a hardware

component is about to fail; however, few systems are capable of recognising

symptoms or taking proactive actions. And with more companies consolidating

applications onto fewer servers to reduce costs, these applications become

susceptible to hard-to-diagnose and non-recoverable errors in an increasingly

complex set of system hardware and software components (Sun Microsystems,

2004). If placed in human terms, it would be an administrator who knows of a

fault, but is without the sufficient training or skills to either diagnose the cause or

be able to fix it. They simply pass on the news of a possible error and walk away

to find the next problem, leaving another member of the team to fix it. Ideally the

person should be able to do all tasks.

The operator is tightly integrated in this management process, and his or her tasks

range from defining high-level policies to executing low-level system commands

for immediate problem resolution. Although this form of having the human

operator “in-the-loop” style management was appropriate in the past, it has

become increasingly unsuitable for modern networked computing systems as they

have increased in size, complexity as well as geographical locations (Hermann, et

al., 2005).

An autonomic element consists of a “closed control loop” (Figure 3.0).

Theoretically, closed control loops can control a system without external

intervention and can keep it in a specified target state. This concept is can be vital

in the design of self-healing systems, because it introduces the desired autonomy

(Hermann, et al., 2005).

 21

Fig 3.0: An autonomic element's closed control loop” (Hermann,

et al., 2005).

Closed control loops are considered to be the most important concept of self-

management. The basic idea of control loops is well known from a wide variety of

technical applications - a thermostat (consisting of a temperature sensor and a

coupled flow control valve) and a car's anti-lock breaking system are just two

examples. Closed control loops can control a system parameter on the basis of

some pre-defined “set point” and the constant observation of the parameter's

current value. In relation to a thermostat, the human manually defines the set point

or desired temperature and the thermostat measures the temperature and reacts by

controlling the flow of heat, using the valve (Hermann, et al., 2005). The valve is

adjusted based on the feedback from the closed loop. This principle works much

the same as computer-controlled loops, whereby the computer adjusts a code

parameter variance with the resulting feedback.

A simple example of a control loop would be an operation or set of operations that

change the database by increasing the size of the in-memory buffer for caching

data, if necessary. Assume the operating system runs a control loop for optimising

memory usage. This control loop monitors the amount of free memory, and if it

detects a shortage, it uses an interface to tell relevant applications to reduce their

memory usage. This system, consisting of the database, operating system,

response-time control loop, and memory control loop can produce an undesirable

oscillation. The two optimisation criteria directly conflict with each other:

Caching large amounts of data in memory achieves a good response time, while

keeping memory usage low results in higher response times. One action triggers

 22

the other, so they will repeatedly increase and decrease the size of the in-memory

database cache. This thrashing will likely decrease the overall system performance

considerably and might increase the response time. So, the response-time control

loop triggers an even greater increase of the cache size to react to this condition.

This feedback loop will eventually lead to a new emergent behaviour of the

system: complete failure (Hermann, et al., 2005). This example outlines how

ineffective a healing system can be if it is designed to fire and forget and never

fail until the system itself faults. Basically, it will continue to attempt to fix the

problem, even when it cannot.

The purpose of a self-healing system is to provide reliability and data integrity in

the face of imperfect underlying software and hardware (Tesauro et al., 2004). It

is fair to refer to modern technologically advanced and complex systems as

imperfect because a perfect system would operate 365 days of the year without

fault. Although the statement may not be practical, it is what end-users expect

from systems, especially in industry, as less and less time is allocated for

maintenance. In the modern age, systems are expected to stay up running back-ups

in “hot mode”, running maintenance tasks and sometimes even upgrades while

users are still being serviced, even when said operations in fact introduce high

elements of risk to the overall condition of the system.

It is fair to suggest that the amount of investment in a system has a direct effect on

the possible reliability of a system. Cheap low-cost investment results in less

reliability and redundancy options. One could risk minimal investment and avoid

the added cost of hardware redundancy or data replication. The cost of system

downtime should have a direct bearing on how much should be invested in the

system hardware itself. It would be wasteful to invest in expensive software

solutions for the data storage and monitoring if the overall foundation, the

hardware of the system, didn’t have the capacity to at least guarantee minimal

reliability and redundancy if parts fail. But modern day reduced IT budgets have

forced managers to look to cheaper and thus more cost-effective options. Time

will tell how comparably effective some of these solutions may be in practice

against the more expensive variants. One potential is to use cheaper types of

drives such as SATA drives which may be “cheaper” alternatives and thus fail

 23

more than traditional IDE/SCSI drives
7
, but show that parts fail. Using a method

such as SMART
8
, early “potential” failures can be detected and thus avoid data

loss or downtime. As with MAID (Massive Array of Idle Disks) (Burniece, 2005),

using cheaper cost-effective components in a reliable configuration (using

traditional raid with custom “Aerobic” software) to delivers a more robust system

with “future” monitoring for failures.

All components, especially disk drives, have a measure failure rate. More

expensive fibre/scsi drives have higher failure rates than the cheaper counterparts

SATA. This means you will be replacing SATA drives because of increased

failures, but they are cheaper to purchase. Hence, they may be better suited to

lower cost data systems where downtime or repair time cost less to the business

operations. But installing SATA at a low cost and configuring them in such a way

as to expect them to last as long as standard disks would be risky. Table 1.0 below

outlines various failures with these cheaper disks.

7 IDE/SCSI/SATA physically connecting and transferring data between computers usually

associated with hard disk and tape drives.
8 Self-Monitoring, Analysis, and Reporting Technology, or S.M.A.R.T. is a monitoring system for

hard disks to detect and report on indicators of reliability; they can help in anticipating failures.

 24

Table 1.0: Results of USCD Failure Analysis of 4,000 SATA

Drives, December 2004 (Burniece, 2005).

MAID, together with DISK AEROBICS, anticipates potential failures, instead of

reacting to failures, like normal always-on RAID systems (Burniece, 2005), where

disks are removed and rebuilt when failure is detected. MAID/SMART

technologies are designed to highlight the potential future loss of a disk and to

move away from said disk before it fails.

With a system looking to its own components and alerting potential failures,

allowing for components to be replaced before an actual failure, the system is thus

acting to better protect its own availability as well as its data. Although hardware

components are harder to “self-heal”, they can be designed with sufficient

redundancy to allow the move off suspected hardware that may or will fail.

SMART and similar SCSI alerting and analysis are a step in the right direction

towards detecting issues rather than reacting to events. But SMART is only a step

in the right direction; a lot more systems and design changes are required in the

future. Powerful predictive models need to make use of signals beyond those

provided by SMART (Pinheiro, et al., 2007).

 25

Over 90% of all new information produced in the world is being stored on

magnetic media, most which is on hard disk drives (Pinheiro, et al., 2007). Taking

this figure into account, one could only hope the said information is being stored

on systems with adequate redundancy and sufficient disaster recovery procedures

built into their design specifications and operational budgets. Self-healing denotes

a system’s ability to alert, diagnose and react to system malfunctions, if and when

they arise. Self-healing components or applications must be able to observe

system failures and apply appropriate corrections (where possible). In order to

automatically discover system malfunctions or faults/failures, the system needs to

know what “the expected system behaviour” is. Autonomic systems must have

knowledge about their own behaviour then they must have knowledge in order to

determine if the actual behaviour is consistent and expected in relation to the

environment. More challenging is the need for the self-healing module to evolve

with the environment (Tosi, 2004). If the system is not designed with change in

mind, or given adequate knowledge of the key elements that change, it will be

more prone to failure. This would be much the same as a system engineer would

need to analyse what components have changed before determining a fault, if any.

They would not be successful in their job if they worked with the presumption that

the last repair would work again and the system was the same as before.

Corporations rely and expect system “up-time” to be as high as possible. They

design and build expensive redundancy into their systems to allow them to operate

if a selection of hardware of software components fails. If computer systems were

perfect, they would never fail. But no systems are perfect and will fail, but what if

they had the ability to react and heal themselves? Hence faults would still occur as

regular or irregular as they did and do, but now the system would react rather than

sit and wait to be fixed.

Sufficient fault finding should not concentrate on present system condition alone,

but should also be looking for future faults. Similarly, the SMART (Self-

Monitoring Analysis and Reporting Technology) allows users to detect HDD's

defects in advance (Samsung, 2007), and thus removes the “infected” component

before it actually fails and causes expensive downtime.

 26

SMART technology resembles a jigsaw puzzle—it takes many pieces, put

together in the right way, to make a pattern. Understanding failures is one piece of

the puzzle. Another piece of the puzzle is the way attributes are determined.

Attributes are reliability-prediction parameters, customised by the manufacturer

for different types of drives (Seagate, 1999). Once a parameter response is

detected as being high or higher than a defined parameter (parameters are set

optimal ratings for individual components), then set within the expected

tolerances, the “possibility” of disk failure increases, meaning the disk is flagged

as a possible potential failure. One example of a stand-alone software application

that uses SMART technology to monitor the “health” of a hard disk online, is

inexpensive and very effective “active smart” (Ariolic Software, 2007), illustrated

below.

Fig 4.0: SMART application illustrating a healthy disk

 27

This software monitors the hard disk for failures and potential degrading and

prompt replacement before it fails (even alerting). When the hard disk state

changes, the SMART system, integrated into the disk, notifies the user (Ariolic

Software, 2007). However, this is not incorporated into the Windows operating

system. Most hardware will detect disk changes, but only on reboot. So the end-

user may not even be aware. This type of design is what S.H.A.D.E. plans to

embellish. A simple user interface with effective operations and options is

included for SMART abilities in its disk checks. There is no reason why features

such as SMART cannot be built into operating systems like Microsoft’s Windows,

to enable your computer to alert or even make a proactive back-up at the first sign

of disk failure. Your data would be much more secure and the computer more

user-friendly if it “protected itself” and your critical data on its own, rather than

waiting for you “the user” to detect a possible problem, and then make a back-up

before the drive failed. If Windows detected, backed-up and then alerted the issue

automatically, it could reduce repair time as well as potential loss of data.

Thresholds that help detect failure rates on one model of drive may not be

sufficient for another. A comparison of car models can help explain this point.

Certain model cars are equipped with four-wheel drive, but others are not. The

architecture of the drives determines which attributes to measure and which

thresholds are effective to use. Subsequent changes to attributes and thresholds

will also occur as field experience allows improvements to the prediction

technology, making the technology more intelligent over time and based on more

data from the field (Seagate, 1999). This also depends on the fact that drives are

made to standard design. In the world of technology where design and features

can lead to increased market share, this could become increasingly difficult, as

manufacturers will use technology changes and innovations to their own

advantage rather than limiting their designs to standards. This alone is one

argument towards why open source will always be more successful (not limited to

financial gain) than commercial software, as the designers are more interested in

making a better product than they are in making a better profit.

Although this technology can only be applied to desktop or cheap(er) server

storage (such as MAID), it embellishes the same principles of similar solutions for

 28

its more expensive server cousins (SCSI) drives. SMART emerged for the ATA

(IDE)
9
environment when SFF-8035 was placed in the public domain. SCSI drives

incorporate a different industry specification, as defined in the ANSI-SCSI

Informational Exception Control (IEC) document X3T10/94-190 (Seagate, 1999).

Before one can effectively detect a fault, one must define “What is a fault?”

Faults can be classified into three different groups: (Tosi, 2004).

• Design: made by hardware designers. In this case, faults are raised during

the design process;

• Fabrication: manufacturing processes can introduce defects into the replicated

device;

• Operational faults: they can be caused by device wear out or by environmental

disturbance such as electro-magnetic interference or high temperature.

Errors and failures can be classified into four different groups which identify

phases and steps for building software. In each step, typical errors or faults can be

introduced. These groups are:

1. Requirement definition: made by software designers. In this case,

application problems are not solved;

2. Design: inadequate problem analysis, inadequate knowledge of language

design techniques, and incorrect implementation of algorithms can

introduce incorrect method output, inconsistency, and unexpected system

behaviour;

3. Implementation: inadequate programming knowledge and typographic

errors can introduce incorrect output;

9 ATA (IDE): interface standard for the connection of storage devices in computers

 29

4. Runtime: inadequate knowledge of application can raise runtime exception

or system crash (Tosi, 2004).

This reaction or self-healing is one of the goals of autonomic computing and is the

primary goal of S.H.A.D.E. and of this thesis to explore the possibilities of self-

healing systems and measure the effectiveness of a software engine in aiding a

real system in being more self-sufficient. Since the first presentation of a self-

stabilising algorithm, made by Dijkstra in 1974, progress made in this area has

proved that it is one of most important and promising topics of fault tolerance

(Brzezinski, 2000).

The concepts of self-management with the idea of dependable and fault-tolerant

systems, as well as self-stabilising systems will be compared and contrasted.

Leasing resources is a simple yet powerful and widely used mechanism for

collection in systems. The system automatically frees a leased resource (i.e. a

memory block) when the leaseholder does not renew within a defined time period

(Hermann, et al., 2005).

2.3 Self-Control and Self-Management:

Justification for self-management and self-healing is easy, as it will aid in

reducing the need for human administrators. Less humans translates into less

overheads in wages and other benefits. But the success of any self-controlling

system resides in the quality of the software/system. Faults and bugs within this

system will only help in potentially reducing the health of a system as well as

potentially introducing or increasing downtime risks. A recent Google outage

experienced with their Gmail
10

 application was caused by what Google referred to

as “routine maintenance”. Basically, code was automatically fired with the sole

purpose of improving the service/system by moving accounts to better

geographical locations for the end-users. The code was adequately tested and took

into account each and every factor; however, it overloaded the system, crashing it

for 3 hours. In today’s more volatile IT market, this was reported on a global

stage. In the Google event, one data centre was overloaded and then it served to

10 Gmail: Google’s e-mail application.

 30

take down others – one unhealthy system kicked in load balancing routines, which

resulted in all centres being affected instead of quarantined. Unexpected side-

effects of some new code that tries to keep data geographically close to its owner

caused another data centre in Europe to become overloaded, and that caused

cascading problems from one data centre to another (Cruz, 2009). Obviously, the

code was not tested enough or all possible events were not factored into its design

and implementation. The root cause of the problem was a software bug that

caused an unexpected service disruption during the course of a routine

maintenance event (Google, 2009). The issue was then further compounded by a

phishing attack taking advantage of the outage and the efficiency of Google to get

fully operational. Google charge for a professional flavour of their services,

offering guaranteed “up-time”. Professional users are covered by a service level

agreement that promises 99.9% “up-time” in any month. Google Apps includes a

99.9% uptime SLA (Service Level Agreement) (Google, 2009). As a result,

Google became more proactive in announcing downtime to its users by building a

downtime application into the dashboard of application suites. This application

allows the end-users to read detailed reports on events as well as see a complete

list of system outages and downtime, as illustrated in Fig 5.0.

 31

Fig 5.0: Google Apps Status Dashboard: Illustrating the Gmail

outage in February 2009

Technologies such as Cloud computing
11

 could sufficiently reduce complexity for

the end-user, because the user need only know what type or version of browser

they are using (along with possible plug-in versions such as JAVA) rather than

knowing hardware specifications, driver versions or patch set revisions. They

would need to know less of how the system works, because those elements would

be handled by the host. With such initiatives, self-managed and stable “back end”

computer systems will be even more vital, hence self-healing and self-managing

systems would become more prevalent.

2.4 Benefits of Self-healing.

Self-healing is one of the four key properties of Autonomic Computer systems. Its

ability can enable large-scale software systems to deliver services on a 24/7 basis

and to meet its goals without requiring any human intervention (Czap, 2005).

Self-healing shares similar needs, and thus, goals with self-stabilisation. This was

conceived in 1974 by Edsger Dijkstra who defined a self-stabilising system as,

11 Cloud Computing: A method of computing in which scalable and often virtualised resources are

provided as a service over the Internet.

 32

“regardless of its initial state, it is guaranteed to arrive at a legitimate state in a

finite number of steps” (Dijkstra, 1974). The notion of self-stabilising systems in

the 1970s was a very new problem. Dijkstra’s article on the subject was ignored

but re-emerged again in 1984, when Leslie Lamport brought fresh attention to

Dijkstra’s theories as they added a new dimension to possible ways of dealing

with errors and their recovery. Lamport himself has been quoted “I regard the

resurrection of Dijkstra's brilliant work on self-stabilisation to be one of my

greatest contributions to computer science” (Lamport, 1984). Hence the theories

and ideas are not new, but it is necessary to understand how systems have evolved

since Dijkstra’s findings, in order to take the next steps required in building self-

sufficient systems with even more modern and complex environments. It is

possible to learn from elements of this approach; in fact, they are an excellent

foundation and are regularly referenced today. Dijkstra’s theories are even more

prevalent today as systems continue to grow in complexity and size. Errors and

faults are more numerous and complex to solve, because today’s systems are

bigger and far more complex.

Security, availability and cost containment are the top three challenges to be faced

by Oracle managers over the coming year (2007). The roles of DBAs and other

data professionals are clearly shifting to more strategic business priorities whereby

professionals are spending less time on technical details and improving and

spending more time on higher-value tasks for the business. This might include

securing the database for greater compliance, or ensuring that the right people are

able to access the right data. Data professionals also need to increasingly take an

enterprise view, and manage hundreds of servers, rather than just one particular

application (McKendrick, 2007). This translates into a bigger field of systems to

watch, which means more manual operations and checks and further complexity

and stress, all combining into possibly increased risks of downtime, performance

degrading and mistakes through work overload.

 33

Fig 6.0: Data management challenges 2007 (McKendrick, 2007).

They must understand that client charge-back and quality of service go hand in

hand, so the definition and planning of data services in all their aspects is

important to achieve this goal. This has been further challenged (especially from

2009 onwards) whereby IT budgets are increasingly shrinking. But the end-users

and clients expect more value for their money, without effects to system “up-

time” (McKendrick, 2007). This means providing minimal system disruptions

with little or no financial investment. This challenge prompts the need for more

“intelligent” system design. Self-healing IT environments can detect improper

operations (either proactively through predictions or otherwise) and then initiate

corrective action without disrupting system applications (IBM, 2001).

“Without effects to system “up-time”” is the key element of the quote above. This

sounds relatively simple by definition but harder in practice if one was to

implement it in a “real-world” system. This is where the self-healing system must

be built with a certain amount of “self” awareness but it also needs a degree of

overall awareness. Without such awareness, the design would run the risk of a

“push-and-pull effect”; whereby components may attempt healing unaware of

what effect their action could be taking on other components in the system. The

push-and-pull effect is where the system falls into a “trap” of constant healing for

 34

actions that the healing system itself is causing. Apart from the fact that cells

around the injury are able to adapt to a different function based on the new

circumstances, it is their level of awareness that these cells possess that makes

such healing possible (Mazzotta, 2000).

Self-awareness has been built into the S.H.A.D.E. engine not just for healing but

for alerting of issues, working with the human administrator to solve certain key

issues that the software has not been equipped with the knowledge to fix (much

the same method as contacting technical support for assisted help). If these

systems were to become completely self-healing, they would need to react by

following certain defined rules and options, thus drawing from knowledge and

experience. Since a “system” can exist at many levels, an autonomic system will

need detailed knowledge of its components, current status, ultimate capacity, and

all connections with other systems to govern itself (IBM, 2001).

A good example to simplify an action is flicking a light switch that blows a trip

switch. As humans, we may repeat the action once or maybe twice before we

know that we have to investigate and thus fix the cause, as we are now aware that

there is a “problem” as the switch is not performing to our “expectations” on how

we know it should work. If this was computerised and the self-healing system

attempted and continued the simple action of flicking the switch; it would never

fix the issue, just react to the problem, unaware of the result or effect of its

actions. It would need to know when a failed action becomes a problem. i.e. it

may be OK for an action to fail once, but not to continue to try and fail. A defined

tolerance level of acceptable failure rate would allow the system to identify when

it “may” be experiencing a failure and to carry out an action to resolve this failure.

With this simple example, the systems would need to check for success and have a

fault tolerance level set after attempted fixes. It must also be aware of results of its

own actions as well as the success or failure of its actions. As IBM states in its

Autonomic initiative: Initially, healing responses taken by an autonomic system

will follow rules generated by human experts (IBM, 2001). From a design and

implementation standpoint, the preferred way to enable repair in a self-healing

system is to use an externalised repair/adaptation architecture rather than

 35

hardwiring adaptation logic inside the system where it is harder to analyse, re-use

and extend (Griffith, et al., 2006).

Every day, computer users are wasting a significant amount of their own time and

thus money maintaining their own computer systems. Modern systems are simply

not robust enough and are too complex for an average user to fix. (Ryan, et al.,

2008). The average American is wasting 12 hours per month - the equivalent of

half a weekend - due to problems with their home computer (Kelton research,

2007). System designers have become too focused on implementing more

features, rather than improving the quality of the end-user experience. Logically,

there is no need to buy into the new version of a software product unless it does

more or offers more features. The more features within a product means more

lines of code and options that need both writing and testing. How many of these

features does the average user need? These features also change the way in which

the system is used, how easy it is to use, and how effectively the system (software

or hardware) can be de-bugged before reaching the end-user. One could argue a

lot of this problem is down to software companies release practices. They are

rushing new versions of their software to market as quickly as possible to keep

customers “wanting new versions”, even before the last release has been

effectively patched or made free of errors. The global recession has changed this

approach with major software vendors such as Microsoft deciding to reduce

releases numbers for some of their software, planning to not develop or release

office applications in 2009, but rather adopting to maximise return from their

older version of the product, reducing the overhead of developing costs and

focusing resources on other projects with greater return possibilities. But this

could also be a result of market analysis whereby the vendor has discovered that

they cannot release software with sufficient new features to warrant the customer

investing in a new version of the product when the older one that they already

own does enough to satisfy their needs.

The introduction of wide use of the internet has provided a perfect delivery system

for software patches, thus reducing the impact on the customer as well as the cost

to the manufacturer of making patches available and delivering to the customer.

 36

Bugged software
12

 and hardware is still a damaging and thus expensive business

practice, both in relation to time and money. Modern software release practices’

have made it acceptable to patch a product after it has been released to the market,

because not all issues can be cost-effectively detected and fixed before the

product is released to the end-user (Vanden Eynden, 2007). This practice only

helps to further degrade the end-user experience by increasing the complexity of

general usage. They need to be aware of what components make up the system as

well as which versions of software are installed. In the future, this needs to be

simplified and systems need to be able to patch and repair themselves without the

user needing to know everything about the system. Currently, the user needs to

know the version numbers, service pack and operating systems release they are

working with (although this would also require user knowledge and consent to

avoid potential legal ramifications). The need to know each and every component

that makes up a system further erodes the end-user experience, as well as waste

time that could be better spent using the system rather than fault finding (Kelton

research, 2007). Does the owner of a car need to know every component of their

vehicle to ensure it remains operational? The simple answer is no. But computer

users are expected to be experts (with different levels of skill). Hence, modern

systems are too complex by design and obsessed with complex functions (IBM,

2001; IBM, 2006). Attempts to automate operating system patches in the past

have led to great concerns and complaints. By definition, if you change anything

and the system fails to operate after the change, the change applied will be at fault

(whether it actually is or not). If these types of system updates are to ever work,

testing at the source would have to be considerable more effective to help reduce

the need for further testing and bug fixes. In a perfect world, no bugs would be

released to the public domain and the end-user would be left unaware of the actual

updates, because the automatic implantation and installation would have no

knock-on effects on their system. Today, companies require the ability to

manually patch because it allows them time to test and apply patches/changes that

they know would not impact their system (Dunne, 2007). Manual and thus

controlled patching is also a requirement within industries that need change

control procedures to be adhered to. These industries require testing and sign-off

12 Bugged Software or software bug: Software than contains an undocumented feature of fault that

affects its ability to run as designed.

 37

on all software changes before proceeding to live environment(s). The Food and

Drug Administration (FDA) clearly outlines that software should be more tightly

controlled because of its complexity (FDA, 2002). The need for automatic

patching could also be determined by the type of software fault or “bug”. An issue

with a user interface may not be seen as a critical fix but a security hole in code

may be classed as top priority, as the effects of exploitation could aid with

security breaches or virus distribution.

If these high priority patches are released and left to the end-user to deploy or

ignore, then there are huge risks to systems. In January 2009, 15 million Windows

PCs were affected by a worm known as “Downadup”
13

. Although the patch had

been released in October 2008, one in three users failed to install/apply the patch,

which was further compounded by lack of adequate anti-virus software to deal

with the outbreak (Randall, 2009). A more serious side to the argument of

patching, either automatic or manual, is how effective modern patching/bug fixing

actually is, either before or after a product is released. IBM reported that a high

percentage of vulnerabilities go un-patched - “46 percent of vulnerabilities from

2006 and 44 percent from 2007 still had no patch by the end of 2008” (IBM,

2008). With such vulnerabilities, there is an even higher risk that a program is

simply not doing what it should, but is introducing greater risks in virus, computer

high-jacking, identity theft, phishing and other forms of data theft and intrusion.

With the increasing global recession and thus increase in unemployment,

especially for those with IT skill sets, vulnerabilities in computer systems that are

left un-patched only increase the risk of using computer systems at all. This points

to a strong argument that present day systems are not operating as well as they

should. Even with constant updates and code changes, how effective would a

computer be when teams of humans can address the issue?

13 Downadup: a computer worm targeting the Microsoft Windows operating system that was first

detected in November 2008.

 38

Fig 7.0: Vendors with the most disclosures of vulnerabilities (IBM,

2008).

As shown in Fig 7.0, the top ten vendors in the vulnerability listing are major

players in the IT world. They have large pools of resources in software engineers

and infrastructures and it would be expected that they would be more on top of the

situation. The figures paint a different picture and strongly suggest that software is

getting so complex that bugs and vulnerabilities are becoming a more common

issue unless design practices change.

Even though it is well documented that complexity can affect the quality of the

user experience, as well as increase the risks of bugs released in final versions of

hardware and software, new systems still remain complex to use and faults are

still found by the users and not the testers. The difference is (that) no software in

the history of Microsoft development has ever been through the incredible,

rigorous internal and external testing that Windows 2000 has been through (Foley,

2000). Yet it was reported to have been shipped with 63,000 documented 'defects'

(Foley, 2000). Even with systems that are built on millions of lines of code, it is

hard to believe that these levels of defects are acceptable in any product released

into the public domain, especially one with such a large potential user base such

as Windows. If software companies were to test and thus catch every issue, the

 39

time taken to develop these systems would increase, meaning greater expense

before revenue is returned. Hence adding more features and thus complexity is

reducing the overall quality of software, as well as tarnishing the end-user’s

experience (Vanden, Eynden, 2007). Thus modern systems are not yet self-

managing, but are also not even working 100% when shipped (Ryan, et al., 2008).

What elements of a system is the most important, quality or features? Features

allow the company to sell a new version and make more money to develop the

next, building a software development cycle with frequent returns. The end-user

is, however, paying for something that is not as good as it could or should be. If

development times increase, the end-user price would be in danger of increasing

and people do not want that either.

One of the objectives listed with Microsoft’s more recent operating system and

Office packages (Vista and Office 2007) was to simplify the user interface (Ryan,

et al., 2008);(Ballmer, 2007). This allowed the average user to concentrate less on

how to get something done and more on the content they are working on (Ballmer,

2006). This is a complete change for the company, who once were more

concerned with adding more and more options and now seem to be more

concerned with making the experience easier for the user to interface with.

Admitting that the typical user only knows (and thus uses/needs) 20 – 30% of

their products, they are effectively admitting there is too much complexity and

features in their own products (Ballmer, 2006). Effectively, these companies are

coding features that most users do not need, adding to cost in development and

resulting in inflated product costs. Modern systems such as Windows Vista

(Stanek, 2006), SQL Server, Oracle (10g + 11g) (Wood et al., 2007), and SMART

DB2 (Sterritt et al., 2005) are starting to list and implement self-healing options

within their current and future software releases. These systems are shifting away

from the trend of adding more features, and are moving towards enhancing the

user experience through more simplified interfaces and overall easier

management. This shows that the industry is beginning to accept that there is a

problem with complexity and is starting to address the issue (Ryan, et al., 2008).

With each additional feature within a system (or software package) there are

potential security flaws that also need bug testing and patching. Unfortunately for

the end-user, it is within the interest of software companies to get releases out as

 40

quickly as possible, to fix issues in the field. The sooner the product is launched,

the sooner they can start to get a return on their investment. One more famous

suggestion is the release of Microsoft’s Xbox 360 console. It was stated as being

listed with a hardware fault which caused the system to overheat and break.

Microsoft “did right” by the consumer and offered a free repair for three years for

each machine that failed. The cost of this gesture was one billion dollars. One

could argue Microsoft can afford this money. It later emerged and was suggested

that the company knew of the fault and made the conscious decision to get the

machine to market anyway, beating its competitor and getting a stronger grip on a

user base. What does this mean? One of the biggest companies in the world

released a known defective product and took the gamble on paying for it later,

through money and reputation, for one simple gain of getting their product into the

market first. This could be viewed as a short-term loss and a long-term gain for

Microsoft, but for the consumer maybe not.

This offers up another question. Are companies more interested in the return of

investment than they are in producing and releasing superior products sch as more

robust, secure, self-managing product that may in fact make our life’s easier? The

answer is that unless they work together through standards and sharing, they will

remain more concerned with the performance of their own products. IBM took a

big step in the right direction with its autonomic computing initiative (IBM,

2001). Autonomic computing design is based on the Autonomic (Human)

Nervous System (ANS) (Sterritt et al., 2005) which handles some of the elements

of the human body without conscious action from the human themselves. The

computer system could manage and even repair itself without the need for

constant intervention from the administrator. “To meet this autonomic selfware

vision, systems should be designed with components that are allocated an

autonomic manager” (Sterritt et al., 2005).

The human system works because of cross-component communication. Each

element works with its own effective goals, but it is necessary that they all work

together also. The Self-Healing Engine should, by design, consist of two parts: a

problem determination component and a problem resolution component (Gao et

al., 2004). This, in others terms, means; detect and repair. Most industrial

 41

monitoring systems do the first part well, with options to alert in many different

ways, following custom and predefined tolerances that define what a fault is or

could possibly be in the future. Their repair abilities however, mostly rely on the

human element to receive the alert and act on it. Helpdesk applications attempt to

improve the repair operation by assigning the human user to a potential repair and

continuing to alert them until it is fixed, with options for escalation. All help in

ensuring that someone will act on an alert but without the human element, faults

will continue to be flagged but never fixed.

2.5 Future enhancements to self-healing.

In order to gain an understanding of the term “self-healing”, one must look to the

field of Expert Systems. IBM’s ACI is definitely a step in the right direction, by

setting standards and moving towards common goals aids in success. Autonomic

computing is still in its infancy and most of today’s systems whicht contain

autonomic options have only low levels of autonomic maturity (Brown, 2005).

Standards will be very important in defining levels of health, as well as gathering

requirements and expectations of what users and managers define as a healthy

system. The study of the human as a system, as well as how humans interface,

may provide the key elements in computer systems’ control and will help with

future designs. However, until it is possible to completely replace the human

operator with effective computer replacements, computer systems will remain

dependent upon humans for the foreseeable future. A short-term solution would be

people working on less complex systems due to autonomic elements that reduce

tasks for healing and management.

The need for self-healing software to respond with a reactive, proactive or

preventative action as a result of changes in its environment has added another

requirement into the required list of capabilities that a self-managing system

“must” have, that is, the system must be able to adapt to internal and external

changes, to anything that can alter the running state of the system and also

changes within the system itself. “The adaptations we are concerned with assist

with problem detection, diagnosis and remediation” (Griffith, 2006). Many

 42

systems do not include such adaptation mechanisms, as a result these systems

either need to be re-designed to include them or there needs to be a mechanism for

retro-fitting these mechanisms. The purpose of the adaptation abilities is to ease

the burden and thus decrease the human intervention in the management of

software systems (Griffith, 2006).

As mentioned, Oracle and other leading companies like IBM are moving towards

and even including self-healing elements in their newer system releases. These are

being used as sales features more than following IBM’s vision to reduce

complexity. Oracle has introduced features to reduce complexity but what lies

under the hood is far more complex than previous releases. One service that is

“jumping on the bandwagon” is HP’s “Openview” Self-Healing services. This

service basically attempts to simplify and automate some of the steps that need to

be taken when a fault occurs, by pulling together information and proactively

alerting the support centre. Is this a self-healing service? Absolutely not, the

design could be used as part of a baseline structure but unless there is an

intelligent computerised layer, the service still relies on humans at either end to

both effectively report as well as diagnose/fix.

Fig 8.0: The structure of the service: (Hewlett-Packard, 2005).

 43

As the Fig 8.0 shows, it still takes human intervention at both end of the operation,

hence it is still manual. From the time the problem starts, HP “Openview” Self-

Healing services alerts you with a description of the problem, as well as relevant

data collected about the fault and a proposed solution based on the knowledge

documents from Software Support Online (Hewlett-Packard, 2005). Sun’s Solaris

10 operating system boosts self-healing capabilities, with abilities that diagnose

problems and the results can be used to trigger automated reactions such as

dynamically taking a CPU, regions of memory, and I/O devices offline before

these components can cause a system failure. Solaris Fault Manager isolates and

disables faulty components before they can halt/fail the system. In doing so, the

manager helps ensure continuous service even before (human) administrators

know there is a problem. (Sun Microsystems, 2004). One modern method that

attempts to “cheat” “up-time” statistics can be observed in the way Twitter

operates its social networking application/site. When the system as a whole is

overloaded, Twitter dynamically disables features to reduce the load on the

system. Why this is a cheating method is because the system remains operational

and “up”, but not 100% with all features enabled. Hence, rather than having

access resources that could be used to load balance a high load (i.e. more server

storage or CPU power within its server farm), the application instead “decides”

(manually or automatically) to disable features and thus reduce I/O until user

operations and thus overall system load decreases.

Fig 9.0: The Twitter interface displaying disabled features because of system

load

 44

Twitter also (during severe load) disables all new transactions while the system is

overloaded. While the system in fact is still online and up, it can’t be used and

thus should be deemed as being in a state of severe ill-health or down.

Fig 10.0: Twitter overloaded to the point that it cannot process any

transactions.

Since users experience such “load reactions” continuously on Twitter, one could

argue it simply isn’t able to cope with its own user transactions and should be

scaled upwards to support the spikes in I/O load. In a world where people demand

quicker “always on” access, this level of service for a site/application of this sort

could only serve to hurt its reputation and thus its user base.

The main reason Sun adopted the self-healing model was because they needed to

improve “up-time”. With businesses operating around the clock and demanding

uninterrupted service, service availability is of paramount importance. Predictive

self-healing delivers the next generation of available technology today, including

features that keep systems and services running and simple for administrators.

Over time, the rapidly-evolving ecosystem of self-healing components can help

provide consistent, easy-to use, and always-available Sun systems (Sun

Microsystems, 2004). With Oracle’s potential acquisition of Sun in 2009, self-

management is likely to become an even more prominent feature in future releases

of the Oracle RDBMS family of products, especially within enterprise releases

where improved system “up-time” is an integral part of data system operations.

 45

Microsoft is also boasting self-healing capabilities in its operating system

“Windows Vista”, stating that Vista has advanced self-healing capabilities to

help “your system” maintain its health and an increased level of artificial

intelligence that can help you troubleshoot when things go wrong (Stanek, 2006).

Windows Vista also includes reliability improvements to the NTFS file system.

Specifically, if Windows Vista detects corrupted metadata on the file system, it

invokes NTFS’s self-healing capabilities to re-build the metadata. Some data may

still be lost, but Windows Vista can limit the damage and repair the problem

without taking the entire system offline for a lengthy check and repair cycle

(Microsoft, 2006). Windows also includes diagnostics to detect application

crashes caused by damaged (disk) system files. If an application attempts to

access a system file that is irretrievable because of a bad block (a read error on the

disk that cannot be corrected), the application may crash. Windows detects these

crashes, and silently repairs the damaged system file from a back-up copy

(automatically). This diagnostic turns repeat crashes into one-time crashes with

silent recovery (Microsoft, 2006). The most interesting element of this operation

is the term “silent recovery”. This in itself is self-healing in nature, as the

operation occurs silently and without the end-user prompting or executing it. The

system continues to operate and the user is left unaware there was a problem,

outside of perhaps a single system crash that the system recovered from and later

worked again without further outage. Brilliant, or is it? If this occurred on a disk

that was not SMART-enabled then the system would crash, repair and crash again

at a later date. Eventually, the disk would die completely. This could be avoided

by informing the end-user of the problem which would prompt them to follow up

on the problem and even replace the disk before it fails completely and

everything is lost (because you’ve even been backing up corrupt files for the last

week or two all your back-ups are contaminated). This approach includes the

human user, even if it’s just a simple alert to say what happened and what was

done. The human user and “owner” of the system is then included in the repair

and overall “decision”.

Other software packages such as DisKeeper 2007 by Executive Software are also

starting to create designs of their flagship projects that are based on self-managing

models. DisKeeper was traditionally a manual tool for defragging hard disks and

 46

thus helping to improve disk I/O
14

operations by simply locating files in a better

order on a hard disk; effectively reorganising the contents of the disk by placing

files close together. Because Microsoft has never been too concerned with how

optimal their products remain (a first install of Windows is a wonderful

experience until two months down the line it chugs in slowness), Windows

provided a defragmentation tool but DisKeeper has gained a market by doing the

job better. Its latest version has steered towards a self-managing application by

making the traditional manual task of defragmenting an automatic and continuous

thing. Rather than wait a week or month to schedule a defrag of your drive, your

drive is now set to always defrag. “In today’s environment of bigger disks storing

not only larger files but more files than ever before, the effects of fragmentation

worsen markedly with each day’s use. To keep up with daily performance

degradation, disks must be defragmented daily.” (Executive Software

International, 2005). As demonstrated in the chart below, fragmentation levels rise

on the unattended desktop resulting in performance being degraded each and

every day (Executive Software International, 2005).

A bold statement one might say, as this type of daily management will have a disk

I/O overhead by nature. But judging by the lab tests and graphs, not doing the task

on a regular basis or making your system self-managing for this operation, you

will experience reduced performance.

14 Disk I/O: Represents input/output operations, in this example to and from the disk storage

device.

 47

Fig 11.0: Effects of disk fragmentation on performance (Executive Software

International, 2005).

Automatic defragmentation is powered by the InvisiTasking technology

introduced in DisKeeper 2007. User selection of Diskeeper priorities (e.g. CPU) is

no longer necessary. InvisiTasking allows defragmentation of files on the fly as

fragmentation occurs. This eliminates the need for both scheduling and manual

defragmentation.” (DisKeeper Corporation, 2007). InvisiTasking is new

technology designed to enhance multi-tasking and address some of the

shortcomings related to the lack of “enough information” (DisKeeper Corporation,

2006). “To accomplish true transparency, one needs to be able to monitor CPU,

memory and the more significant hardware bottlenecks of the disk drive and

network. InvisiTasking takes a pro-active approach to instantly detect resource

usage while maintaining complete granular control over its own activity, ensuring

that it never pre-empts users or services.” (DisKeeper Corporation, 2006).

From a system overhead perspective, InvisiTasking-enabled applications can

essentially be said to be “not existent” – they are truly invisible on a system

 48

(DisKeeper Corporation, 2006). They clearly show that an InvisiTasking-enabled

process does not interfere with other running applications (DisKeeper

Corporation, 2006). In June 1999, the American Business Research Corporation

of Irvine, California, performed a fragmentation analysis and found that, out of

100 corporate offices that were not using a defragmenter, 50 percent of the

respondents had server files with 2,000 to 10,000 fragments and another 33

percent had files that were fragmented into 10,333 to 95,000 pieces. In all cases,

the results were the same: servers and workstations experienced a significant

degradation in performance (Kessler, 2009).

At least the application provides the option of setting up a computer with one less

manual task to worry about. Now, if some of the major software companies such

as Microsoft could concern itself less with features and more with optimal

computing, by controlling and maintaining the registry, services, start-up

programs and “bloatware”
15

, computer may finally allow their users to be

concerned with their use, rather than how to keep them running effectively or at

all. The user experience with these types of problems have reduced over the years

with the introduction of Windows XP (Vista has yet to prove itself in the field)

which has helped the user experience by reducing the amount of time one must

spend fixing issues or struggling to keep a computer running optimally or at all.

Perhaps other key application developers could benefit from a similar process

design such as “InvisiTasking”, allowing management applications to manage

them automatically and without affecting the end-user experience. Anti-virus

applications are a prime example. Recently, I was forced to temporarily turn off

my Network Associates “Virus Scan” service because it was using 100% of my

laptop’s CPU, rendering it unusable during a time period when I was answering a

support call (within which every wasted second costs money). I fixed the issues,

forgot to enable it again and got a virus. Would an application such as this be

better designed for user experience if it ran “invisibly” to the user and managed

itself?

15 Bloatware: Term used to describe the tendency of computer programs to have larger installation

footprints than needed, or to have many features included that are not used by the end-users.

 49

As computer users, we spend far too much time keeping machines running and

unless you understand the inner workings very well, you have no way of knowing

if they are working optimally or even as they were designed. The average user

must be concerned with drivers, defrags, scandisks, anti-virus, spyware, malware

16
, identity theft, patching and the list goes on. This is only with basic

workstations; the complexity and resources required to maintain database systems

and web applications are far more numerous and require more effort and skill to

keep these systems operational.

So there is still a road ahead for system designers to build systems that don’t

require “constant” human intervention. Until software and hardware designers

work together to achieve this common goal, the end of the road will always

remain a long way off. If modern applications manage to operate transparently to

the user (whatever resources they consume), then many of the required self-

management operations could be performed without the user needing to know

they are even running. “InvisiTasking is specifically designed to address the

“background” application to ensure it truly does run in the background and does

not interfere with higher-priority processes such as transaction processing, print

queuing and, quite frankly, anything else other than wasteful system idle time.”

(Kelton research, 2007). In the example of DisKeeper, the user would eventually

forget about the need to defrag hard-disks (solid state or standard drives) as the

need to manage manually will simply become a thing of the past. Moving towards

the goal of the end-user not needing to know how the system remains operational,

but is just concerned with using it.

2.6 Autonomic Computing:

One of the most developed and mature strives towards self-healing computing is

IBM’s autonomic initiative. The term “autonomic” is more identifiable with

humans than computers. It is the human body’s autonomic nervous system that

has inspired autonomic computing. The human autonomic nervous system

16 Spyware and Malware: software installed surreptitiously on personal computers to collect

information about users and also designed to infiltrate or damage a computer system without the

owner's informed consent.

 50

controls various bodily functions, without the need for controlled or conscious

actions of the human. This is the main aspiration of the Autonomic Computing

Initiative (ACI). “Autonomic computing is just the next logical evolution of these

past trends to address the increasingly complex and distributed computing

environments of today” (Ganek et al., 2003). As IBM states, the autonomic

system must anticipate needs and allow users to concentrate on what they want to

accomplish rather than on how to rig the computing systems to get them there

(IBM, 2001). Autonomic computing is emerging as a potential architectural

philosophy and design approach that promises to cope with complexity and scale

up to the needs of today’s distributed systems. Its fundamental goal is to increase

the intelligence of individual components so that they become “self-managing,”

and thus reduce the need for human interaction (Tewari, 2006). Some software

manufactures have already started a drive to reduce complexity in their systems.

Oracle made a big leap in its 10g release, (Oracle, 2006) reducing the expertise

needed to get the system running, by simplifying its installation and

configurations, while offering a lot more features. Microsoft lists one of the

objectives with its latest operating system and Office packages (Vista and Office

2007) was to simplify the user interface, allowing users to concentrate less on how

to get something done and more on the content they were accessing. These

products offer dramatic improvements that enable users to focus on content and

tasks rather than the interface itself, making it easier to find information and

access useful features (Ballmer, 2007). This is a complete change for the

company, which once was more concerned with adding more and more options

and now seems to be more concerned with making the experience easier for the

user to interface with. It admitted that the typical user only knows (and thus

uses/needs) 20 – 30% of its products, hence admitting there is too much

complexity and features in its products.

These are all steps in the right direction, but they also present another problem.

The administration has been simplified by offering fewer options to manage, with

some self-healing facilities in memory management, while the same operations as

before are carried out behind the scenes. Many older (and new) options are now

hidden within an even more complex system. One potential future problem could

be the administrator being down-skilled as a result of not being exposed to certain

 51

options/parameters on a regular basis. The administrator is forced to rely on the

software vendor to provide support and expertise, that in older versions of the

software they may have had the options available, and hence, the skills to remedy

on their own. The system is actually more complex, but presents itself as less. As

a result of built-in self-managing capabilities, additional automated administration

capabilities are available that further streamline operations and reduce operational

cost (Oracle, 2006). Although the statement was made in 2006, you can see how

(with modern IT budgets shrinking) that in 2009 and beyond, IT managers could

look towards software solutions of this type to simplify and just help reduce the

cost of IT. One such example is memory management in Oracle. In previous

versions of the Oracle database, the task was manual, where the administrator not

only needed to monitor and tweak the memory available to the database with

changing loads, but also had to be aware of what effects these changes had on

other components of the database and thus database server. Oracle 10g
17

 has this

operation automated. Now if administrators choose to do so, they can let the

database engine take care of this task and “free” up their time. On one hand, it’s

one less manual task to monitor and change; however, on the other hand, what

happens when manual intervention is required? The administrator is in danger of

not just knowing how to react to a required change in memory tweaking, but also

no longer understands the finer fundamental elements of how memory

management works. Because it is no longer a daily task and a need to manually

intervene is so uncommon, the skill and knowledge gets lost.

One of the key self-management enhancements in the Oracle 10g database is

Automatic Shared (SGA) Memory Management. This functionality automates the

management of shared memory used by an Oracle Database 10g instance and

frees administrators from having to manually configure the sizes of shared

memory components. Besides making more effective use of available memory

and thereby reducing the cost incurred of acquiring additional hardware memory

resources, the Automatic Shared Memory Management feature significantly

simplifies Oracle database administration by introducing a more dynamic and

flexible management scheme that has the self-ability to adapt to changes within

17 10g: Oracle RDBMS (Relational Database Management system) version 10, where by the g

represents the Grid feature(s) of the software.

 52

the database system (Lahiri, et al., 2005). Autonomic computing systems have the

ability to manage themselves and dynamically adapt to change in accordance with

business policies and objectives. Self-managing systems can perform management

activities based on situations they observe or sense in the IT environment. Rather

than IT professionals initiating management activities, the system observes

something about itself and acts accordingly. This allows the IT professional to

focus on high-value tasks while the technology manages the more mundane

operations (IBM, 2001).

Using a simplified view of autonomic computing, the goal could be confused with

basic automation. On a simple level, it is accurate, but if you relied on an expert

human operator to simply attempt the same fix when an issue occurred, then it

must be an error that could be fixed with a permanent solution. If they attempted

the same fix for different issues, they would fail. Hence, to make it automatic you

would need to know what each and every possible issue was and put a fix in for

each and every occurrence. Autonomic monitoring and reacting to alerts and

change is more complex than basic automatic responses.

Autonomic computing lays out a vision of information technology in which

systems manage themselves based on policies. With these policies are the new

currency of interaction between people and computers, creating a new paradigm

for interaction with autonomic systems (Kandogan, et al., 2008). This statement

seems to suggest that policies are the key to future information technology

developments. These are part of the puzzle, but only part. Other parts will be

discussed during the course of this thesis, merging together into a collection of

identified key elements which together may help with the success of autonomic

computing. As discussed, the term “autonomic” is more identifiable with humans

than computers, and should be, as it is the human body’s autonomic nervous

system that has inspired autonomic computing. The human autonomic nervous

system controls various bodily functions, without the need for controlled or

conscious actions of the human. This is the main aspiration of the Autonomic

Computing Initiative (ACI) (Ryan et al., 2008).

 53

Although the autonomic initiative has been expectedly documented and

championed by IBM, it has remained on the page as pure theory. It could in fact

be labelled as pure “marketecture
18

”, outlying and suggesting standards, but

doing little or nothing to implement its own theories and designs. Autonomic

computing in its present state is simply too broad and not defined enough to

consider it a success, The initiative needs to be more specific and thus

measurable and scientific to judge how practical it is in real-world practice. In

essence, autonomic computing needs to move from the page to the “stage”, to

become more scientific and not just a collection of beliefs and ideas. It is,

however, a solid approach in defining a problem. Combining autonomic ideals

with specific applications and hardware and thus defining “real” and practical

standards with actual software may in the future yield real benefits and thus actual

success for the initiative and the computer industry as a whole.

2.7 Standards and policies: The need for open design

standards.

Many IT infrastructures have components supplied by different vendors. For

multi-vendor components to participate in autonomic systems, there needs to be a

set of standards for the managed elements’ sensors and effectors and for the

knowledge to be shared between autonomic managers that describe the interaction

between the elements of an IT system. Some existing and emerging standards

relevant to autonomic computing include:

• Distributed Management Taskforce

• Common Information Model

• Internet Engineering Taskforce (Policy, Simple Network

Management Protocol)

• Organisation for the Advancement of Structured Information

Standards (OASIS)

• Java™ Management Extensions

18 Marketecture: Any form of electronic architecture that has been produced purely for marketing

reasons.

 54

• Storage Networking Industry Association

• Open-grid systems architecture

• Web Services Security (IBM, 2001).

If the big players in the computer industry such as Oracle, Cisco and Microsoft

continue to implement their own self-managing elements into their software and

hardware designed, tuture self-managing systems will only succeed on a small

scale. This is what we are witnessing today, with product such as Oracle 10g and

SQL server 2005. On basic levels, the SQL server boasts self-healing capabilities

in its installation. This essentially is similar in execution to what Microsoft has

been doing with it operating systems since Windows 2000. Systems files will

automatically check and replace them in order to maintain stability and prevent

the system files from becoming invalid, thus is protecting the install of the

software’s “runtime” files. This method is now integrated into SQL server 2005

(Scalability Experts, 2005). Hence, the self-healing features of these systems are

only concerned with providing new features in their own products. Recognising

these demands, Oracle (with Database 10g and onwards) introduced a

sophisticated self-managing database that automatically monitors, adapts, as well

as attempts to repair itself (Kumar, 2006). Oracle 10g introduced a sophisticated

self-management infrastructure that allowed the database to learn about itself and

use this information to adapt to workload or to automatically opt for a selection of

potential problems (Kumar, 2006). The system can adapt to changes (with specific

events and guidelines) and make adjustments or tweaks that it believes will

improve its own operation(s).

Adopting new software systems can sometimes promise reduced service desk

costs, which was one market strategy for Windows Vista. Based on TAP

participant experience, organisations that adopt Windows Vista will save an

average of $11 (which is factored as 8%) per PC in service desk-related IT labour

costs/time, when compared to Windows XP SP2
19

 (service pack 2). According to

IDC research, TAP participants experienced fewer calls to the service desk, which

is believed to be most likely related to the improvements in the reliability and

19 SP1 and SP2: Naming conventions reflection with service pack is being used with the software

to patch bugs and faults.

 55

security features, and the self-healing capabilities built into Windows Vista

(Gillen, et al., 2006). But a certain percentage of these may also be down to fresh

installs of the operating system on the PCs, as Windows is notorious in becoming

more unstable the longer it is on a machine. This is a particular problem that

historically meant people needed to rebuild the windows machines at least every

six months (or so), by wiping the operating system and re-installing a fresh copy,

otherwise they would be forced to run a computer that operates slower and less

reliably than the machine could do if they opted to re-install windows. If the SQL

server database was integrated (using standards) with the healing abilities of the

hardware, both could operate in conjunction with each other as well as be aware

of what effect their actions are undertaking on items within the system other than

just its own application. People with limited technology training should be able to

manage complex systems, so reducing operational costs. It also opens up the

possibility for those with non-technical expertise to manage systems according to

policies and goals that are associated with non-technical aspects of the business

(Kandogan, et al., 2008). Policies also provide an automation benefit that could

improve the performance of current system administrators, enabling them to

manage more systems at once, perform configurations faster and with fewer

errors, catch system problems sooner, and reduce repetitive tasks (Kephart et al.,

2003). Administrators must have a mental model of what the policies will do in a

given situation to deploy them effectively. In this sense, the representation of the

policies will be critical for them to be understood and used (Kandogan, et al.,

2008). The human administrator may either forget or never learn how the system

actually works, or simply not have a clear understanding of how efficiently it

should operate (Kandogan, et al., 2008). The administrator with sufficient

experience would be prone to lose skills through lack of use and the new

administrator may never have the need to learn the skills in the first place. Thus

the adequate skill set would be non-existent or unavailable to deal with an issue

when the computer administrator fails to deal or is not operating correctly. One

could argue this has little difference with today’s “lean
20

” IT teams, where one

administrator has the skills to deal with databases while another deals with

networks, neither are cross-trained and are unable to step into different roles. This

20 Lean: A process improvement discipline.

 56

is true, as modern systems are more complex. But with systems becoming more

distributed over time, the modern administrator needs to be more skilled to be

more effective. Single domain skill sets are no longer sufficient.

When designing and coding any software with self-healing or self-management

abilities’ it is important to be aware of the foundations and designs adopted within

other self-healing agents/engines.

The ability to dynamically repair a system at runtime based on its architecture

requires several capabilities:

1. The ability to describe the current architecture of the system.

2. The ability to express an arbitrary change to that architecture

that will serve as a repair plan.

3. The ability to analyse the result of the repair to gain confidence

that the change is itself valid.

4. The ability to execute the repair plan on a running system

without re-starting the system.” (Dashofy et al., 2002).

2.8 Learning from non-computer systems.

As mentioned, the ACI believes one can learn a lot from how the human body

manages and heals itself. The human autonomic system controls functions of the

body without conscious actions by the human themselves. It can heal, react to

changes in temperature or to external threats, and control different systems

through adapting to change. It does all of this automatically, each separate system

interacting and reacting to the others’ needs. This model is what the ACI is trying

to achieve, by applying the various elements of the human autonomic system to

computer components such as databases, hardware and middleware. This defines

the ability to control them without external (human) intervention.

 57

Some modern software monitoring solutions offer the ability to monitor elements

of systems. Often these offer a selection of “closed loops” (Herrmann, 2005)

software checks that fire at time intervals, checking and alerting specific issues as

they arise. If an issue arises, the human is alerted and the software does its task. It

is simple but effective. These solutions go some way to aiding with managing

complex systems. But, what if rather than alert, they drew on previous knowledge

for the issue and carried out pre-defined actions to fix the problem? This is the

question that will be investigated in this research project. Working in much the

same way as a human, the system will fix only what it has the knowledge to

repair; when it does not have the ability, it asks for help and draws on the human

element to intervene. This works much the same as humans; when they cannot

identify a problem or repair it, they need to seek further knowledge or help from a

third party.

2.9 Self-healing and learning from experience

Statistical models of large networked systems will let autonomic elements or

systems detect or predict overall performance problems from a stream of sensor

data from individual devices. At long time scales, during which the configuration

of the system changes, we seek methods that automate the aggregation of

statistical variables to reduce the dimensionality of the problem to a size that is

amenable to adaptive learning and optimisation techniques that operate on shorter

timescales (Kephart et al., 2003). Self-healing can only be successful if it is both

aware of its environment as well as having the ability to adapt and draw from

knowledge. The only way to gather this type of information is through calibration

and execution within the same system environment for a defined time period.

Many off-the-shelf monitoring solutions such as Quest Software’s Foglight and

IWatch products, provide “canned” monitoring elements that will monitor defined

elements of the system and alert on an issue when the elements operate outside the

defined thresholds. These definitions would only be accurate and effective if run

under a system during their design and conception stages, gathering information

and data on what can go wrong and what needs to be alerted on. S.H.A.D.E. was

 58

been designed in much the same way; it has been operationally gathering data on

system changes during different phases of development. S.H.A.D.E. defined the

most common errors through its own use, allowed for designed watches and

proposed heals to be constructed during this development time.

 59

Chapter 3: Materials and methods used to

design and build the healing engine.

 60

3.1 Introduction

The approach outlined in this section is to detect and heal faults is based on an

Oracle database. Oracle 9i RDBMS enterprise edition running on Windows

servers is the platform of choice because of system/server availabilities and

administrator experience on the platform. Funding would have been required to

construct a Linux/Oracle environment for the experiments. The Windows

environment was not only fully functional, but was in daily use in a real-world

environment, which allowed for the introduction of faults and ill-health through

normal system usage. The laboratory systems were also accessible in and out of

standard working hours, allowing for queries and further development from either

a local or remote workstation.

3.2 Defining health and repairs

The distinction between "healthy" and "broken" is often confused and is often

indistinct, but in most cases can be greatly simplified by the statement: if a system

is not operational, it is broken. This, however, is often not the case. If the system

is up but not able to process anything or less than it was designed to do, isn’t it

still broken? This is where the entire “problem” of defining health starts and

increases the time required to effectively design the engine to detect and repair

faults. To a certain degree, it is a matter of opinion or subjective, but is also a

matter of need. If the system performed to your satisfaction yesterday, it should in

theory be able to repeat the same operation at the same speed a finite number of

times. If it can’t, it is not 100% healthy. But often (unfortunately), this satisfaction

of performance speed is often tarnished by inaccurate comparisons and

expectations. What people recall and expect are often very different to what

actually happened in real time. These situations or realities can further divide the

opinions and thus working relationships of the end-user with the system

administrators.

 61

Hence the initial problem was defining what could cause a system to operate

ineffectively and in a state of reduced health. In order to build the initial designs

for the engine, a full of list of potential system faults was drawn up. This list was

based on a collection of 3
rd

 party products combined with the experience of a

database administrator. The list became of a collection of the top faults for a

database system as a complete system. A listing of the elements that were classed

as those that could not just lead to system downtime or faults, but also the

elements that could cause the system to slow down. This approach was adopted

based on findings in the literary review, to not just having the administrator’s view

of what causes a fault, but also the end-user.

3.3 Overall Research Strategy

To gain enough knowledge to build a software engine that can help reduce the

need for human administrator interaction with a database system, by investigating

success in self-healing computing to gain a better understanding of what can

work. The final S.H.A.D.E. engine was designed with expandability in mind,

allowing it to develop beyond this research paper and be used as a software

solution for database management (with future builds).

Initially, a wide selection of possible options was selected that would all be

considered options that could be used in a system to detect and fix errors within a

database system. Any of these options that could be realistically designed and

programmed with the required timeframe built into the system were possible. Any

options that were not possible or posed too much of a potential risk were listed as

potential future features but not introduced into the S.H.A.D.E. engine. Any of

these options not introduced can be investigated and attempted in later builds of

the system (unless listed within this document as not feasible).

3.4 Human vs. Computer: choosing the best element to use

Humans, although better at drawing on experience and intelligence (for the

present time at least). are however more prone to distraction and outside stimuli.

 62

Humans are not limited to work responsibilities and operations the same as

computers. Humans also get tired and work in shift patterns, suffer from stress and

fatigue, can also make mistakes and have to be trusted. Computers can be

configured to work 24/7 (fault and breakdown dependent) without distractions

from the outside world and other elements. Hence, there is a trade-off in

advantages and disadvantages from human to computer monitoring

administrators.

In stressful, complex, dynamic situations, the element of time criticality is one of

the most distinctive features of decision-making (O’Hare, 1992). Stress and lack

of time can increase the chances of making a mistake or choosing the wrong

approach. The RPD model may provide an explanation as to why military

commanders are able to make decisions faster than what would be considered

normal using the rational choice model. RPD focuses on assessing the situation

rather than considering multiple courses of action. More effort is said to be

expended on understanding and assessing the situation, which results in a

reasonably good course of action to take. In this way, the decision-maker does not

generate a list of options; they make a decision and act upon it as soon as the

minimum information is acquired (Daly, 2002).

Not only are humans affected by overload and stress, but there is also the

distraction of lack of concentration during times of low workloads. Humans are

also distracted by other elements of their life outside of their working

environment. People do make mistakes, despite elaborate training and precautions,

especially in time of stress and crisis (Borning, 1987); we were specifically

interested in evaluating performance changes to high workload events as a

function of the operator alertness state that preceded those events. If the

availability of cognitive resources was a function of operator alertness during

work under-load, then task performance should be directly related to measures of

the operator alertness state during these under-load periods. In particular, higher

rates of performance errors would be related to lower levels of pre-task alertness,

as operators failed to attend to task components that they could normally handle

(Murray, 1997). In other words, boredom can also lead to mistakes, much the

same as over-working a person. In April 2006, Jupiter Research designed and

 63

fielded a survey to online consumers selected randomly from the Ipsos US online

consumer panel. A total of 1,058 individuals responded to the survey.

Respondents were asked approximately 15 closed-ended questions about their

behaviours, attitudes and preferences as they relate to buying and researching

products and services online. Respondents received an e-mail invitation to

participate in the survey with an attached URL linked to the Web-based survey

form. The samples were carefully balanced by a series of demographic and

behavioural characteristics to ensure that they were representative of the online

population (Jupiter Research, 2006).

With most transaction-based systems, slow response translates into loss of

income, because frustrated users look elsewhere because of slow transactions.

Each shopper type also had expected response time thresholds; longer delays

resulted in the shopper leaving the site without submitting further requests, which

resulted in missed sales and dissatisfied customers.” (Kandogan, et al., 2008).

Shoppers are likely to abandon a website if it takes longer than four seconds to

load, a survey suggests (Jupiter Research, 2006). Hence people are getting

frequently less patient with the speed of technology, expecting systems to run

efficiently all the time. Roughly 75 percent of online shoppers who experience a

site that freezes or crashes, is too slow to render, or involves a convoluted check-

out process would no longer buy from that site (Jupiter Research, 2006). “Thirty-

three percent of consumers shopping via a broadband connection will wait no

more than four seconds for a Web page to render.” (Jupiter Research, 2006).

“Forty-six percent of online shoppers insist on a rapid check-out process, while 40

percent stated that quick page loading is critical to their loyalty.” (Jupiter

Research, 2006)

For retail websites, this basically translates into, you will lose customers if your

site and systems are not optimised to operate quickly. People don’t care or should

care about system loads, the number of transactions you are dealing with. People

are basically impatient and want everything to be easy and quick. If you fail to

perform to their expectations, they will go elsewhere for their business; in much

the same way as bargain hunters, people as consumers don’t like to waste their

time. Hence systems need to deliver a steady and constant level of operation. A

 64

system that slows operations to the point of delaying transactions as a result of

overload is not adequate in today’s world. As most of the time this occurs because

the load increases to high for a system to cope, it hastens sufficient resources to

deal with demand. This basically translates into not be able to cope well enough

during its busiest times, when it could be making even more sales, it is in fact,

risking losing those sales.

Fig 12.0: Retail website performance (Jupiter Research, 2006).

Just as the human element can make mistakes and thus affect the performance of a

system (if involved in the running administration of such), humans also have a

short attention span and low tolerance to boredom. Humans simply expect too

much within modern times because they are exposed to so much more through

media and computer use. They expect things to work first time and run at the same

speed. The human operator has no need to understand the inner workings of a

computer system (although often they are expected to); if a system slows, they

only need to know it is failing to operate as quickly as it should. When they are

 65

dealing with on-line services, this can lead to loss of business and the operator

will simply get bored and frustrated and move to the next website. This is much

the same as a shopper moving to another store because the service is poor or slow.

If they are queuing too long, the shop-owner runs the risk of losing their business.

Hence the need for rapid web applications and online shop services isn’t anything

new, it just requires computer systems that keep themselves running at optimal

levels of operations.

The human element of any system is thus more prone to both internal and external

stimuli. A human is affected by other elements outside of the system. Humans

have emotions and are dealing with other “things”, such as their own lives and

memories. How happy a person is (i.e. not under stress or presently dealing with

anything traumatic) can affect how effective that human is in their operations. The

performance of the system can also affect the human. If the system is operating

poorly, it can lead to frustration and even stress, as the human struggles to get

their work done. A computer component would not be affected in the same way.

On November 9, 1979, a test tape containing simulated attack data, used to test the

missile warning system, was fed into a NORAD computer, which through human

error was connected to the operational missile alert system. During the ensuing

six-minute alert, ten tactical fighter aircraft were launched from bases in the

northern United States and Canada (Borning, 1987). Humans get tired, bored and

affected by time of day, amount of time spent working without breaks and even

how their home livess are affecting them (how much sleep they are getting, do

they have addictions?). The accident at Three Mile Island
21

 occurred because the

operators adhered rigidly to a picture of the system that did not tally with the facts.

This was due to “vigilance fluctuation” The accident at Three Mile Island took

place about 4:00 a.m. It is well known that mental alertness is associated with the

diurnal rhythm which characterises most physiological processes. This rhythm

adapts slowly to shifts in the pattern of sleeping and waking hours. When

someone changes to the night shift, his adrenaline secretion –(important for

alertness),- is at the bottom of its daily rhythm during working hours and this

21

 Three Mile Island: Nuclear power plant in the United States that suffered a

partial meltdown due to an accident in 1979

 66

safety is seriously threatened when an operator on the graveyard shift is “out of

step” with his daily rhythm. A person/worker, therefore, cannot be expected to

function at peak level during a crisis (Frankenhaeuser, 1997)

Human performance is a function of willingness or volitional control, capacity,

and opportunities. Research into vigilance research shows that humans cannot

sustain attention for long periods of time. There is evidence that this negative

degradation can be counteracted with exterior help for a certain amount of time.

But a performance degradation over time is inevitable even with the most

motivated operators (Wellbrink, 2003) Hence, any attempt to remove or replace

human operations will reduce the risk of mistake or error due to stress, long

working hours, distraction, fatigue or any other external or internal event or

stimuli that can possibly affect the human element within a human/computer

system operation.

A completely self-managing database will help to change the way enterprise data

centres can and will be managed in the future. The automation of routine

administrative tasks will enable DBAs to concentrate their time and effort on

managing the end-user experience rather than supporting technology and simply

“keeping the lights on” (Kumar, 2006). “However, IT systems exhibit different

behavioural characteristics and pose different constraints on human operators. For

example, nuclear plant operators deal mostly with continuous variables, such as

fuel level and temperature, whereas IT system administrators control mostly

discrete variables, such as communication port numbers. Nuclear plants are built

once for a specific context, whereas IT systems are meant to operate under a wide

spectrum of conditions, as configurations and workloads change over time as

business demands change.” (Kandogan, et al., 2008). Hence, IT task monitoring is

more demanding and subject to constant change. So the operator needs to adapt to

change quickly or risk failing.

Just how intelligent or smart will computers get? Can we ever expect artificial

intelligence to ever be advanced enough to outperform its human counterpart? In

the turning point of man versus machine, the 1997 version of Deep Blue -- a

 67

chess-playing computer designed at IBM's Thomas J. Watson Research Centre --

defeated human world chess champion Garry Kasparov by 3.5 games to 2.5. The

power behind IBM Deep Blue is an IBM RS/6000 SP parallel supercomputer

equipped with chess-specific co-processors. The Deep Blue system is capable of

examining 200 million moves per second or 50 billion positions in the three

minutes nominally allotted for a single move in a chess game (IBM, 1997). One

could argue that the computer had an unfair advantage as it was designed to play

and thus win at chess. But the computer was built by a man playing a game

originally designed by a man, hence the other argument would be the computer

was playing within a human arena, thus it is the element at a disadvantage. But

would Deep Blue deal with unknown entities or external anomalies? Of course

not, it was running its primary programming; playing chess. So computers can

better deal with single, clear and concise operations. . So was Deep Blue a

genuine advance in artificial intelligence or an excellent public relations exercise?

Well, a bit of both really. But it does show that a computer with enough power

and proper design can beat a human being at their own game, literally. Kasparov

stated that the computer did make a “human-like” error during one of the games

and demanded a re-match, but IBM declined and retired Deep Blue. Should

designers try to make artificial intelligence by duplicating how humans do it, or

instead try to exploit the particular strengths of machines? Humans are slow but

exquisitely good at pattern recognition and strategy; computers, on the other hand,

are extremely fast and have superb memories but are annoyingly poor at pattern

recognition and complex strategy. Kasparov can make roughly two moves per

second; Deep Blue has special-purpose hardware that enables it to calculate nearly

a quarter of a billion chess positions per second (Stork, 1998).

Controlled psychological experiments have shown that human chess masters are

far more accurate than non-chess players at remembering chess board positions

taken from real games, where the placement of pieces arose in strategic play and

represented meaningful tactical positions. However, these masters were no better

than non-chess players at memorising random arrangements of pieces. Chess

masters remember positions based on certain patterns, alignments and structure

whereas, of course, computers have no difficulty remembering -- storing -- all the

games or random arrangements ever made and need no "meaning" in the

 68

placements (Stork, 1998). There are other differences, too. Humans are also

affected and driven by emotions. Computers don't get tired, and don't have "bad"

days. But they do break down (Stork, 1998). It’s not to say when you have a

human involved that in fact there is a “weak link” within the system; on the

contrary, humans can adapt better to situations and changes, can draw on

knowledge and make decisions far better than present computer system

equivalents. But humans are not better at repetitive, mundane tasks over long

working periods. During times where boredom, fatigue and stress can interfere

with their operations and decision-making processes. Human errors play a major

role in accidents such as car or airplane crashes. Performance effectiveness

depends on several factors which are described in the next section (Wellbrink,

2003) Hence, when a human is “at the wheel”, designers must be aware of their

limitations.

3.5 Building the S.H.A.D.E engine – from first to final build.

Before any coding could be undertaken, present systems in the marketplace

needed to be looked at in order to gain both an understanding of what was needed

as well as what was already in place. The major challenge facing IT managers in

the 21
st
 century is an increased need for system availability. A simple enough

challenge, but with the challenge of reducing costs (normally through manpower);

the challenge can put a strain on any support staff. S.H.A.D.E. can help cut costs

by reducing the manual workload of the administrator without reducing the

quality of service, effectively allowing the administrator to manage more systems

by not being on the “fire fighting” mode continuously. A database administrator’s

time is often balanced amongst the chief operations of: tuning, space management

and back-up/recovery operations. According to a survey conducted by Oracle,

DBAs typically spend about 55% of their time performing these activities (Kumar,

2006). Hence, any time recovered by automating these tasks, makes better use of

resources as well as saving time and money.

 69

Fig 13.0: Breakdown of DBA time (figures taken from same survey) (Kumar,

2006).

Oracle’s goal with 10g (release 2) was to build in more self-management options

to tackle this very issue. These options are geared towards the database’s

operations only. And not all features are available “out of the packet”. You must

further invest in their performance packs, adding expense into each database that

you use the options on. A lot of new enhancements to undo management make it

easier to use than ever. The enhancements are based on a self-learning system that

can automatically size an undo tablespace
22

, dynamically tune undo retention, and

provide fast ramp-up during sudden bursts of activity (Ganesh, et al., 2005).

“Space Management functionality in Oracle Database 10g is a key contributor in

making it a self-managing database. It is designed to have self-awareness and self-

learning built into the core database engine. That, combined with intuitive,

integrated, uniform and easy-to-use Enterprise Manager User interface, makes the

task of space management in the Oracle Database 10g, significantly easier and

more powerful than ever.” (Ganesh, et al., 2005). Building upon the data captured

in AWR Oracle Database 10g includes the Automatic Database Diagnostic

Monitor (ADDM), a holistic self-diagnostic engine built right into the database.

Using a medical analogy, using ADDM is very much like visiting your General

Practitioner. It looks at the whole system, gives a diagnosis and then either

22 Tablespace: A storage location where data underlying database objects can be stored.

 70

suggests treatment itself or it may refer you to specialists, other 10g advisory

components such as the SQL tuning advisor (Wood, et al., 2006).

The performance packs and said options are also only compatible with the more

expensive database flavour: Enterprise Edition. Hence, expense on top of licence

expense. This is simply a backwards business strategy in a modern world. But

companies like Oracle measure success of their level of growth. “Oracle

Diagnostic pack 10g includes a self-diagnostic engine built right into the Oracle

Database 10g Kernel, called the Automatic Database Diagnostic Monitor

(ADDM). This is a revolutionary, first-of-its-kind performance self-diagnostic

solution that enables the Oracle 10g Database to automatically diagnose its

performance problems, thereby completely liberating administrators from this

complex and arduous task.” (Oracle, 2005). This translates into ‘We know of a

better way that could be included with our database engine but rather than

enhance our primary product to the point that it will save you money and be easier

to manage, we are instead going to package it as a separate product that will insure

further licence costs, if you indeed want to get the full potential from the product

you’ve already paid for’. A bit cynical perhaps, but factual. However, this is

typical of many of Oracle’s licence models. They design strong products, but have

nightmare licence models to administrator and budget for. They encourage their

customers to play it “cheaper” and not make use of their database products. A

company can reduce costs by bundling their databases onto single servers with

low amount of CPUs to save money. But the flip side is that they are using an

advanced system without enough resources to drive it sufficiently. Considering

one of the main goals of IT groups these days is to reduce costs and follow a lean

initiate, this doesn’t mould with a partnership mentality that Oracle claim they

want.

There are two aspects to Oracle’s manageability strategy. Firstly, it seeks to make

each of Oracle’s products, particularly the database, as self-managing as possible

so that they require minimal manual administration (Kumar, 2006). Self-

management mechanisms exploit different approaches to execute a set of common

steps, depending on goals and application domain.” (Tosi, 2004). The Oracle 10g

Database is a step towards Oracle’s vision of creating a self-aware, self-leaning

 71

and completely self-managing database. A large development effort was put into

simplifying every aspect of the Oracle Database 10g administration in order to

serve the dual objective of enhancing administrator productivity and helping

customers reduce their operational cost by 50% (Kumar, 2006).

Fig 14.0: Feedback loops in self-managed systems (Tosi, 2004).

• Monitoring runs rules defined in a knowledge base (that supports decision-

making at other phases) and checks if there is any inconsistency between

knowledge and the current system behaviour. It provides statistical analysis

related to system performances such as CPU usage, memory usage processes in

execution or network latency. Dynamic data must be compared with standard data

in order to determine if the actual system behaviour is not consistent with normal

behaviour. This module must catch exceptions raised by system modules and also

it must provide analysis related to the environment where the system is running.

Monitoring mechanisms can observe either the behaviour of the system (internal

monitoring) or the behaviour of the operating environment (external monitoring);

• Interpretation analyses data collected by monitor and verifies if there is

knowledge related to the problem report interrogating knowledge-based module.

If an appropriate problem report was found, the detection module tries to retrieve

the problem resolution record. If a knowledge-based module does not contain a

 72

report for the specific problem, the detection module updates knowledge of

knowledge-based module, adding the report through learning module;

• Diagnosis tries to find the causes of the problem and it verifies that applied

solutions can fix the problem;

• Adaptation is a problem resolution module that tries to execute problem

resolution cycle, starting from the solution record identified by detection module.

This requires mechanisms to dynamically plan deploy and enact changes, to

remove either the diagnosed faults or their effects;

• Learning creates and updates the knowledge base, acquiring new knowledge

learned from data collected by the monitor activity (Tosi, 2004).

Fig 15.0: The Oracle 10g infrastructure (Oracle Corporation 2009).

Oracle lists the main “common” problems affecting database performance as:

 73

 CPU bottlenecks.

 Poor connection management.

 Excessive parsing
23

.

 Lock contention.

 IO capacity.

 Under-sizing of Oracle memory structures e.g. PGA, buffer cache, log

buffer.

 High load SQL statements.

 High PL/SQL and Java time.

 High checkpoint load and cause (Kumar, 2006).

Other database products have also had some success in their move towards

autonomic computing. Database systems, in particular, have been an early success

within the AC initiative due to the evolution of the DBMS towards more complex

features and a resulting move towards self-tuning. SMART DB2 provides for the

reduction of human intervention (Sterritt, 2005). Where Oracle performance

packs are limited to database resources only, S.H.A.D.E. will address these issues

along with other database and operating system faults in a holistic design. Time

will tell how effectively these changes in Oracle are working in the field. On one

hand, they are masking complexity by making it easier for administrators to

install, manage and recover the database. This, if effective, will save time and thus

money. But on the other hand, with rewrites of optimisers and other features,

migrating older systems may require more flexibility or risk expensive rewrites

and thus validations. “The rule-based optimiser (RBO) is the archaic optimiser

mode from the earliest releases of Oracle Database. The rule-based optimiser has

not been updated in nearly a decade and is not recommended for production use

23 Parsing: One of the components in an interpreter or compiler, which checks for correct syntax

and builds a data structure.

 74

because the RBO does not support any new features of Oracle since 1994 (such as

bitmap indexes, table partitions, and function-based indexes).” (Burleson, 2001).

Here, Oracle states an older “flexible” optimiser option is no longer available and

will be no longer supported. This could possibly make it easier for Oracle to

support single versions and enhance with less complexity. But it could seriously

jeopardise backwards compatibility, hence simplicity should not be introduced at

the expensive of flexibility. Computer information systems are becoming more

feature-driven and complex with each passing year. “IT components produced by

high-tech companies over the past decades are so complex that IT professionals

are challenged to effectively operate a stable IT infrastructure” (IBM, 2006).

When asked about the top five IT challenges facing their organisations in 2006

(Figure 14) (BMC, 2006), the responses were:

 Aligning IT with business objectives (45%)

 Cutting IT costs (43%)

 Improving the availability of IT resources (36%)

 Simplifying the administration of IT assets (35 %)

 Diagnosing system problems more quickly (31%)

 75

Fig 16.0: Top IT challenges (BMC, 2006).

Approving the cost and availability are two of the main concerns of modern IT

business. Cutting cost cannot be achieved simply by reduction of head count as

this typically just strains staff even further, putting availability at greater risk.

The best approach is to reduce what the staff is doing on a daily basis, but

minimising the complexity of their jobs. This helps to make better use of these

valuable limited resources (people and time) to work on improving processes,

rather than reacting to them. When alerting applications are in place, the typical

scenario is an agent-based application, running checks and alerting the

administrator staff. The administrators then react as they see fit. If they are

bombarded with alerts and issues, they have to prioritise on the fly. This is based

on skill and experience regarding the issue.

However, this is not as straightforward as it appears. Distinguishing between a

faulty system and a system that's in a sub-optimal state isn't always easy

(Hermann, et al., 2005). With S.H.A.D.E., the objective is to minimise the

 76

number of tasks the administrator has to manually fix, but also repairing common

issues. This effectively frees up the administrator more to work on other tasks, as

well as making it possible to administer more physical systems effectively.

Table 2.0: BMC: Sample Questionnaire (Armstrong, 2005).

The sample questions (formatted by BMC software) clearly define cost as a clear

deciding factor in the modern business. But with any “improvement” changes,

quality cannot come a clear second. It is simply to introduce a low-cost solution

that “may” provide improved services. But unless the implementation and

execution is measured in some form, how can this be accurately measured? For

this reason alone, S.H.A.D.E. will be measured not only on its apparent success

rates but also against another system with no solution in place. This will give an

accurate metric not just on what the system heals, but also answer the question of

whether it is actually needed. S.H.A.D.E. will also measure and store statistics that

will all measure events that are not configured to be healed. Capturing the most

common issues will allow a predictive model to be built, which will allow the

highest problems to be captured and built into future releases of the engine.

S.H.A.D.E. gathers faults and issues in much the same fashion as Google’s system

health infrastructure. Although the Google system is responsible for a much larger

farm of servers (and a different operating platform), the key structure of

S.H.A.D.E. is very similar in design. “It consists of a data collection layer, a

distributed repository and an analysis framework. The collection layer is

 77

responsible for getting information from each of thousands of individual servers

into a centralised repository” (Pinheiro, et al., 2007).

The Google system does operate with Google’s own advanced technology such as

Bigtable, Mapreduce and Google file system (Pinheiro, et al., 2007). S.H.A.D.E.,

on the other hand, is designed as a stand-alone system using its standard operating

system/database features to manage its operations. Related to the concern of

coupling between the repair engine and the target system are issues of the

interaction between the two and its impact on the target system (Griffith, et al.,

2006).

• “How does the repair engine affect the repair of the target system? (Griffith, et

al., 2006).

•“What is the scope of the repair actions that can be performed; for example, can

we perform repairs at the granularity of entire programs, sub-systems,

components, classes, methods or statements? Further, can we add, remove, update,

replace or verify the consistency of elements at the same granularity? (Griffith, et

al., 2006).

• What is the impact of the repair engine on the performance of the target system

when repairs are/are not being performed? (Griffith, et al., 2006).

• How do we control and co-ordinate the interaction between the repair engine and

the target application with respect to the timing of repair actions, given that

application consistency must be preserved? (Griffith, et al., 2006).

Our problem with software doesn’t stop with faults and bugs, but not all software

even does what it was designed to do. There is little point building more advanced

features into software systems, if the core elements don’t work 100% of the time

and to specification.

 78

According to AusCERT, Australia’s Computer Emergency Response Team, the

two most popular and deployed AV products fail to prevent 80% of new viruses.

(Bloor, 2007). The cost of this type of performance failing can be quite staggering.

Table 3.0: The costs of mass viruses (as calculated by Computer Economics)

(Bloor, 2007).

Year Virus Cost

1999 Melissa ($1.5 bn)

2000 I Love You ($8.75 bn)

2001 Code Red et al ($5.5 bn)

2002 Klez et al ($1.65 bn)

2003 Slammer et al ($4 bn)

2004 MyDoom ($4 bn)

Hence, money is not just lost through work time-wasted patching, updating and

basically getting products to work as they should, but money is lost because

programs are failing to do what they are designed to do. Virus outages and

security flaws are becoming a serious issue with each and every computer user on

the planet. Considering most of us are interconnected through use of the internet

and faster broadband speeds, faults have the increased ability to cause even

greater damage and thus incur much more expense.

The Windows platform was chosen at the conception stage for three reasons:

1) Access to Windows-based servers and software on a 24/7 basis within a

test environment used by real people.

2) To build my own personal knowledge and experience of the Oracle

RDMS on the Windows platform.

3) To further enhance knowledge developed as part of a BSc project in

which a fully functional mobile monitoring system was developed for

the Oracle/Windows platform (Ryan, 2005).

 79

The Self-Healing Autonomic Database Engine (S.H.A.D.E.) runs as a costumed

coded agent that is housed on a separate server running as a Windows service.

This agent polls the required servers at defined intervals using custom “watches”.

Each of the watches are individually defined elements of the server operating

system and database, which are checked and healed when and if issues arise. Each

watch has its own autonomic features and is concerned with its own system

elements. The system design needed to incorporate multiple sub-checks for certain

elements to ensure the S.H.A.D.E. engine itself does not cause issues as a result of

its own actions (Tesauro et al., 2004). Housing the engine on its own server,

allows it to monitor multiple systems, while maintaining a low-level footprint on

the systems it is watching and healing.

To conduct an effective experiment, two test database servers were needed (Test

Server 1 and Test Server 2) with actual “real” daily usage and users. Test Server 1

has multiple S.H.A.D.E. monitoring threads running against various collection

elements but has no fixes (either automatic or manual) as undertaken within the

application (See Figure 15.0). Test Server 2 also has multiple S.H.A.D.E.

monitoring threads running against its resources, but will also have healing

elements incorporated within it (See Figure 15.0). The S.H.A.D.E. Server (as

illustrated in Figure 15.0) runs the S.H.A.D.E. service while probing the other two

test systems at configured intervals. The service runs from a parameterised coding

configuration with an Oracle (10g) database. This allows new “watches” to be

incorporated as well as altered without subsequent code changes. The S.H.A.D.E

engine also stores results in the same repository, allowing for historical data to be

queried whenever required.

 80

Figure 17.0: S.H.A.D.E. Process Flow

The self-healing engine is called S.H.A.D.E. (Self-Healing Autonomic Database

Engine). S.H.A.D.E.’s primary purpose is to monitor, alert and heal (where viable)

events that occur on a database server in relation to operating system and database

issues.

The S.H.A.D.E. engine runs on a Windows platform, running an Oracle 9i

RDBMS. This allows extensive database administrator experience to be built into

the healing engine, rather than focusing on a standard file server. The test systems

do not house any form of mission critical data. The platform also allows the

reduction in overall permutations that could possibly contaminate the experiment

through lack of knowledge of working with an unfamiliar platform. To achieve

self-healing and aid a system to run itself, the engine must be designed with solid

awareness of the platform it will be performing on, otherwise it would run the risk

of introducing other factors that could potentially harm the system (through

 81

operation using inadequate skills) (IBM, 2001). This is viewed as operating in a

similar fashion to a human administrator interfacing with a computer system. It

would not be practical or responsible to expect a Linux administrator to be an

administrator over another system platform without building experience (and

confidence) in the new platform first. Experience reduces risk and enhances the

level of success (Ryan, et al., 2008).

A system cannot monitor what it does not know exists, or control specific points if

its domain of control remains undefined (IBM, 2001). As well as awareness,

another key component of any self-healing engine is the engine’s ability to adapt

to changes within the system and system components. A fire and forget design has

the potential to cause greater harm to the system, by simply reacting to alerts and

making changes without verifying if an element is actually fixed, or if the said fix

has caused further problems (Ryan, et al., 2008). One example of this is memory

management within database system. Assigning more memory to a database’s

cache could potentially yield benefits by the amount of information the system

needs to read directly from the “slower than memory” disk(s), hence increasing

the systems amount of disk I/O. However, if there is not enough sufficient

memory for the operating system, more disk I/O will occur (through system

trashing) and could potentially reduce performance and stability further than

before the repair action was taken. Each and every potential cause and effect

needs to be analysed and built into the engine to minimise if not eliminate risk

with every action undertaken (Ryan et al., 2008). The ability to adapt is critical for

self-healing systems (Kephart et al., 2003).

The S.H.A.D.E. engine was developed on a .Net
24

 platform, making use of Client

side JAVA to allow the agent to be managed (from a user standpoint) from a

standard web browser with the applications configuration being built upon an

Oracle repository database. This allows S.H.A.D.E. to operate using Oracle, as

well as monitor/heal Oracle Databases. S.H.A.D.E. needs to be able to support

repair on the test system during runtime operations. To do such, it requires several

“abilities” to be built into the engine.

24 .NET: A software framework running on Microsoft Windows operating systems, which includes

a large library of coded solutions to common programming problems.

 82

1. The ability to interrogate its own environments.

2. The ability to express an arbitrary change to that architecture that will serve as a

repair plan.

3. The ability to analyse the result of the repair to gain confidence that the change

is valid.

4. The ability to execute the repair plan on a running system without re-starting

the system (Dashofy et al., 2002).

The goal of the experiment is to investigate whether the self-healing agent being

proposed will have any impact on the level of human intervention required in the

administration of the monitored systems (Ryan, et al., 2008). “The goal of

autonomic computing is to create computing systems capable of managing

themselves to a far greater extent than they do today” (Tesauro et al., 2004).

The decision to monitor both a healing-enabled and non-healing-enabled systems

allows comparisons on resulting data between a system with self-healing and a

system without self-healing on similar platforms, as well as user loads over a

24x7x365
25

 operating period (the servers remain operational as faulted). The key

to measuring the experiment is the gathering of statistics and results for as many

operations as possible. The embedded watches are based on database

administrator experience over a ten-year period. Drawing on what can potentially

affect a system’s reliability (based on historical knowledge) and thus operational

capabilities. The healing elements were introduced only to the watches that could

be implemented with minimal risks associated. The test could have simply

focused on a reduced selection, but this would have required building a fault

injection mechanism to ensure failures occurred (at some point), which would

have meant the experiments were too staged and controlled, affecting the overall

result (good or bad). Each watch stores audit data regarding its own operations.

The system stores data on executions as well as problems diagnosed on the test

systems.

25 24x7x365: Represents 24 hours over 7 days a week, for 365 days of the year. It signifies being

online and available all the time.

 83

A simple heal operation can have several “possible” paths or potential decisions to

make to effectively complete its task at hand. This operation could also be

dependent on the Oracle version, operating system version or even the database

options in use. All could have an effect on the actual “possible” action one must

undertake to “heal” a possible error or fault (Ryan, et al., 2008). This clearly

shows some of the complexity regarding the decision-making process in

S.H.A.D.E. The human administrator would normally be familiar with every

element of the system and could make these decisions and changes with little

effort or verifications. If an administrators were working on a system that they

possibly had less exposure to and experience with, they would have to follow

similar steps to the S.H.A.D.E. operation outlined. Already having the experience

and the knowledge of the hardware/software/operating system layouts, allows

decisions to be made more quickly, sometimes without the need to check or

verify. But if they make an error, the results will be the same: performance

degrading or system halts. IBM states in its autonomic initiative: “initially,

healing responses taken by an autonomic system will follow rules generated by

human experts” (IBM, 2001).

The initial build of S.H.A.D.E was concerned with connectivity and monitoring

specific elements of the Oracle database system, selecting which elements would

be better suited for a self-healing engine.

Table 4.0: Initial list of proposed monitoring/healing elements

Element (Watch) Effect Heal Misc

CPU usage queue + Reduce CPU if peaks for

time period < 20 secs

Kill process if in list of

possible to prevent killing other

processes

Scale and graph

over time. Score

limits

Virtual memory usage Peak at 1.6 (standard)

2.6 PAE

Check for extended memory

usage and kill ghost sessions

Better to kill one

user session with

many ghosts than

errors with all

new sessions

Check for memory leaks Check for 4031 error

(leak)

Flush

Check shared pool for

fragmentation

Not enough continuous

free space to execute

SQL

Flush shared pool

High number of active

sessions (> 10%)

Caused by system

resources or lock

Check and kill deadlock, wait

for minute and repeat. Call

high CPU heal

Log sessions and

terminals –

possibly kill

 84

sessions when

large number for

one terminal

“ghost” sessions.

Network contention Check for response time

and % of network used

Check server for Network

Hogging processes

List of none

offenders – VNC

etc

Check event log for

ORA errors

 Alert only

Check alert log for ORA

errors

 Alert only

Backup check (1) Flag if any files “never backed

up” – if system not shut down

in one week. Generate a

backup script and backup

whole database to local disk

with most space

Backup check (2) If files not in backup mode for

time greater than 3 days – may

a copy of set of archive logs to

another disk volume.

Alert dba that

failsafe back ran

Stats check Slow response Generate stats for schema with

none – or too old – using

estimate for large tables

Check for corrupt blocks Count and exports

Schema protection Export schema only Protect database residing code

High number of sessions Keep track of average in table

– if greater than 10% average

run ghost session killer

Logged

Max sessions If close to max processes run

ghost session killer

Logged and not

to alert parameter

Disk I/O Set diskperf –y and

gather stats

Check disk I/O counters +

queue bottlenecks and other

processes using.

Alert (could

move)

Page file check Compare to amount of physical

memory on server and resize as

needed x 1.5 times

Large amount of invalid

objects

Database residing code

fails

Recompile objects and log

failures

Log objects

causing and alert

to dba if compile

fails

Datafile freespace < 10% Error if expands Set last file in set to auto

expand if not set and check

high water mark

Flag and log

Fragmented index Slow queries and

updates

Rebuild online Flag as issue

Extent failures Not enough space in

files

Check if file reaching 32 gb if

not and free disk space =

expand. If close create another

file (as naming of first)

Must alert the

Dba regarding

disk space,

database increase

and need for

backup changes.

Max number of extents Check if not locally managed –

if not check max extent and

only flag if within 20%

(increase max)

Alert DBA

 85

Hung sessions Check Oracle for hung sessions

hanging resources in deadlock

situation. If found use pid to

run orakill from server.

Alerted – as

wrong pid = dead

server

Blocking locks Free resource Kill blocking session if

blocking object > 10 minutes

Logged

Blocking ddl lock Timeout on object Kill offending session Logged

Open cursors < 5 % of

max cursors

Will cause a session

error

Increase open cursor

proportional in inifile

(remarked)

Flag DBA that

restart needed (if

alter system not

version

supported)

Objects in correct

tablespace

Errors and fragmentation

of system tablespace

Move objects if below certain

size (especially if in system)

Flag to dba

Alive status Uptime check If system up for less than 7

days gather alerts bundle and

run a health check

Send stats and

logs to dba

Manage alert and event

logs

Harder to read and may

lose alerts

Check size < megs, save to

back dir as date and flush old.

Keep specific ora- and system

alerts in repository table. Date

and time for historical analyze

of worst events

Alert dba of new

event with detail

and contents of

table in html

format.

Security check Lock none used

accounts

Check for list of accounts that

are required to remain locked –

lock if found open

Log dba

Pinning code Pin code to reduce

loading

Make a selection of most

frequently called packages and

pin as needed – set limit in

packages and pool usage

Log to DBA

Large sorts Monitor large sorts Shift users to different temp

file (create 2
nd

 if needed) with

large size to reduce usage and

fragmentation

Memory request failures Errors Resize pool, cache etc Flag to dba

Level of disk reading Too high Increase cache and flag sql

offenders

Log switch levels Too many per hour > 5 – than increase logs and

drop old < 5 decrease size to

insure more archiving and

easier recovery. If no switch in

an hour – force it.

Flag to dba

Check for new

datafiles/tablespaces

Possibly not in backup

scripts

(will be flagged In backup

check) – backup controlfile to

trace and copy trace file into

database repository – possible

to recreate with new files

Flag tables/files with

logging off

 If file not temp – turn on

logging for tablespace – if

objects needed – turn on

logging

Alert dba that a

fresh backup is

needed

Recommend tables for

rebuild

List tables that are

largest with most extents

and fragmentation

Flagged as rebuild candidates Flag dba

Monitor latch waits Internal locks Decrease cpu load, free lists in

key tables

Flag dba

 86

Expire old expire

accounts

SOX issues Insure account expired prior to

sysdate = actually displayed as

expired (logon once and fail)

Check archive log disk

for space

Prevent halt of database < 10 % - archive off archive

logs > % days to another drive

(even local c).

Alert dba

Cache monitors Contention in buffer

cache/library cache and

dictionary cache

If too big = shrink. If too small

= increase.

Alert dba

General memory health If free “physical

memory”

Check for indirect buffers =

increase if free space in

physical memory. If server

“paging”. Decrease element of

database that is most oversized

and produce minimal impact.

Gather info on top ten

processes using server memory

Alert dba of

shortage with

table of 10 ten

processes and

what database

elements

changed(if any)

Database sorting Sort area too big = large

amount of physical

memory that could be

used elsewhere

If sorting low and area-size too

high = reduce to conserve

server memory

* Continuous SQL

capture

Track SQL in play Capture running SQL with high

costs and low hit rates, along

with long running execution

times.

Alert and grade

with worst

offender first.

With time at top

and no of actual

executions.

Track top memory users

(inside and outside

database)

Largest memory

offenders

Resize if possible Alert dba

Track best times for

doing rebuilds

Keep track of time with

minimal system

operations

Rebuild and shift during these

times

Top HOT files Keep track of biggest

disk i/o

Track offenders and move if

possible

Flag dba

Sorts monitor % on disk and memory Resize as need – sort area. Disk

% to high increase sort_area

and sort_area_retained

Unbalanced index check Indexes on tables with

lot of deletes

Rebuild in maintenance

window.

Check health of disks Status on volumes If not healthy – flag as error

(or move objects?): run a

backup

Alert dba

Check for unrecoverable

objects

Objects set to no-

logging

Alter object to logging and

export object to disk

Flag DBA to do a

backup

Space monitoring Gather weekly row and

table sizes - gathered

after stats collected

Store in table and compare over

time.

Alert DBA of top

10 and when they

“should” run out

of space:

capacity planning

histogram. Graph

can show overall

increase per year

of data increases

and growth.

Snapshot Use oracle stats pack to

gather stats on overall

database at intervals

Query key elements and store

in historical table

Alert dba

 87

Fragmentation Check Datafiles (index

and tables) as well as

Operating system

fragmentation

Build overtime and move

objects in window

Alert when

fragmentation

reached

dangerous levels

%

High-water mark Identify space that can’t

be used

Move offending objects to new

locations

Alert dba of free

space that may

not be available

Hotspot identification Identify when system is

being hit the hardest and

by what

Change internal schedules if

running during hotspots

Alert dba with

graph of hotspots

on sql/active

sessions at time.

Top users Gather stats on job

users/jobs. Rows

processed, disk reads,

CPU usage and all

system consumption

Check if multiple user sessions

on single terminal – if so kill

user (oldest sessions). If batch

job “can it be better run at

different times”

Alert DBA

periodically of

users and times.

Who is affecting

system

performance and

thus health at

regular intervals.

Expected users Build a table of daily

users and i.p./terminals

Monitor new users. I.p. range =

alert

Not on domain = kill

Alert if users

may be a risk

One of the key design features of S.H.A.D.E was the ability to make changes

without continuously changing code. Hence, a considerable amount of the system

can be altered by changing database configurations for the system. This ability

saves time changing code to either add or remove features or to change and tweak

parameters and settings to better suit the running of the engine.

It was decided at an early stage that the system would need a user interface to

show present state and present conditions of what S.H.A.D.E is monitoring, rather

than querying the system log files. The user interface also contains options to

manually test and fire heals rather than waiting for the system to poll and

automatically execute changes.

 88

Fig 18.0: The user interface: S.H.A.D.E Alpha: Build 1.0 – Initial EUI

“Selectable”

Database

Systems

in the

“monitored

pool”

Active

watches –

set as

visible

within EUI

Name

Manual

heal

option:

Alpha

build

 89

Various technologies that combine to make up the S.H.A.D.E engine:

 Web services: The S.H.A.D.E engine is managed and monitored through a

standard web browser.

 Asp.net: Will be used to create the elements of S.H.A.D.E between the

web page and the agent – the middleware.

 Java/Javascript: Programming language used for websites and thus

useful in elements of S.H.A.D.E management and controls as well as

logging of data.

 Vb.net: Visual Studio.net 2005. Ideal platform for the engine, as

S.H.A.D.E will be monitoring within a native Windows server platform.

The Windows services and “is alive” components are coded under this

platform.

 Windows service: Windows 2000/2003 throughout. S.H.A.D.E agents

will all run as standard Windows services, running under basic system

accounts on the monitored database servers.

 Oracle: S.H.A.D.E repository stored in 10g Enterprise Database with

monitored systems running under 9i Enterprise. Some database-residing

code will be housed within the S.H.A.D.E repository in the form of PL-

SQL and SQL functions, triggers and procedures, allowing for easy

configuration changes by adding and changing database residing

parameters.

 HP DL380 (check version) servers. Twin processor stand-alone servers

with local storage, running windows 2000 within a Cisco Lan (TCP/IP).

Both systems are configured with local storage.

The second build of S.H.A.D.E enhance the” Abilities” to heal and alert potential

issues discovered on the test system. The engine was given the ability to retry

another option, rather than repeat the heal using the same code each time.

 90

Table 5.0: List of final watches with self-healing options (final build).

ID DESCRIPTION Fix #1

1 C Drive Space net and email alert to dba

2 D Drive Space net and email alert to dba

3 L Drive Space

Sample removal of unwanted

files - .

dmp files only

4 M Drive Space net and email alert to dba

5 N Drive Space net and email alert to dba

6 O Drive Space net and email alert to dba

7 P Drive Space net and email alert to dba

8 Q Drive Space

sample removal of unwanted

files - .

dmp files only

9 Memory Leaks (Oracle) net and email alert to dba

10 Open Cursors

set open cursor param to 500

(default + 100)

11 Processor Usage net and email alert to dba

12 Available Memory

Net stop selection of none

critical services

13 Disk Usage net and email alert to dba

14 Invalid Objects compile schema

15

Number Of Sys and internal

Oracle sessions net and email alert to dba

16 In Back-up

loop back-up script - end

back-up

17 Active Sessions

run a full system (rda tool)

dump for analysis

18 Lock Check

19 Processor Queue net and email alert to dba

20 Virtual DB Bytes net and email alert to dba

21 SMART Check net and email alert to dba

22 Statistics missing gather stats for selected

 91

schema

23 Large Data files create a second/extra file

24 Extents Failures extend datafile

25 Logging turned off loop alter tables to logging

26 Global Transactions net and email alert to dba

27

Potential data file space

issues

set last file to autoextend

(cams main data)

28

Potential buffer cache hit rate

issues

increase buffer cache 300

megs

29

Potential log switch

frequency issues: too many

create three new redo log

group @ 100 megs

30

Hot back-ups older than 3

days loop and run backup

31

High level of user sessions

operating net and email alert to dba

32 Hung sessions in database run orakill for session (risky)

33 Locks on DDL net and email alert to dba

34

Large percentage of PGA in

use increase PGA = 50 m

35

Potential LACK OF log

switch frequency issues switch logfile

36 Daily check for corrupt rows export batch file

37

Detect Memory

fragmentation flush shared_pool

38 Memory leaks (windows) net and email alert to dba

 92

Illustrated example of an automatic “Heal” in operation (below). In this example,

the database’s cache hit rate falls below the defined threshold and the autonomic

engine steps through an initial heal, followed by another attempt with different

heal instructions (only if and when first attempt fails to resolve the issue)

Fig 19.0: Illustrated is setting the sga_target to high level 500 m (giving more

cache to db) when cache hit rate is low

Steps S.H.A.D.E took to “Heal” the issue:

Retry id is current task (28) with 1 for task retry 1 = 281. 281 executed if the issue

is not resolved by 28. 281 is thus an additional option the engine can take if the

issue still exists and first heal fails.

Increase by 100 Megs and then sleep for 60 secs (note sleep time only simulated

for purpose of example).

Code executed for 281: alter system set SGA_TARGET=600M – if this heal again

fails, task 282 will set the parameter to 700 Megs and then sleep for a further 60

seconds.

282 has no retry task defined (Heal will enter fail state if fix assigned to 282 fails

to resolve the issue).

Hence, normal case even for this one heals option:

 Cache hit rate detected as lower than defined setting.

 Execute heal task 28: increases buffer cache and sleep detection.

 93

 If rate still below defined level, execute 281: increase cache and sleep

again

 If the issue is still not resolved, alter the parameter further and fail the”

heal” if still not resolving the problem.

Initially, this appeared to be an issue with the base setting.

Fig 20.0: The database parameter defined in repository.

Database bounced – buffer cache 500 Megs – illustrated visually.

Fig 20.1: Database cache size.

Buffer hit rate high – hence now healing invoked (only medium error).

 94

Fig 20.2: Error alerted in S.H.A.D.E interface.

Simulate a heavy cache read - Kicked up to 600 Megs (healed by S.H.A.D.E +

wait)

First heal executed – as per assigned parameter.

Fig 20.3: Parameter held in database repository: heal code.

Cache still low – 2
nd

 heal should kick in – verify in sql

 95

Fig 20.4: Verify cache hit rate.

Still highlighted as issue in S.H.A.D.E

Fig 20.5: still alerted in S.H.A.D.E interface.

Working heal with multiple “choices” for heals – i.e. if first event fails to heal

issue, will attempt a different solution x 3 times until the event is parked as faulted

(prevent the use of heals that loop forever).

Event 28 – buffer cache hit rate low on database solution. Assign more memory to

Oracle for SGA + buffer cache – should improve rate over time (unless poor code

running in db – in which case, human will need to investigate and isolate root

cause).

Event fires without issue and heals the issue – rate improves

 96

Listed and logged in fix audit trail

Fig 20.6: Database repository logfile displays events.

3.6 Refining a solution: example of space deficit

Here the watch/probe is looking for files with free space limited. This is a basic

problem, but one that could cause the database to halt for numerous reasons:

Cause of halt:

1) File is close to max file size for that block size: i.e. 8k database and 32 GB

26
 file.

2) There isn’t enough space on the disk volume to expand the file.

3) The data file is not set to auto expand.

S.H.A.D.E must determine how many files make up the table space. The

administrator may simply have set all files to auto expand, which is fine. But

ideally it is better to keep them all uniform and set the last file in the set to expand

– in case of emergency.

S.H.A.D.E must first determine if the system has enough disk space, before

checking the file size and verifying it the file is set to auto expand; if it is and the

file size is within tolerance, the engine needs only to flag a future potential issue.

26 GB: Signifies a gigabyte of storage space.

 97

If, however, the file will not expand, S.H.A.D.E must check size. If the size of the

file is too large, it must add a new file (if disk space OK) and then communicate

the change. The new file will be automatically populated when the database

system needs more space. The engine must select the best cause of action as

determined by the rules contained within the code. The administrators could

simply set the file to expand and manually check growth over time but they may

miss one factor or not be aware of the growth until the database halts due to lack

of space.

IBM has shown a very strong interest in the field of Autonomic Computing,

listing eight defining characteristics of an autonomic system (Reference here No.

33). This project will follow similar characteristics in the design of an agent;

however, it shall be reduced to four main functional elements.

1. The agent engine needs some way of “knowing itself" and how it works; its

components must also possess a system identity.

2. The agent engine must configure and reconfigure itself under different

conditions and circumstances.

3. The agent engine must look for ways to optimise its workings and not just heal

break conditions, but improve performance issues that affect the monitored system

overall.

1. The agent engine must be able to “heal” when alerted to events. These

events will be a combination of database and operating system events. The

engine will not attempt to heal hardware faults, as redundant hardware

resources will be limited on the test systems.

 98

Fig 21.0: The flowchart for this operation:

3.7 Autonomic agents and the platform of choice.

In 2001, IBM released a manifesto observing that the main obstacle to further

progress in the IT industry was a crisis caused by software complexity. The

company cited examples of environments where software applications were

constructed by some tens of millions of lines of code and require skilled IT

professionals to install, configure, tune and maintain (Kephart et al., 2003).

Although self-healing and autonomic computing are not new terms in the IT

sector, a lot of research is still underway and remains ongoing in relation to

identifying the key factors required to succeed. “Its realisation will take a

concerted, long-term, worldwide effort by researchers in a diversity of fields. A

 99

necessary first step is to examine this vision: what autonomic computing systems

might look like, how they might function, and what obstacles researchers will face

in designing them and understanding their behaviour.” (Kephart et al., 2003). The

goal of autonomic computing is to create computing systems capable of managing

themselves to a far greater extent than they do today (Tesauro et al., 2004). One

of the key goals of autonomic computing is evident in the name and thus the

system it is modeled upon: the human autonomic system. This key goal is for

systems to manage the low-key but vital functions automatically. Similar to how

humans regulate breathing, heart rates, blood pressure etc., these operations occur

without concise thinking. These are not actively controlled by the human, but

without correct operation, we would get sick and even die. Similarly, computers

of the future will be better able to manage elements of their management

automatically without human intervention or risk fault.

The study of how human cells “aid” each other in the process of human healing is

also an important factor in the construction of self-healing computer systems.

Building systems with single repair functions or processes may indeed be

insufficient in tackling the “problem” of efficient self-healing. “The capacity of

organisms to adapt to changing and often hostile environments, tolerate limited

failures and heal damaged organs is not because of the robustness of individual

cells, but because of the interactions between large numbers of cells.” (George, et

al., 2003).

The interaction and awareness between such cells is vital for the healing process,

hence one process with self-awareness may indeed be too limiting even in

computer system design. Instead, building a system that leans design to how

human cells heal and aid each other may indeed yield greater success. “Cells can

induce nearby cells into performing specific actions by using chemical emission

or diffusion. Similarly, the death of a cell causes cessation of chemical diffusion

and induces nearby cells into actions such as regenerating the dead cell. This

awareness is essential for self-healing mechanisms.” (George, et al., 2003). “The

notion of making wireless clients snoop the environment to ensure secure and

correct routing has been suggested for ad hoc networks” (Adya, et al., 2004).

Using a specific application to “watch” for system faults and problems was a key

 100

element in the design of S.H.A.D.E, where the system polls specific “watches” to

look for specified design errors in the databases. Much the same was discussed

(Marti, et al., 2000) for Network node detection where a “watchdog” (Marti, et al.,

2000) mechanism was designed with the key purpose of detecting network

problems. “The watchdog identifies misbehaving nodes” (Marti, et al., 2000).

“The basic idea is to have watchdog nodes observe their neighbours and determine

if they are forwarding traffic as expected” (Adya, et al., 2004). “Human operators

add a quality to management systems that current artificial systems can't match;

humans can handle unknown situations and learn from their experiences.”

(Hermann, et al., 2005). Thus, humans can adapt and react depending on levels of

knowledge and experience, but can also make mistakes and misinterpret an issue.

The system must be able to adapt to change by drawing on experience and remain

aware of the overall system. A suggested possibility for future autonomic system

design is through the use of artificial intelligence. But present A.I. has, as yet, not

achieved the ability to dynamically adapt to change or have routines/abilities to

learn. Yixin Diao and colleagues have shown that a running database running

specific (e-commerce) applications can be optimised so long as defined rules are

followed. “If we eventually remove the human operator from the management

control loop, then the management system must be able to similarly learn from its

experiences and improve its capabilities.” (Hermann, et al., 2005). Oracle refers to

its latest generation of database as “The “invisible” Oracle database will thus

enable enterprises to become more profitable (Kumar, 2006). The term “invisible”

is interesting and ties in with what IBM see as autonomic computing. The

administrators need be less aware of many system operations, as the system

manages most of its own operations independent of the human element. To do

such, the autonomic management system needs to be aware of its environment, or

at least aware enough to make changes without affecting other elements of the

system. If a self-managed database system similar to 10g boasts about some of its

features as being “It is the industry’s first truly self-managing database featuring

an intelligent self-management framework, revolutionary self-diagnostic engine,

Automatic Tuning Optimiser and automatic memory management capability”.

(Wiseth, 2003), then perhaps it isn’t sufficient unless the overall self-management

is carried out at the hardware and operating system level. Hardware and software

 101

manufacturers must work together, following standards to succeed 100%,

otherwise elements of autonomy will be included in various computer components

over time, but each will be following different guidelines and goals, unaware of

the others’ existence. Hence, the goal of releasing the first self-managing database

engine may be admirable from an innovation standpoint but may also be a little

limited in scope.

“Serious customer problems can take teams of programmers several weeks to

diagnose and fix, and sometimes the problem disappears mysteriously without any

satisfactory diagnosis.” (Kephart et al., 2003).

Fig 22: Aspects of self-management under autonomic computing (Kephart et

al., 2003).

In order for autonomic computing to succeed at any level, it must be designed and

be able to draw from knowledge, must be the same as the human administrator

would do but would benefit from being able to react based on a pool of experts

rather than the knowledge gathered by the limited number of administrators and

the knowledge they have built through time and exposure. The administrator

knowledge costs money to develop but also can greatly affect a corporation’s

ability to operate if that knowledge is lost. Building knowledge into systems can

reduce this dependency as well as make the said systems more reliable. Hence, the

fully autonomic system will require artificial intelligent elements in its design as

 102

well as expert systems. The system, therefore, risks having the information but

does not know what to do or how to do it, much the same as an inexperienced

human may have knowledge but might never have used it. Experience is an

important element, but how is experience built into a system?

The chosen Windows-based application was selected because of certain key

factors:

1) The chosen laboratory within the Bausch & Lomb plant is Windows-based for

servers and clients (Corporate standard as of May 2007).

2) The programming application of VB.net is again a corporate standard but also

allows me to use a licensed product without incurring further expense.

3) Linux
27

 was looked at during the concept stage of the application but limited to

“in operation” Linux database servers as well as client configurations would have

reduced the quality of the study. The S.H.A.D.E application could only have been

measured against a system with faults induced through use of scripts and

applications, rather than actual users. The Linux operating system would also

require access to a Linux-specific version of Oracle and programming language

(JAVA) which would have introduced further delays in obtaining, building as well

as learning to interface with the Linux kernel for operating system-specific events.

The key element of S.H.A.D.E and thus the goal to work towards reducing system

complexity, was the Windows interface (because of my skill set) which

complements this goal (as a novice can use and get it operational with minimum

knowledge). From limited experiments with Linux during the concept stage of

S.H.A.D.E, Linux with numerous “Distros “(Linux distribution version), kernel

builds and driver support didn’t present itself as a system a novice could work

with. The Windows operating system seems more in line with the goal of “being

less concerned with how computers work and more concerned with using them”.

27 Linux: An open source operating system based on UNIX.

 103

4) In the initial stages of system design, numerous elements of the overall

computer system - hardware, operating system, database, other software and

network - were analysed and considered as potential healing components of the

S.H.A.D.E system. Initially, planning to inject healing for different components

possible within software detection and prevention would require expert

knowledge on each and every component of a system, as well as funding and time

to carry out research into the hardware elements. This also may have made it

difficult to accurately measure and analyse the beneficial effects of a self-healing

system (as a whole). “By being specific, it becomes specific and measurable --

that makes it science and not philosophy” - General Manager, Microsoft Research

 The database component of the data system (with some operating system healing)

was selected for:

a) The database system is commonly the main software used to manage

mission critical data.

b) The database is constantly evolving and changing and thus must adapt to

change – either manually or automatically. This alone allows for a greater

possible selection of fault detection and prevention.

c) Although future versions (10 + 11 g of Oracle) boast simplified

management interfaces and elements of self-management. A large number

of operational databases used are early 8i and 9i which could benefit from

simplified and more cost-efficient management.

An IBM objective for its Autonomic Computing project is to free people from

having to think how computers continue to operate. “The best measure of our

success will be when our customers think about the functioning of computing

systems about as often as they think about the beating of their hearts.” (IBM,

2001).

Usage of the Bausch & Lomb (test) systems and thus corporate platform allows

the laboratory systems to be in use 24x7x365 days a year, with real users in

operation. Oracle had been using a marketing strategy of Oracle on Linux as

 104

“unbreakable”. They even started to release the Windows version of newer

databases later than the Linux build, suggesting in some circles that the Windows

platform may be dropped in the future. This worked in persuading some IT

Managers that the combination was the true, serious platform, with Windows

being a system that was both cheap and unreliable. Experience of using Oracle

through versions 7, 8i, 9i and 10g on Windows 3.1, NT, 2000 and 2003(servers),

over 10 years of personal experience. The Windows environment has only failed a

total of approximately 5 times, through a combination of blue screens. Hardware

has failed more often, with the Windows platform becoming more reliable with

newer versions. One Windows 2000 cluster running a 350 gb Oracle8i database

only failed (from a windows point of view) once during a year of 24x7x365

operation, with a simple reboot clearing the issues. The systems were simply up

too long. Even Oracle is now taking the Windows/Oracle platform more seriously.

Plugging Oracle on Windows is a reliable cost-effective solution, but this is more

a customer-controlling Oracle, as the Windows platform is heavily used as an

Oracle Server solution.

Windows has managed to get it labelled as a type of “poor” cousin for server

usage, although a lot of medium to large firms are starting to use it because of

cheaper and reliable hardware support coupled with reduced ease of management.

. “The balance of performance and usability is what attracted emsCharts to an

Oracle/Microsoft solution” (Baum, 2007).

Oracle even “emulated” the windows style in their installation for Oracle 10g,

making the system easier to get installed and running, after much criticism with

the 9i version being too slow and complex. Ease and speed of installation became

one of their marketing ploys which includes “Including easy-to-use installation

wizards that allow a person with little or no database expertise to successfully

install a well-configured instance of the RDBMS” (Olofson, 2005), again showing

that complexity (at any level) is causing issues.

“Oracle has dramatically reduced the number of installation steps since version 9i,

and Oracle Database 10g may be fairly described as one of the easiest full-

function RDBMS products to install. According to Oracle, SE1 typically installs

 105

in a matter of minutes, requiring only a couple of user-defined input parameters.

The product comes with many sensible installation values pre-set (users can

always over-ride these defaults if desired) that formerly had to be set manually. In

addition to easy-to-use wizards, the process includes software that analyses the

target system and automatically generates database settings, greatly reducing both

the effort and expertise required of the person doing the install.” (Olofson, 2005).

“We’ve worked hard to ensure that Oracle Database 10g is easy to install, manage,

and develop on Windows” - Oracle’s senior director of Windows development

(Baum, 2007). Hence the platform for the S.H.A.D.E (in this Thesis) is

Windows/.Net/Oracle. “In conjunction with our Microsoft software assets, Oracle

database technology gives us a real competitive advantage.” (Baum, 2007). “The

ability of a system to heal itself without requiring administrator assistance greatly

simplifies management.” (Ling, 2004).

3.8 The final build

The final build of S.H.A.D.E enhanced the end-user interface for the administrator

to interface with. Another key feature here was the ability to break watches to

prevent continuous execution, even when the task fails to heal.

Illustrated: Same watch executing after three times, it is failed and “parked”

Issue flagged by S.H.A.D.E

 106

Wait for heal (10 minutes)

First heal

Issue continues – low buffer cache hit rate = 53%

 10 minutes later- heals with 2nd heal (as first obviously failed to

fix 100%)

 2nd attempt – increasing SGA to 800 megs

 107

Wait for third and final fix – if needed.

Third fix

Verify 900 Megs on db (SGA) – 768 for cache

 108

S.H.A.D.E waits 10 minutes (timer) and will fault the future healing to

prevent continuous healing -

3:37 – task 28 – increase buffer cache if detected now in broken jobs – will no

longer fire until administrator fixes the issue.

Watch breaks

Shown in user interface as broken: will need administrator to intervene and

remove otherwise S.H.A.D.E will not fire heal again – but will alert

In this case, the job was set to fail if it failed 5 times in 86400 seconds:

 109

Show as broken in interface

And in database repository log

Removing it from log allows the heal to operate again

Removing the job from the watches table allow for job to run again.

 110

This means the heal/watch will require manual intervention by the S.H.A.D.E

administrator, otherwise the buffer cache check and thus heal will remain in a

parked/broken state.

3.9 Summary

The S.H.A.D.E engine could have benefited with more development time,

allowing for more of the initially defined options to be developed and introduced

and thus making for a more complete system for use against any live environment.

But the goal of this thesis was not to produce a commercial product but to

measure how effective a system could be at being more self-sufficient by reducing

human interaction by automatically fixing its own issues. Too many options

would have also resulted in more time required for tweaking application code and

analysing results produced by fails and fixes. A percentage of watches was

introduced but configured to alert only. These fixes will be redeveloped in later

builds of the engine, introducing more features and heals as the S.H.A.D.E engine

matures with further development in future builds.

 111

Chapter 4: Results and Evaluation

 112

4.1 Introduction

The initial problem was in defining what a fault is, as well as defining what makes

a system healthy. Even when a healthy system level is clearly defined,

maintaining this level of health can be an even more complex problem (Ryan, et

al., 2008). The easiest way is to define a set of parameters the system must meet;

failing to meet or measure up to these parameters flags the system as being in a

less than optimal or unhealthy state. But to define such parameters, one must be

familiar with each and every component that makes up the system as a whole. It is

also vital to know each and every corresponding component that can affect the

health of a system, as well as what affects each of these components. Every

element that maintains the health must be accurately defined, along with their

dependent and dependencies. However, “the distinction between "healthy" and

"broken" is often indistinct” (Shaw, 2002).

“Maintaining system health requires knowing what "health" is and recognising

when the system needs to be healed. The first problem is establishing the criterion

for health, which depends on the way the user is depending on the system” (Shaw,

2002). The average user may or may not need to know what makes the system tick

or function at any level, but they do know what they want from a system. The

administrator’s definition of a fault may be simply defined by a failed component;

if a system remains up, it is operational. To the end-user, if response time is slow,

it is in a fault state (Ryan, et al., 2008). The system is not operating to its

specification, no matter how unrealistic that expectation is (Jupiter Research,

2006). This is where the clear definition of a fault becomes unclear, as it differs

from person to system. What one operator accepts may not be sufficient for

another. “Approximately 75 percent of online shoppers who experience a site that

freezes or crashes, is too slow to render, or involves a convoluted check-out

process would no longer buy from that site” (Jupiter Research, 2006). This is why

performance-monitoring elements have been included in the design of S.H.A.D.E.

and not just failed elements. However, this in itself is not as straightforward as it

 113

appears. “Distinguishing between a faulty system and a system that is in a sub-

optimal state is not always easy” (Hermannet al., 2005).

The results from the experiment presented in this chapter follow the structure of

the DMAIC framework.

4.2 The research question

This research was chiefly concerned in the investigation into the factors that allow

a computer system to self-heal and thus be more self-sufficient. This investigation

required not just research into current and past trends within this field but also the

design and implantation of a custom-built engine that could be analysed over a

sufficient time period. This analysis is presented within this chapter, based on the

findings produced by the engine’s log files.

4.3 Downtime and performance loss analysis

Each problem alerted in both systems can be individually measured, based on

number of occurrences over a defined time period of sampling. Every event

alerted as a fault (level 3) has already been defined as possible events that can

affect either the actual system “up-time” or overall performance. Each event

treated as a fault affects the system’s health. Whether the event effects

performance or operational ability, it is still classed as an outage as it affects

health.

4.4 System comparison of variance

The potential success cannot just be analysed from the results of how the

S.H.A.D.E engine performed on the test system used during the experiment, but

also to compare the variance of this success with relation to a system that was

monitored within a similar environment. A two-way ANOVA was thus chosen to

analyse the overall system performance(s), factoring in permutations such as

reboots and system “up-time”/downtime during events that were outside the

control of the experiment. One such case is a system patch and reboot. The

 114

S.H.A.D.E engine can detect, but the event is outside the scope of the experiment

and outside the control of the experiment to prevent.

The data from the second “non-healing” system was not accurate enough with the

use of a fault-injecting engine, as both systems experience completely different

issues during the analysis phase. Hence, the ANOVA analysis is not represented

in this thesis as it would be presenting completely different issues on two different

systems. One set of results revealed how effective the engine was at healing

issues, while the other represented how many issues another system experienced

during the same time period. Further analysis and further development of the

engine has been identified as requiring a fault-injecting engine to simulate system

faults and errors.

Results from both systems are represented in all findings contained within section

4.6.1 of this chapter.

4.5 Measure phase

The results of the measure phase are presented in section 4.6.1 of this chapter,

with comparison data tables and graphs.

4.6 Analysis phase

All the archived data from the engine was queried over a defined period and cross-

compared to highlight where the system was successful in healing and where it

failed. The analysis also clearly defines common faults that were detected in the

comparison system, but not when healing intervention was introduced. Because no

faults were injected to simulate failures, the data presented in these sections has

been obtained from real systems in real-world operations.

4.6.1 System comparisons: self-healing vs. stand-alone system.

More accurate comparisons could only be made in relation to overall system faults

between the two systems, as both systems didn’t experience the same amount of

faults and problems. The only way to accurately compare how both would have

handled the exact same faults and errors, would have required the design and

 115

execution of a fault injection system, that could and would simulate exactly the

same type of faults on both systems and compare how they reacted (or not),

depending on their healing abilities.

Each watch and thus fault is analysed and compared separately, with individual

graphs for S.H.A.D.E-enabled system compared with systems without S.H.A.D.E-

enabled engine running (only monitored, not healed).

 Each of the graphs and results presented here were taken from a defined timeline

from both systems. Each graph presents an element that is monitored and healed

(where possible) on the database being monitored.

 116

Watch #1: Disk space free on c:\ volume of server.

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server C:\ (Local disk) volume.

Graph 1.0: Watch #1: Free disk space on c:\ volume comparison

between systems.

As seen from the graph above, the S.H.A.D.E-enabled engine flagged an error and

attempted a repair but in this case was unable to repair the issue under its defined

parameters. The defined parameters were the ability to delete certain “safe” file

types only, not dynamically adjust disk volumes to make more space available.

Hence in this example, S.H.A.D.E was only successful in alerting the

administrator to the problem with an email alert (and breaking of the watch =

alerted but no longer attempted a heal as the defined attempts ensured the heal was

“parked” after a defined amount of attempted repairs). To be truly successful with

this type of alerted fault, the engine would need an advanced ability to move disk

space or re-size disk partitions to increase disk space (without impacting system

“up-time”). It was deemed too high a risk during the design and testing of

S.H.A.D.E and the safer option was to remove defined files, if any, and alert the

administrator that they “may” have a disk space issue in the future. The

monitored-only system also experienced the problem but to a lesser fault level, in

that it has more free space on the C:\ volume, which also was flagged.

 117

Watch #2: Disk space free on d:\ volume of server (if volume exists)

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server D:\ (Local disk) volume.

Graph 2.0: Watch #2: Free disk space on d:\ volume comparison

between systems.

In this case, the D:\ volume on the S.H.A.D.E-enabled system had no data as the

D:\ volume was a compact disk/optical drive and no space was determined from

the query. The monitored-only system reported zero issues as there was more than

enough free space (80 gigs
28

) and thus the alert was not fired as this was much

more than the defined parameter.

28 28 Gigs: Common term used by IT professional’s to represent the space on a disk or area in

memory. 1 gigabyte is 1000000000 bytes, or a thousand megabytes.

 118

Watch #3: Disk space free on L:\ volume of server (if volume exists)

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server L:\ (Local disk) volume.

Graph 3.0: Watch #3: Free disk space on L:\ volume comparison

between systems.

The S.H.A.D.E-enabled system managed to reduced the amount of error alerts by

acting from its defined action list and removing files that it was given the ability

to delete. These “safe” files allowed the system to operate as normal without the

need to move Oracle data from this volume or without the need to re-size or add

further disk space - which may have required system downtime to conduct and

without human supervision could result in a system halt if they failed, hence the

heal in question was structured with parameters that would operate with minimal

risk to overall health. If the S.H.A.D.E system was given the ability to move

defined Oracle datafiles, it would need more awareness of which other volumes

could handle the change along with the knowledge and possible ability to alter

back-up scripts or any other system elements that may be affected by these types

of changes. The monitored-only system had no data as it was not configured with

a L:\ volume.

 119

Watch #4: Disk space free on M:\ volume of server (if volume exists)

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server L:\ (Local disk) volume.

Graph 4.0: Watch #4: Free disk space on M:\ volume comparison

between systems.

This watch was included to monitor other systems with said volume during the

initial design and beta testing of the S.H.A.D.E engine monitoring capabilities and

functions. Neither of the selected systems have an M:\ volume, so no data was

collected. This result and graph were included to represent the accuracy of the

data, by presenting an example of all defined “watches” or monitoring abilities in

the system. If not applicable, no data will be collected, archived and stored.

 120

Watch #5: Disk space free on N:\ volume of server (if volume exists)

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server N:\ (Local disk) volume.

Graph 5.0: Watch #5: Free disk space on N:\ volume comparison

between systems.

Neither system had an N:\ volume for storage, hence no data was collected or

issues alerted on. This graph and watch is only presented here as an example of

data collection.

 121

Watch #6: Disk space free on O:\ volume of server (if volume exists)

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server O:\ (Local disk) volume.

Graph 6.0: Watch #6: Free disk space on O:\ volume comparison

between systems.

Neither system had an O:\ volume for storage, hence no data was collected or

issues alerted on. This graph and watch is only presented here as an example of

data collection.

 122

Watch #7: Disk space free on P:\ volume of server (if volume exists)

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server P:\ (Local disk) volume.

Graph 7.0: Watch #7: Free disk space on P:\ volume comparison

between systems.

Again, neither system had a P:\ volume for storage, hence no data was collected or

issues alerted on. This graph and watch is only presented here as an example of

data collection.

 123

Watch #8: Disk space free on Q:\ volume of server (if volume exists)

The disk space threshold is a very basic query to verify the amount of disk space

free on the database server Q:\ (Local disk) volume.

Graph 8.0: Watch #8: Free disk space on Q:\ volume comparison

between systems.

The S.H.A.D.E-enabled system detected the error but was unable to alter the

condition of the error or adjust the free disk space using its pre-defined rules.

Hence, the “heal” was halted and parked, only alerting the administrator of the

problem (and the broken heal). The “heal” remained as such after this, as no files

could be removed from the disk. It required a volume increase or

movement/reconfiguration of an application to allow the adjustment of disk usage

to a level that S.H.A.D.E would accept as “safe”. The monitored-only system

didn’t have a Q:\ volume and hence reported no issues as no data was collected. In

this case, S.H.A.D.E required more abilities and knowledge of the system to allow

it to heal successfully, without failure and thus parking of the healing process for

watch #8. It exhausted all its options and then alerted the administrator, in much

the same way as a technician operating without enough knowledge to pursue the

problem further would call for help.

 124

Watch #9: Number of memory leaks in the database.

This query collects data from a database data dictionary
29

 view which collects data

regarding “potential” memory leaks with the RDBMS itself while operational.

Graph 9.0: Watch #9: Number of detected memory leaks in both

systems.

The data presented and collected caused some concern with initial analysis as both

systems seemed to heal at the same time. Further analysis of the events that

occurred on both systems outside the scope and control of S.H.A.D.E showed that

both database servers were batched and subsequently re-booted. This re-boot

flushed the data dictionary of the database and the underlining statistics used to

monitor memory leaks from refreshed. Hence, the database appeared to have been

repaired, but from the graph, the problem arises again in much the same manner

on both systems (as both systems are running similar applications and the same

batch set of the database). S.H.A.D.E was only given the ability to flush Oracle’s

memory when the issues arise. This can, at best, only reduce the occurrences of

the memory leaks, but won’t eradicate the problem. Also, first detection will

remain and the issue remains alerted. The administrator is alerted about both

systems and can best react as needed. In this event, the only way to completely

29 A metadata repository or centralised repository of information about data such as meaning,

relationships to other data, origin, usage, and format. Basically data about the database.

 125

remove the occurrence overtime is to patch the actual database, as the issue was,

in fact, a bug. It was deemed too risky to automate this (although Oracle 10g can

be configured to do such) as there was a potential to introduce further problems or

fail in patching, as well as altering the database version without sufficient change

control approval within a regulated environment. So on first analysis, it would

appear the problem went away (and it did) but this was because of human

intervention outside the scope of the experiment (external action).

Note, this data dictionary view is truncated when the system re-starts, hence

the memory leak alert will disappear with a database re-start.

 126

Watch #10: Number of open cursors per session on database

This query collects data from a database data dictionary view regarding the

consumption of cursors
30

 by user sessions and the overall level per session of

open cursors.

Graph 10.0: Watch #10: Max number of open cursors compared

between databases.

Maximum cursor levels per session are set at a system level with an overall

ceiling. Attempting to go above this defined level will prompt a user session error

to be flagged and transaction to fail. If code isn’t written efficiently, too many

open cursors can be consumed or left open, wasting resources on the

database/server. A lazy approach can be to set this ceiling so high that the user

session will never consume all the cursors defined by the database. This is simply

wasting resources that could be better used elsewhere and if code is very poorly

written and fails to release cursors, sessions could potentially and eventually crash

the entire system because of over-consumption. The S.H.A.D.E engine is defined

with a “heal” to attempt to increase the allowable open cursors by following a step

increase pattern with a maximum allowed level. It won’t continue to increase

indefinitely, hence it is not designed to repair the issue as it is caused by a

30 Cursors are a mechanism by which a database client iterates over the records in a database.

 127

potential bug in end-user code, but does however allow the database to be tweaked

to improve performance, if the level is set to low for end-user performance levels

and transaction level increases over time. From the graph, it can be verified that

the S.H.A.D.E-enabled system experienced an open cursor consumption problem

and reacted, the situation increased before the S.H.A.D.E engine was able to heal

the problem completely and remain on top of the situation. The initial parameter

change wasn’t enough and the level was increased again by S.H.A.D.E after it was

alerted again that the problem wasn’t fixed after the first attempt. A subsequent

increase fixed the issue and the error disappeared. The non-monitored system

didn’t experience any open cursor issues, which again suggests the potential need

for fault-injection scenarios and engines in these type of experiments to ensure

errors occur, as well as are replicated across systems. In this event, S.H.A.D.E was

able to successfully heal the cursor problem or shortfall and remain on top of the

issue by defining a new parameter for the database to operate under. It could be

argued that a watch could also be constructed to reverse this setting if the cursor

level is over-defined and under-utilised also, not to prevent an error in this case,

but to reduce waste on the database server.

 128

Watch #11: High CPU usage level

This query collects data from the database server regarding the level of CPU

usage (weather multi CPU or Multi core).

Graph 11.0: Watch #11: High CPU usage levels between database

servers.

Alerted high levels of CPU consumption continued on the S.H.A.D.E-enabled

system until the system was provided with more options or more knowledge in

dealing with the recognised problem. S.H.A.D.E was given the ability to use the

process kill command from the operating system level to kill processes if they

were within a defined list of processes. These processes were known CPU-

expensive users such as anti-virus processes. From the graph, the data shows that

during early stages, S.H.A.D.E was unable to kill the process that was consuming

the most because it was not defined as a process it could kill. After adding more

“safe” processes, the S.H.A.D.E engine was able to improve and fix the situation.

Later, S.H.A.D.E was configured to just alert the problem, but this example

displayed the engine could be configured to make the right decisions without

causing risk to the overall system’s health – by being allowed to kill any heavy

 129

using processes, as some processes would be allowed to consume heavy loads of

CPU; when they do so for too long a time period, it can affect the system’s health.

In the illustrated case, the anti-virus software was consuming and continuing to

consume resources that the database needed. But only factors such as security

levels on the server caused the ability to terminate processes to be less of an

option (changes outside scope to experiment, but caused because of using real-

world servers and not servers in a laboratory environment). The example does

illustrate again when S.H.A.D.E has the ability and correct “knowledge”, it

remained on top of the situation when errors and alerts were identified and raised

when the system was flagged as being “unhealthy”.

 130

Watch #12: Level of free physical “RAM
31

” memory on server

This query collects data from the database server regarding the level of free

memory still available for processing.

Graph 12.0: Watch #12: Amount of free physical server memory

between database servers.

In this example, the S.H.A.D.E engine failed in healing the error and as a result,

the heal was “parked” and thus marked as failed after attempting all possible heals

with the knowledge and parameterised options at hand. S.H.A.D.E was configured

to stop a selection of services listed as non-essential to typical database server

operation(s). Doing so frees up memory on the server for processing when the

level of free memory was flagged by S.H.A.D.E to be on or above the defined

“high water” mark and thus reaching a critical level whereby the Windows system

could start to page memory
32

 onto disk and slow down the overall system’s

operational performance levels. The monitored-only system continued to alert on

low levels of free memory and this raises potential future problems if not

31 Volatile memory (such as memory modules), where information is lost after the power off.
32 Paging is an important part of virtual memory configuration of most operating systems, allowing

them to use disk storage for data that does not fit into physical Random-access memory (RAM).

 131

addressed. In this instance, S.H.A.D.E was unable to address the problem and

failed to correct or heal the issues because of the restrictions within its own

abilities or parameters. If it was running a combination of process termination as

well as service management (using the same features or cross-healing features as

used for CPU load reduction), and the ability to control more processes when

identifying the processes that are listed are using too much (rather than alerting on

low overall system RAM), it would better manage the problem. With these

abilities, S.H.A.D.E could monitor, capture and stop a service that was consuming

too much RAM and operating beyond its expected specification or even possibly

using an option such as “poolmon”
33

 to terminate/end a process or service that

was experiencing an operating system level memory leak. Windows memory

leaks are handled as a separate watch with watch 38, which is analysed and

explained later in this chapter.

33 Memory Pool Monitor displays data that the operating system collects about memory allocations

from the system paged pools and used to detect potential memory leaks.

 132

Watch #13: Level of disk usage (I/O) on server

This query collects data from the database server regarding the level of disk

activity – disk I/O
34

.

Graph 13.0: Watch #13: Level on disk usage (I/O) between

database servers.

Disk I/O is often overlooked but is a common cause of poor system performance,

as high disk activity will slow down overall system performance for operations

not being executed in system memory/ram. Anything that requires disk activity

will simply be slower, either if disk reading or writing. Within a database system,

this will amount to most of the system operations as the database, if operational,

will be either written to or read from (otherwise it won’t be in use). Often

administrators will look at CPU load and free memory and determine if neither

appears to be an issue, then the system has enough resources. But if disk reads and

writes are high, then the system will be slow. Making better use of memory or

34 Inputs and outputs or reads and writes to and from a disk device.

 133

adding memory can help reduce this by making better use of caching, as RAM

operations will always be faster than disk operations. Hence, the more there is

conducted in memory, rather than disk, will operate quicker and should help to

reduce contention. Initially, S.H.A.D.E was configured to increase the cache

available to the database in an attempt to deduce disk I/O, which seemed to reduce

disk activity on the system. It was later removed, as monitoring the database cache

hit rate and adjusting to poor metrics here, was deemed as being more accurate an

indication that the database would operate better with more memory assigned to it.

Cache monitoring and healing will be discussed later in this chapter as part of

watch 28. S.H.A.D.E would need to identify individual processes that were

causing the high disk I/O by retrieving statistics from the performance monitoring

elements of the operating system and adjusting as needed. But it was considered

unsafe to terminate or end a service or process that appeared to be using too much

in the way of disk operations without investigation, rather than reacting. An

example is a virus scan which would have increases I/O during an update or

scheduled scan, but you would not want to terminate for this reason alone. The

healing ability of the S.H.A.D.E engine for this watch was thus removed and

replaced with an alert to the administrator, making the human element of the

system the one better qualified to deal with the potential problem. As shown, both

systems experience disk I/O overheads as determined by the parameterised high

water tolerances.

 134

Watch #14: Invalid database objects in the database.

This query collects data from the database data dictionary regarding the number of

invalid database objects on the database i.e. function, procedures, views etc.

Graph 14.0: Watch #14: Level of invalid database objects between

database servers.

Invalid database objects are objects residing on the database with schemes that are

in an invalid state because of references within them that don’t exist or syntax

errors that prevent the database residing code from compiling and thus being used.

Objects can become invalid because of DDL
35

 changes on the database. These

types of objects can be re-compiled automatically to avoid end-user error. Objects

that have syntax errors in code or invalid references will, however, require human

intervention to re-write or remove. The graph shows S.H.A.D.E was unable to

compile a selection of objects which, upon further investigation, did require

human intervention. The objects in question reference database links and items

that were not within the database and would require either code changes or links

35 Data Definition Language (DDL) is a computer language for defining data structures.

 135

to be created, otherwise the said code would remain invalid and thus unusable. In

this case, S.H.A.D.E attempted to heal the issue and re-tried until it was marked as

a failure and parked. The administrator was alerted and the broken healing option

remained visible within the S.H.A.D.E user interface – remaining parked until the

administrator placed it back into operation. In this case, the healing option would

again fail and again be parked to prevent it from firing.

Looking back on a different sample of data, it clearly displays S.H.A.D.E was able

to heal a percentage of invalid objects but was unable to compile the remaining

invalid one, illustrated in graph 23.1 below.

Graph 14.1: Watch #14: Level of invalid database from older time

sample

Manual compilation of the monitored system showed that most of its listed invalid

objects remained invalid where they need not have; an automatic or manual

compilation could have repaired them quickly.

 136

Watch #15: Sys sessions on the database

This query collects data from the database data dictionary regarding the number of

user sessions connected to the database using the sys account.

Graph 15.0: Watch #15: Level of sys users connections between

database servers.

This watch is more of security monitoring that database/system error/fault. The

S.H.A.D.E engine monitors for user sessions using the sys user which are sessions

that are not running internal Oracle database processes. These sys users have the

potential to be users on the system with too much power and access because of the

account they are using or a “possible” attempted system breach (sometimes cause

by administrators using weak or default passwords and not following password

expiry procedures). The sys user has enough power to do just about anything on

the database system and should be limited in access and monitored by use. Good

practice is to create a named user with the same access for the administrators and

not share generic accounts, giving the ability to track change and have accurate

accountability for operations carried out. This watch was included into the

 137

building of S.H.A.D.E after the much-published Fannie Mae Attack in 2008,

where the attack came from inside a company by one of its own UNIX developers

when his job was terminated and he planted a logic bomb which would have

brought down the companies 4,000 servers (BeyondThrust, 2009). Designed a

healing operation or set of defined options for the engine proved to be too risky, as

a genuine sys user could be terminated or locked out, which would in itself cause

potential issues. S.H.A.D.E was configured to monitor and alert only. If the

system was designed to manage or heal this possible issue, it would need to

monitor terminal names, log-on times and sessions and determine which sessions

are “most likely” genuine and which are not. Logic could even be built in to trace

the type of transaction the session is carrying out through the use of either SQL

trace or fine grain auditing. This type of heal or reaction to detecting these

possible invalid sessions could be built into future versions of S.H.A.D.E whereby

it will be evolving into not just a performance healing engine, but one that

manages all levels of optimum system function ability, even security.

 138

Watch #16: File stuck in back-up mode

This query collects data from the database data dictionary regarding the number of

database datafiles stuck in back-up mode for longer than expected.

Graph 16.0: Watch #16: Level files stuck in “online” back-up

mode between database servers.

Oracle online back-up allows files to be placed in back-up mode for back-ups to

be taken. In this mode, the databases’ table space and underlining datafiles are

check-pointed when placed in and out of mode, to allow the database to track

which of the current changes in archive logs/redo are needed to recovery these

files. Leaving the files in back-up mode can affect the system if it shuts down; it

will need human intervention to start up as well as generating more redo while the

file is in hot back-up mode. The main risk to the system, however, is that if it

remains in hot back-up for a long period of time and then needs recovery at a later

date, the database will need every archive log generated from the time it was put

into hot back-up until the time it ended hot back-up. Most careful administrators

keep at most a couple of weeks’ archive logs (not reference an example of using

 139

RMAN36); hence it could possibly cause an administrator to look for several

weeks, if not months, of archive logs if the file in back-up mode is not detected.

What does this mean? Potentially, the administrator will not be able to recover or

fully recover the event from a disaster. From the graph, S.H.A.D.E was able to

detect and alert on the detected issue; here, the files in question remain in back-up

mode for a couple of days, S.H.A.D.E then follows it own defined heal for this

problem and removes the back-up mode, the alert disappears and the problem

doesn’t arise again. The monitored-only system is not in archive log mode and

thus is unable to perform “hot” online back-ups, thus the issue is not a possibility

for this database. The database replies on offline “cold” back-ups whereby the

system is periodically taken offline and the files are taken to tape.

36 A command-line and Enterprise Manager-based tool for backing up and recovering an Oracle

database.

 140

Watch #17: Active end-user session count on database

This query collects data from the database data dictionary regarding the number of

active user sessions and uses such as a “guide” to overall poor system

performance through maxed CPU, hung database, locking or overload disk.

Graph 17.0: Watch #17: Level of active user sessions between

database servers.

These sessions are considered active not just when they are operating on the

database, but when they are actually processing SQL against the database.

Typically (with the tested supplication in question), user sessions process within a

few seconds, some longer-running queries can take minutes for batch processing

or reports. But if a large number of sessions appear as active and remain as such,

with the number increasing, it can be an indication the system is performing

poorly. Treating such as an impending "potential" system hang, the S.H.A.D.E

engine dumps system state to disk for early analysis and alerts the administrator. It

would be an unwise attempt for a healing system to guess the cause, as there can

be numerous reasons for such an event, from repeated client connections, through

to the database stuck in a hang state. Hence, the engine may only add to the

problem by attempting to fix this type of issue (without all the facts). S.H.A.D.E

will have prepared a system state collection of data on the health and status of the

system as it alerts the administrator. The administrator should have enough

 141

information at hand from this system state, to further analyse the issue and start

the analysis of the cause of the potential problem. With this information at hand,

they will not have wasted valuable time working out if and why and would be

moving forward with looking into the issue and possibly opening a support call

with relevant vendors. Both systems alerted high session levels and were flagged

as having errors, levels did increase and decrease during monitoring, but

S.H.A.D.E didn’t have any actions that could have been executed/fired to alter

these.

 142

Watch #18: Dead locks level on the database.

This query collects data from the database data dictionary regarding the number of

database deadlocks detected on database objects.

Graph 18.0: Watch #18: Session deadlock levels between database

servers.

Deadlock detection monitors the database for objects that have been locked as a

result of standard transactions. When this happens, other sessions or transactions

that need the object will hang or queue for the resource until it is somehow freed.

S.H.A.D.E detects the issue and kills only the session holding the session and the

resource after a time period, basically when it decides the resource/session will

remain in the same condition unless it intervenes. From the graph, it can be seen

that S.H.A.D.E healed the issues whenever it arose on the S.H.A.D.E-enabled

system. The monitored-only system experienced no deadlock issues. This is again

another example that prompts the use of a fault-injection engine with these types

of experiments.

 143

Watch #19: Processor queue usage.

This query collects data from the database system regarding the level of

processor/CPU run queue in use, when the system consumes more CPU that is on

the server and it moves to the processor queue.

Graph 19.0: Watch #19: Processor queue usage between database

servers.

In much the same way as watch 11 earlier (CPU consumption), S.H.A.D.E was

configured in earlier stages to identify and kill processes that were flagged as

heavy users of CPU. Processor queue usage would be used when long-running

high CPU was used to a level of maxing out the CPUs on the database server.

S.H.A.D.E was given the ability to use the process kill command from the

operating system level to kill processes if they were within a defined list of

processes. From the graph, the data shows that during early stages S.H.A.D.E was

unable to kill the process that was consuming the most because it was not defined

as a process it could kill. After adding more “safe” processes, the S.H.A.D.E

engine was able to improve and fix the situation. Later, S.H.A.D.E was configured

to just alert the problem, but this example displayed the engine could be

configured to make the right decisions without causing risk to the overall system’s

health. The monitored-only system continues to have high amounts of run queue

 144

consumption for all CPUs; with no healing enabled, the system alerted the

administrator.

 145

Watch #20: Database process virtual memory usage

This query collects data from the database system regarding the level of virtual

memory bytes used by the Oracle database process.

Graph 20.0: Watch #20: Virtual bytes usage for database process

between database servers.

Depending on the server memory configuration – whether it is configured for

normal or extended memory usage - the ceiling for virtual memory usage varies,

but there is a ceiling nonetheless. Consuming above this point will flag user errors

and prevent further database sessions from logging onto the database. In normal

systems, where the level is not monitored, the system will flag an error and the

end-user will know before the administrator. In all, this is a less than suitable

scenario. S.H.A.D.E monitors the level and flags a warning when it is close to

reaching the 1.6 GB ceiling or 2.6 GB for extended memory assigned servers.

S.H.A.D.E was initially configured to reduce the database SGA
37

memory usage

on discovering an issue, but this later caused the system to fight itself. Reducing

the cache level to avoid virtual memory error dropped the cache hit rate, which

prompted S.H.A.D.E to increase it again and then reduce and increase. S.H.A.D.E

was thus configured to alert the administrator only, prompting the human element

37 The SGA is a chunk of memory that is allocated by an Oracle Instance and is shared among

Oracle processes and used for database operations.

 146

of the system to make the best call in reducing database memory usage, or per

session memory usage. From the graph, S.H.A.D.E was able to deal with the alert,

but after the “heal” was set to alert only; the problem remained an ongoing issue.

The alerts were less frequent on the monitored-only system; this could be caused

by smaller session counts on this system, again prompting for a fault-injection

engine to ensure the same issues arise on both systems at the same time.

 147

Watch #21: Database server SMART alerts

This query collects data from the database system regarding the level of SMART

alerts on the database servers.

Graph 21.0: Watch #21: SMART alert levels between database

servers.

SMART alerts were included as a proof of concept for early disk warnings and

alerts if, and potentially when, a disk may fail. To gain full use from this type of

software detection, it would really need to fully integrate with the hardware,

flagging the disk that has degraded and alerting that it needs replacing. Even

rebuilding it from a pool of spare disks and alerting later could be an option.

These types of disk degrading flaggings are used in most modern SAN

environments such as the system offered by EMC and HP. The administrator

receives an alert that a disk could potentially fail in the future and acts on it then,

rather than actually waiting for the disk to fail. Here S.H.A.D.E does the same, but

was unable to retrieve SMART information from the server disks as the option

was not available on the monitored servers. The option was tested during earlier

stages of the S.H.A.D.E development and the option worked and remained in

place as a proof of concept that would be developed to support server side as well

as desktop side technology for disk monitoring.

 148

Watch #22: Database objects missing statistics

This query collects data from the database data dictionary regarding the level of

objects with missing database statistics within each of the databases.

Graph 22.0: Watch #22: Objects with missing statistics levels

between database servers.

Database statistics on an Oracle database are often overlooked as a common cause

of poor performance. If tables/indexes grow or new objects are introduced, the

database needs to be made aware of their existence. Oracle has automated the

statistics gathering with database residing jobs in 10g onwards. But administrators

have learned that, sometimes, larger growing objects benefit from the old-

fashioned way of gathering using computer objects’. Doing so simply informs the

database how many rows are in the table and which indexes/locations are in use.

Oracle will monitor objects and only gather statistics for objects that it sees having

changed enough to gather statistics on. During the design of S.H.A.D.E.,

experience prompted the monitoring and gathering of statistics for objects with no

statistics gathered for a week. If S.H.A.D.E finds objects older with still no

statistics or out-of-date statistics, it will gather them immediately. From the graph,

it can be seen that S.H.A.D.E took a small amount of time to “get on top” of the

problem as so many objects continued to have old or no statistics gathered (even

 149

though the option for automatic statistics was left operational in the 10g database),

but managed to gather older and new objects’ statistics to the level that it

remained on top of the problem. The monitored-only system only reported minor

issues; again, this was because a more natural change was happening in the

healing S.H.A.D.E system, because the same faults didn’t exist on both systems at

the same time. If automatic statistics weren’t gathered, it would show very similar

amounts of errors and repairs each time.

 150

Watch #32: Number of large database datafiles detected

This query collects data from the database data dictionary regarding the number of

large database datafiles that are so large they may hit a high water mark for the

present database configuration and fail to expand.

Graph 23.0: Watch #23: Large database datafiles levels between

database servers

Depending on the database block size, in this case 8k, the limit to any file is 32

GB max. If this file is set to expand and no other file has been created for the

tablespace (as Oracle “large file” option not in use i.e. one file per tablespace), the

database will error out. In this instance, S.H.A.D.E will detect a file that is close to

the limit, alert it as a future “potential” issue and add a datafile, as needed, to the

flagged tablespace. This will allow the database to continue to grow into the new

file without hitting a space limitation. From the graph, it is visible that S.H.A.D.E

was able to detect and fire a “heal” by adding a new file, but still continued to

experience a single file alert after the repair. The engine was unable to fix this

issue as it was an oversight in the design of the healing process for this watch.

Even though the engine was able to fix the issue, it still flagged the same large file

as a problem and attempted to fix it again and again. Eventually, it parked the

“heal” as failed, as the issue could be amended, even though it was fixed. The

 151

engine would need to ignore the condition if it already reacted to and fixed it. In

this case, it would need to run a verify script and flag the file in question to be

ignored in the future. This would need to be built into later builds/versions of

S.H.A.D.E as it would require further code and parameter changes, as well as

testing and verification.

 152

Watch #24: Number of “possible” future extent failures on the database.

This query collects data from the database data dictionary regarding the number of

“potential” database extents that may fail if the database needs to expand an object

(table or index).

Graph 24.0: Watch #24: Possible extent failures levels between

database servers

Because the files are set within the database as locally managed, the overall

number of extents per object wasn’t monitored for issues i.e. any more than 10

extents being flagged as a potential performance issue with the object flagged for

future rebuild as a result. This watch was concerned with objects that could, and

eventually would, fail due to space limitations within the tablespace in which they

reside. If the healing component of S.H.A.D.E is set to fire, it automatically

resides in the tablespace/datafile in which the detected object resides. From the

graph, S.H.A.D.E detects a selection of “potential” objects that will fail in the

future if no more space is assigned (the file could be set to auto-expand to a

limited size), S.H.A.D.E heals the situation by re-sizing the file to bigger than it is

(and below the 32 gb limit) and the issue is no longer flagged because sufficient

space is now in place with the file. With the monitored-only system, space was not

an issue which again prompts for use of a fault-injection engine to ensure all

problems happen on both systems. But since these systems are in “real-world”

use, faults are detected because they would be issues through standard operations

 153

on a daily basis.

 154

Watch #25: Number of objects with logging turned off on the database.

This query collects data from the database data dictionary regarding the number of

database-residing tables and indexes that have logging turned off.

Graph 25.0: Watch #25: Number of database objects with logging

turned off, compared on both database servers

Sometimes, objects can be created or altered to turn logging off. With logging

turned off, the object will not stored re-do data in the database’s archive logs and

thus the administrator will not be able to recover these said objects if the database

needs to be recovered and rolled forward to a point in time. S.H.A.D.E monitors

the database for any objects that have logging turned off; when it discovers any

objects, it loops through turning logging on. When the next point in time, hot or

cold back-up is taken; these said objects can be recovered as all changes to these

said objects after that back-up will now be logged. From the graph, S.H.A.D.E

effectively detected issues with old and obviously new objects, as the issue arose

again after the first heal, after which the problem went away. Interestingly,

S.H.A.D.E appeared to detect issues in the monitored system but the issues didn’t

remain. After further investigation, it was discovered S.H.A.D.E was set to heal

both systems by mistake, the heal was removed from the monitoring system and

the issue didn’t arise again until new objects were created.

 155

Watch #26: Overall level of global transaction that remains active

This query collects data from the database data dictionary regarding the number of

active global transactions
38

or transactions that query from another “linked”

database.

Graph 26.0: Watch #26: Global transactions levels between both

database servers

The number of global transactions in a database is set to a defined limit. If this

limit is reached, further global transactions will fail and raise an error. Often the

default parameter is set and Oracle continues until the limit is reached; when an

error is met, then and only then, does the administrator increase the parameter and

the cycle continues until the issue is met again – if global transaction levels

continue to increase with code/application changes. S.H.A.D.E monitors the level

in use against the level set within the Oracle database (parameter) and flags an

alert to the administrator when the database is getting close to the defined limit.

From the graph, it is clear the healing instance experiences issues and continues to

flag the administrator who fails to act upon them by increasing the database

parameter. This reaction is typical, but in this case S.H.A.D.E hasn’t been given

the ability to alter sessions and it was deemed too risky to simply kill these

38 A global transaction, or distributed transaction, is a set of two or more related transactions that

must be managed in a co-ordinated way. Typically, the transactions are in different databases and

often in different locations.

 156

sessions without gathering more information on what they are doing, if anything

at all. In future builds of S.H.A.D.E, the engine could set a timer and trace the

sessions after they were detected as being active too long, dissecting what they are

actually doing on the database and killing the sessions if they are marked as being

“ghost” – dormant sessions or sessions not needed. The monitored-only system

experienced some, but not many, global transactions, as there was little interaction

within the database to other databases.

 157

Watch #27: Potential datafile space issues.

This query collects data from the database data dictionary regarding the number of

potential datafile space issues where by a file needs space and is not set to auto

expand.

Graph 27.0: Watch #27: Potential datafile space issue levels

between both database servers.

A quick way to set Oracle files to self-manage (with limitation) is to set a datafile

to auto-expand by a realistic value of space i.e. 500 megabytes. This will prevent

the database from hitting a storage wall and faulting, although this is a lazy

approach, as it would be more efficient to monitor and adjust files with growth

and time. Adopting a combination of both is the wiser choice. If a tablespace has

more than one file, set the last file to auto-expand and move/create another as this

file grows beyond a desired level (or restriction). S.H.A.D.E adjusts itself by using

a combination of watches/heals to deal with these problems. In this watch, if the

file is not too large in size, it will be adjusted to auto-expand. If there is another

or a number of files in the tablespace, the last file in the set is the only file to be

set to auto-expand, so the files spill over from one to the other, as needed. If the

file is too large, the heal associated with watches 23 and 24 (as discussed earlier)

will adjust the size or create new files, as needed, with the last file expanding and

monitored, as needed. From the graph, heal detects and fixes the issue with no

 158

further problem highlighted, because any files with potential future issues are

already set and remain as such (unless a human administrator changes, in which

case it will automatically change back as S.H.A.D.E feels fit). The monitored-only

system reported no issues, as space didn’t become an issue or, in this case,

potential issue.

 159

Watch #28: Potential buffer cache hit ratio problem on database

This query collects data from the database data dictionary regarding the hit ratio

(health) of buffer cache hit ratio on the database.

Graph 28.0: Watch #28: Potential buffer cache hit ratio issues

between both database servers.

The buffer cache hit rate is a SGA/Data dictionary statistic within the database,

used to gauge how effectively sized and used that the cache area of memory used

by the database is. Often, it is either over- or under-sized, both of which affect

performance of the database and waste resources. Oracle 10g can dynamically

adjust the memory allocated from an assigned pool of memory. Moving memory

as it sees fit between the databases, various memory resources and needs. But this

setting doesn’t work with extended memory settings on a Windows server with

the database set to use both direct and indirect buffers. In this case, if the database

is set to use standard buffer cache settings, the dynamic controls or self-

adjustment settings of Oracle are disabled. S.H.A.D.E monitors for continuous

low cache hit rates and increases the buffer cache in increments, with further

monitoring until the database hit rate hits an acceptable, parameterised high

enough level, i.e. over 99.8%. If the first change failed to improve the hit rate,

S.H.A.D.E will increase it further and repeat this action with a limitation. From

the graph, S.H.A.D.E increase the buffer hit detected, but still reports it as an

 160

issue. In the illustrated case, S.H.A.D.E parked the “heal” and alerted the

administrator. The lower hit rate was, in fact, caused by system re-starts for

patching, which means the system didn’t have enough time to read data into

cache. The watch heal was re-activated with an increase in the timing for

S.H.A.D.E to re-check as it takes times for the buffer cache to improve if

increased in size; the system also required to be up longer to all, as much parsing

of data/sql as required to emulate normal system running. The hit rate on the

monitored-only system continued to remain poor, as no adjustment was made by

either the engine or the administrator (although the issue was flagged and alerted

by email).

 161

Watch #29: Potential log switch frequency issues on database

This query collects data from the database data dictionary regarding the amount or

level of log switches (too many) on the live database server.

Graph 29.0: Watch #29: Potential log switch frequency issues

between both database servers.

Frequent log switches can be a quick indication the system is handling a lot of

redo within its redo logs39. If too much switching occurs, it can flood the database

and affect its ability to handle redo and archive logs for redundancy, as a lot of

redo switching will occur which requires system resources (from operating system

and database point of view). When the database switches above a set limit,

S.H.A.D.E heals the issue by increasing the size of the redo log files, increasing

the time it will take them to fill up and then switch to the next file in the set.

S.H.A.D.E also alerts the administrator whoi needs to be made aware from a

space/back-up point of view that this change occurred. Redo switches can increase

during busier operating, like batch processing times (as illustrated in the graph

where the monitored-only system experienced a high switch rate for a period and

then continued to have the problem, but it levelled out on its own). Hence, it

would be better if S.H.A.D.E analysed its own history for the event and reacted on

an average over a desired time period (which it was configured to do), allowing it

39 Before Oracle changes data in datafiles, it writes these changes to the redo log.

 162

to take more time and database operations into account before making a change

that will impact the system. Reacting incorrectly won’t affect performance, but

setting the files too high when not needed could potentially affect the database’s

ability to recover to a point in time if needed, if other log timings’ parameters are

not in use. From the graph, S.H.A.D.E appears to handle the alert/error by

increasing the log files until they no longer are an issue.

 163

Watch #30: Potential issue with hot backup executions.

This query collects data from the database data dictionary regarding the amount of

times the database has been backed up using the hot back-up function, if enabled.

In this case, S.H.A.D.E flags a potential issue when any or all of the database files

haven’t been put in hot back-up mode for a defined time.

Graph 30.0: Watch #30: Hot back-up frequency issues between

both database servers.

Hot back-ups are “usually” conducted on a daily basis, but are dependent on a

number of factors. Amount of change on the database, size of the database, are

incremental back-ups in use (where only change is backed up). All of these are

different factors and affect how often each and every block of the database is

backed up to disk/tape. In this case, RMAN is not used and standard hot back-up

from disk to disk is conducted on a daily basis using scheduled tasks/jobs on the

database server. If these jobs fail to execute or if the database is altered without

the back-up script being altered, S.H.A.D.E intervenes and fixes the issue, but

making sure a hot back-up is conducted. S.H.A.D.E only alerts on the issue when

a three-day window has passed and it decides (running under its own defined

parameters) that this condition is an error/fault and that it should repair the

problem. From the graph, S.H.A.D.E reacts and fixes the issue where possible. In

the illustrated example, a back-up script was failing and new files were later

 164

added. Eventually, S.H.A.D.E was on top of the problem and prevented a potential

issue. If a new file is added to a database and the back-up script is not altered, it

will prevent the administrator from recovering the database completely or at all.

Older back-ups also put the database at risk from a recovery standpoint as the

administrator must have each and every archive log since the back-up to allow

him/her to roll forward through all changes. If one file is missing from tape or disk

that will be as far as the recovery can go. Taking frequent “fresh” back-ups will

help reduce the risk. The monitored-only system is flagged constantly, even

though hot back-ups are not possible as the system is not in archive log mode.

S.H.A.D.E is correct in flagging it as a potential issue as no checkpoints have been

issued on the system, so the administrator is alerted and reminded that a cold

back-up must be carried out on the said system, otherwise recovery will not be

possible if needed.

 165

Watch #31: High level of user sessions on the database.

This query collects data from the database data dictionary regarding the amount of

user sessions currently logged into the database.

Graph 31.0: Watch #31: High level of user sessions connected

issues between both database servers.

Each and every user session takes up space and resources on the database and

database server. Each session consumes server side memory as well as memory

within the database SGA. If some or all of these sessions are “ghost” 40 sessions

or sessions no longer connected but still consuming resources, it can be an early

warning of a future problem, or will be consuming resources that could be better

used elsewhere. A network issue on one or more clients can cause these types of

issues, whereby the sessions are not freed and resources remain consumed.

S.H.A.D.E was enabled to alert the administrator as it was deemed too high a risk

to kill user sessions without analysing fully what is the cause of the issue. In early

S.H.A.D.E testing, the system was set to kill older user sessions and keep only the

new session, looping through sessions and killing the ones not needed. But these

failed, as some nodes required more than one session and sometimes the older

sessions were the ones which were live and needed. Accurate SQL tracing on each

and every session to identify which ones are real and which ones are not or

40 A ghost session occurs when a user gets disconnected and the server does not register it; they

remain logged in on the server, but are in fact disconnected.

 166

identify the client in question and forcing a re-boot which will clear all assigned

user sessions and allow SQLnet
41

 on the server to clean up the user sessions, was

decided to be a more accurate and safe measure. Later versions of S.H.A.D.E

could be set to remotely alter the client PCs in question in examples where, say,

one node holds 30 + sessions because of a client network issue. Comparison

between the two systems clearly displays the presence of the problem, with human

intervention being the solution in these cases, with either client re-boots, kills or

database server bounces/re-boots.

41 SQLnet is Oracle's client/server middleware product that offers connection from client to the

database.

 167

Watch #32: Hung user sessions in the database

This query collects data from the database data dictionary regarding the amount of

hung user sessions in the database potentially holding resources or consuming

resources.

Graph 32.0: Watch #32: Hung user sessions issues between both

database servers.

Hung user sessions typically occur after a user session is marked for killing or

losing connection from the database server. They are killed, marked for kill and

lose sessions, but the sessions remain on the database server. These sessions can

cause deadlocks
42

 (especially if killed to release objects already locked). In an

ideal world, deadlocks woul dbe automatically cleaned up by SQLnet and the

database when clients re-boot or time-out occurs. But sometimes they require

intervention from an adminstrator to fix the issue and free the locks/resources.

Oracle provides a server side tool that can be used to kill hung sessions

called”orakill”. Orakill must use the process spid (process address) and database’s

side reference to mark the user session to be killed at a process level within the

Oracle process space. S.H.A.D.E queries the data dictionary for sessions that are

flagged as hung, queries the revelnet information needed to execute an Orakill and

42 A deadlock occurs when two or more threads are blocked, each waiting on a resource held by

the other. When this happens, there is no possibility of the threads ever making progress unless

some outside agent takes action to free the deadlock/resource(s).

 168

runs the said request from the server, parsing in the correct process number and

database reference. Executing Orakill with the wrong process could potentially

kill a live “good” session or worse kill an Oracle process used to manage the

database; hence the use of Orakill is a risk but is a powerful tool to free resources

without re-starting the database to flush all sessions and executions to do so. From

the graph, S.H.A.D.E managed to heal the issues as they arose, alerting the

administrator as needed. The monitored system didn’t experience any hung

session issues, again prompting for the need to inject faults with a fault-injection

engine to all systems, to be compared more accurately in how they react to issues

as they arise at the same time.

 169

Watch #33: DLL
43

 locks in the database

This query collects data from the database data dictionary regarding the amount of

DLL locks that could prevent database residing code from being updated.

Graph 33.0: Watch #33: DDL lock issues between both database

servers.

DDL locks are normal on a database; DDL deadlocks can cause issues as they

lock objects and prevent other user sessions from using this object. DDL

deadlocks can be particularly troublesome when a database object needs to be

updated. An example would be putting a new database view or function live and

not be able to, as the chance hangs and queues behind another session that won’t

free the resource without manual intervention. The DDL lock can be handled in

much the same way as table deadlocks, as mentioned earlier, but DDL locks are

detected differently. S.H.A.D.E monitors and alerts when the level rises above a

set “healthy” defined level for the database in use (again this prompts knowledge

of the instance the engine is running against and suggests a future feature of

S.H.A.D.E, whereby the engine is able to build a history of optimal parameters

and judge future failings based on this “health check” – basically setting down its

baseline from knowledge it has built of the database, rather than manually

43 Data Definition Language: computer language for defining data structures.

 170

configuring the engine parameters over time). From the graph, it is illustrated that

both systems experienced DDL locking issues, and both alerted the administrator

of the errors, but DDL locks were only altered through human intervention, as full

session analysis would be required to identify which DDL locks could be killed

and which shouldn’t to allow DDL locks to be released.

 171

Watch #34: Database PGA
44

usage

This query collects data from the database data dictionary regarding the amount of

PGA memory assigned to and consumed by Oracle sessions.

Graph 34.0: Watch #34: Hung user sessions issues between both

database servers.

The database’s PGA is set at the database limit as an area of defined

server/database memory that can be used and shared with connected users. If

sessions require more space, they can take memory from the PGA pool for sorting

data. If the PGA is set too small, users can get space within the database “on disk”

temp files for sorting as needed but, as expected, this is a slower operation. If the

PGA is set too large, space on the server could be better used for other processes

or operations. Ideally, it should have sufficient space for all user operations

without the need to constantly expand and contract to meet needs, while avoiding

(where possible for normal transaction operations) the use of the slower temp disk

files. From the graph, S.H.A.D.E was able to quickly repair the issue and re-size

the PGA to better handle user transactions while avoiding execution failures due

to space restrictions or slowing down operations because of disk rather than

memory usage. The issue didn’t arise again and there were no instances of it on

the monitored-only database, as there were less user transactions and thus use of

44 Oracle session Private Ram Area. Individual PGA memory area is allocated each time a new

user connects to the database.

 172

the PGA area of memory. It would have been simulated by reducing the PGA size,

but that would be similar to using a fault-injection procedure and not part of this

experiment.

 173

Watch #35: Potential lack of log switches on database.

This query collects data from the database data dictionary regarding the amount of

log switches – if it is too low, it could affect the database’s ability to recover.

Graph 35.0: Watch #35: Lack of log switches compared between

both databases servers.

In much the same way as the watch that monitors and adjusts for too many log

switches, this watch monitors and adjusts for too few. In this case, the database is

not being hit from a performance point of view; on the contrary, performance

would be improved with less switches and archive log arcs. But where this could

cause an issue is if the system crashes; the bigger the log files, the more redo or

data that could be lost from the log if lost. Ensuring more frequent switches means

more frequent archive logs are produced and “hopefully” backed up to disk/tape.

Again, redo switches can vary during the course of a database’s operations, with

more demand during heavy inserts/updates or long-running batch processes.

S.H.A.D.E looks over a course of time and selects an average amount of switches.

If this average is too low, it forces a switch and thus archives off a log for

recovery. From the graph, it is illustrated how S.H.A.D.E managed to reduce the

problem by forcing switches but, depending on operations, it was still flagged as

an issue. After this, S.H.A.D.E continued to heal the problem and minimise the

risk, but unless the redo’s were reduced in size or other database parameters were

altered to block changes or time to forces switches, the database would continue to

 174

report a “potential” issue - S.H.A.D.E. however, reduces the risk by forcing a

switch. The monitored-only system continued to alert on switching issues but, to a

different degree and with no human intervention, the alert level increased and

decreased along with database update/insert levels.

 175

Watch #36: Check for corrupt database blocks in the database.

This query collects data from the database data dictionary regarding the amount of

corrupt database blocks in the storage files of the database.

Graph 36.0: Watch #36: Corrupt database block issues between

both database servers.

Corruptions can occur at the storage level of the database at anytime. These

corruptions can be either hard or easy to fix, but all corruptions should be

monitored and alerted on. These corruptions can be logical and thus only data

issues, in which case the object can be re-built (index) or exported, dropped and

re-built if a table. This would not be regarded as a “game-stopping” corruption

and typically the user/administrator may only notice such a problem when the

database reads the “infected” block or blocks of data and flags an issue with an

error. Once identified, the administrator can manual repair the fault without too

much downtime or effects on the user (depending on the size of the object, of

course). If the corruption was caused by a hardware fault, then the entire system

will need recovery or movement to an uncontaminated piece of hardware. The

administrator would need to identify how bad an issue or fault had occurred and if

the same hardware could be used. Often the mistake is to use the same hardware

after a refresh without checking the root cause of the initial fault. S.H.A.D.E alerts

the administrator of the possible corruption and immediately kicks off an export of

the scheme’s data to another disk. This means if the fault gets worse and the

 176

system totally crashes, or the error is only logical and limited to one object, the

administrator has a head-start on the issue and S.H.A.D.E has not just alerted the

problem, but has also taken the first steps in resolving the issue while protecting

critical data. Within the graph, it is illustrated that S.H.A.D.E did, in fact, detect

corruptions on the system (these were only simulated) and the engine successfully

exported and alerted the administrator. But the data dictionary statistic was

flushed when the system was re-started and the alert went away (not healed by

S.H.A.D.E). The monitored-only system didn’t have any reported corrupt block

issues and a simulation was required to test, as no heal operations were executing

against this database.

 177

Watch #37: Possible memory fragmentation on the database

This query collects data from the database data dictionary regarding the level of

memory fragmentation with the database’s SGA.

Graph 37.0: Watch #37: Memory fragmentation between both

database servers.

S.H.A.D.E monitors the shared-pool
45

 area of the database’s SGA for memory

fragmentation. If the shared-pool is under-sized or becomes fragmented, it can

cause the user session to fail, as they will be unable to get enough database

residing memory allocated to them to allow them to complete SQL execution on

the database. When this happens, the client application will fail with a typical

Oracle error and continue to fail until a) the shared-pool is increased or b) the

shared-pool is flushed. Even flushing may not prevent the issue from occurring for

a time period and the administrator will have to analyse the database and re-size it

as required. Over-sizing it can help prevent the issue, but this wastes memory

resources and can affect system performance overall as well as start-up and shut-

down operations. S.H.A.D.E was given the ability to first attempt a memory flush

of the shared-pool to effectively coalesce the memory space and attempt to get an

area of free, defragmented space to all SQL to be parsed without error. If the issue

continues, it increases the shared-pool and continues to monitor. If this still fails,

the watch will attempt one more flush before parking the healing operation,

45 Shared-pool is the cache of parsed and commonly-used SQL statements, and also the data-

dictionary cache.

 178

otherwise the continuous assignment of memory to the SGA without investigating

the possible cause (in this case a badly written piece of SQL with looping memory

consuming or leak) could take down the entire system. From the graph, it is

illustrated that S.H.A.D.E initially reacted well and healed the issue, but the

problem arose again and S.H.A.D.E failed in its healing operations. A poorly-

tuned piece of SQL was to blame and the issue was repaired. S.H.A.D.E tried the

first administrator actions and did alert the human element of the system to trigger

further investigation. The monitored-only system experienced a continuously

steady level of fragmentation during the period, not causing a fault, but any

further consumption could have caused a failure or session fault.

 179

Watch #38: Windows (operating system) memory leaks

This query collects data from the server operating system performance levels to

detect any occurrences of operating system memory leaks that could potentially

halt or crash the system.

Graph 38.0: Watch #38: Windows memory leak levels between

both database servers.

From the graph, it is illustrated that both systems only experienced one occurrence

of memory leaks (simulated) during week 30. This was a test to see the

effectiveness of the S.H.A.D.E monitoring only. A possible heal with a windows

memory leak would be to kill possible leaking processes detected within the

resource kit “poolmon”. S.H.A.D.E only monitored both systems and reported the

issues; the problem went away as it was only simulated and didn’t occur for real

after the simulated executions.

 180

4.7 Improve phase

Improvements are only visible with a percentage of heal operations presented

here. The events in which the engine failed to succeed are clearly defined and

explained within each watch element. The elements that are listed as failing to

improve or healing sufficiently would require further development in later builds

of the engine. More time and refinement could increase their rate of success. If

they continue to have negative success rates, they would need to be removed

completely or set to monitor-only, as there is no benefit having code firing and

failing with limited chance of success.

4.8 Control phase

During the initial design of the engine, improvements were necessary to not just

see how the faults were detected, but also how the system reacted to such

detections. Initial fixes were tweaked and enhanced during the control phase, to

ensure the engine operated with the smallest footprint as well as with the greatest

chance of success. Each and every watch was custom-defined and altered to

execute at pre-defined polling times and with custom fixes (where possible). Any

heals that were deemed as potential risks through either insufficient abilities or

risk of change, were constructed as alert triggers only. This meant all defined

watches made it into the final build of the engine, but those that caused issues or

fired with a high level of risk, were altered within the engines parameters to just

monitor and not make changes.

4.9 Summary

This chapter presented the results of the experimental activities of the S.H.A.D.E

engine. The defined failings of the engine have resulted in defining possible

improvements in future builds.

These possible future improvements are:

 181

a) Improved and more advanced integration with hardware elements of the

system. The healing system needs to be able to not just alter the database

and operating elements of the system, but must also be able to alter

hardware components as well as alert on potential issues. If the system

could proactively move data from drives it has flagged as being at risk,

rather than alert, the value of such options would been greatly increased.

b) A more advanced selection of fix options to hand. If the system had an

increased number of fixes, it could fire for each watch, it could reduce the

human interaction element of the system, as there could potentially be less

fixes parked through errors and less alerts for the administrator to react to

(as well as fixes to carry out when S.H.A.D.E is unable to fix issues).

c) More advanced error logging checks. To inject the system with a

collection of experiences in what error logs are critical. Certain alerts and

corruptions would require a DBA to shut down and inspect a system

immediately. S.H.A.D.E could be given more knowledge and fix options

for such events and could also alert when detected by executing the first

steps a human would undertake before the human element would get a

chance to interact and diagnose.

d) No hard-coded parameters for disk drives but the ability to detect

connected volumes and what the operational tasks are within the system. It

would include the ability to check volume sizes, free space, fragmentation

levels and what is running on each volume along with disk IO levels. It

would also include more “disk intelligence” rather than the limited disk

options in the present build. A large amount of system performance issues

arise purely because of ill-balanced disk IO. S.H.A.D.E could have the

ability to move files in much the same way as SAN hardware can move

data blocks to lesser-used volumes from volumes that are over-utilised.

e) Reduce platform limitations that are present in current build. It would be

advantageous to include knowledge and options for other operating

systems such as UNIX and Linux to allow S.H.A.D.E to be used not just

on the Oracle/Windows platform but to include options for other operating

 182

systems as well as “possible” hardware elements (Clusters, SAN, hot

spares etc) and to allow these options to be active and present or de-

activated through the user interface easily without constant parameters

changes within the database repository tables.

f) Constant monitoring and alerting of poorly-written and slow SQL on the

database. A very common cause of poor performance and thus poor health

of a database is the SQL code running against the database. Many 3
rd

 party

monitoring applications have options to capture and tune SQL as needed.

S.H.A.D.E should, therefore, have the ability to constantly detect poor

SQL if and when it “ever” executes, so even if a poor piece of SQL rarely

runs, its time, condition and all other details would be detected, captured

and presented to the administrator.

 183

Chapter 5: Discussion.

 184

5.1 Introduction

The success of self-healing within future system designs can aid both in the

overall manageability of systems as well as reducing cost and simplifying the task

of administration altogether (Chan-Bin Ling, 2004). Both of these elements are

high on the objectives of modern IT managers’ challenges for 2007 and beyond

(BMC software, 2006). The real challenge, however, is how to provide an

effective level of service while operating under an environment of continued cost

reduction and shrinking budgets (Ryan et al., 2008). Budgets are shrinking even

greater as we enter unchartered waters in 2009 and beyond, with world credit

problems and a global recession, effectively meaning IT managers are now

expected to deliver greater automation and maximise efficiency while operating

under tighter budgets. The IT customers have no knowledge of these restrictions,

but still expect their systems to operate 24/7 (Armstrong, 2005). How to achieve

this without adding to overall costs requires a different system management

approach. One approach to reduce costs is to reduce human intervention while

allowing the human to effectively manage more by reducing complexity. This is

not just a simple suggestion to reduce jobs, by removing one person and shifting

the workload onto someone else. It helps the human operator by allowing them to

do more with less, by reducing the amount of problems and thus complexity they

need to deal with (Ryan et al., 2008).

This challenge becomes even more prevalent in the next few years and beyond, as

operational costs are being cut to maximise capital and reduce spending during

harsh economic times. Never since the introduction of the computer system into

industry and the subsequent birth of the IT manager has the cost of managing

computer systems been as scrutinised, as companies are challenged to cut costs.

“IT delivery organisations are still tasked with meeting acceptable service levels

while dealing with massive storage growth, increasing complexity in the data

centre, and shrinking budgets—and potentially reduced staff.” (EMC, 2009). The

challenge to adapt and find a better way is something all administrators and

 185

managers must adopt in order to continue moving forward, while delivering

effective levels of service to the business.

5.2 Overheads of self-healing designs

It would be naive to assume any changes to a system could be conducted without

any risk to its operational state, that a self-healing engine could operate without

any overheads. Overheads, however, are not just limited to its effect on system

performance, but the overhead of risk must also be factored into any system

change, even a new system engine such as the self-healing one defined in this

paper. Any new element within a system, whether automated or human/manual,

introduces a risk of overhead. Any change implemented (if not monitored) runs

the risk of affecting the system state in either a positive or negative fashion. The

key is to reduce this overhead by monitoring the effects of any change. If human

administrators made changes without monitoring the effects of the changes they

made, not only are they running the risk of affecting the system’s performance,

but also are not gauging their success if any, in reacting to what they felt needed

changing in the first place.

Also, overheads of executing the self-healing engine may also vary from system

to system. It could run on one server with adequate resources and have minimal or

any effect on system operations in a negative manner. Running on a lower spec

machine could greatly affect system operations. Hence, this is why the design of

the S.H.A.D.E engine was to be made to the lower system footprint (within

reason) and the selected heals/alerts were chosen as those with greater level of

success versus greatest level of risk.

5.3 Design needs

The only way a self-healing or true autonomic system can be effectively

constructed is when each component in a system can act and communicate as a

whole. Each component must contribute and aid other components, whether said

 186

components are hardware or software. It is not sufficient for an operating system

to attempt a healing operation that causes it to take resources from the system that

can affect other elements of the overall system. Each component requires system

side communication and awareness (Ryan, et al., 2008), not only of its own

actions and effects but the actions of other components on the entire system (IBM,

2001). The only way for this to be achieved is through standards and system

design co-operation, essentially to have system designers working with common

goals, not just concerned with new features that may sell their own products.

Unfortunately, the larger computer vendors such as Oracle and Microsoft work

under business models that rely on growth and sales, with sales relying on new

versions and updates to older products (as well as support that is required because

of potential issues after release).

5.4 Where the S.H.A.D.E engine failed

As discussed, the only way a self-healing or true autonomic system can be

effectively constructed is when each component in a system can act and

communicate as a whole. S.H.A.D.E chiefly dealt with elements of the RDMS

(database) system along with components of the operating system. Incorporating

hardware elements such S.M.A.R.T., although incorporated into the engine, only

acted with alerting capabilities and was not developed to carry out more effective

tasks such as moving data from “potentially” future failing or contaminated disks.

S.H.A.D.E would need to be more aware of all system components to be truly

autonomic in its actions and capabilities. As stated in the previous chapter, there

was insufficient time to develop all of the watch elements to have healing abilities

because some were deemed too risky in execution, potentially risking system

health on their own. Thus S.H.A.D.E failed in being truly autonomic but did

succeed in actually healing key identified system issues when provided with the

“abilities” to do so. Chapter 4, and in particular section 4.9, clearly outlines a list

of future improvements which were compiled from the successes and failures of

the S.H.A.D.E engine and these improvements would aid in making the engine

more autonomic in future builds, with more abilities, options and development

time.

 187

 5.5 Where the S.H.A.D.E engine succeeded

Although S.H.A.D.E didn’t succeed in being truly autonomic, this thesis did

effectively identify the need for such, and how autonomic abilities could be

introduced into the engine during future builds and work. S.H.A.D.E did succeed

in changing the systems running state and efficiency by eliminating and repairing

key issues that arose naturally through normal “everyday” usage. As discussed, a

fault-injection engine would have allowed more effective testing and compare the

S.H.A.D.E-enabled system against a system running without the engine. However,

“any” positive change to a system’s running state is a step towards true

automation and the evolution of a true autonomic system and with that in mind,

S.H.A.D.E has proven the theory outlined in the literary review chapter. It has

proven that a system can be designed with self-healing in mind and we could one

day, possibly be operating less complex and more efficient systems in the future.

5.6 Summary

As discussed, the challenges of the modern IT manager and system administrator

are a constantly changing field. IT, by its nature, requires funding and upgrades to

allow it to evolve and progress, but recent modern times have increased not only

the demand on system “up-time”, but also decreased the ability to move forward

with ever-shrinking budgets and the need to cut costs. The cloud appears to offer

one level of reducing cost, but which company do you hire to hold your mission

critical data and how effective are they are keeping systems on-line and

operational?

Autonomic and self-healing systems of the future could only help to enhance the

cloud model or any system model for that matter. If true autonomic computing

became a reality, data centres, whether in the cloud or in the computer room,

could operate with less human intervention which will in itself reduce costs as

well as potentially increasing their effectiveness and efficiency in both “up-time”

and operational performance. S.H.A.D.E has demonstrated, as part of this thesis,

how self-healing and self-management is a step in the right direction. Now we

must rely on the system builders such as Microsoft, Google, IBM and Oracle

 188

(amongst others) to work together to define standards for a true autonomic age of

computing.

 189

Chapter 6: Conclusions and future work.

 190

6.1 Introduction

“Self-healing systems are expected to respond to problems that arise in their

environments with minimal human intervention” (Griffith et al., 2007). This

statement covers a lot in very few words regarding what is expected of a self-

healing system and also what factor may deem it a success or not. This factor is

the reduction of human intervention. The self-healing system is measured on the

reduction of the human element in the system’s operations. This reduction of the

human interaction was a clear goal of the S.H.A.D.E engine and design, where a

selection of “everyday” possible issues were identified and designed with

subsequent healing abilities (where possible).

Automation at any level can enhance the operations of a system, so long as

automation does not increase risk to the system or reduce the quality of its

operations. Reducing the human administrators’ manual operations will obviously

free up their time and thus decrease cost. But also automating repairs will help a

system repair itself quicker and reduce the risk of the system performance

degrading or even crashing. Freeing up the human element can help people

archive more with less and free up their time to deal with more systems.

This could also open up another argument regarding loss of skill. If the human

administrators are not exposed to issues more regularly, they may run the risk of

losing the knowledge on how to deal with a problem once the automation of self-

healing fails. But this same issue could also occur with newer system versions,

whereby the vendor has reduced complexity and filtered features away from the

administrators, in much the same way as Oracle has done in its 10g RDBMS

(Kumar, 2006).

The cost of doing business has never been so high on companies’ agendas.

Although the use of IT systems can effectively help business to reduce cost

through automation and a reduced workforce, the cost of IT is also not without its

own challenges. Self-healing designs will aid systems to become more self-

sufficient. Through the introduction of standards and mature initiatives such as

 191

IBM’s autonomic computing, computer systems could one day be completely self-

sufficient.

6.2 Future Work

If the human operator was removed completely from the equation, the problem

focus would shift to how the human element might be replaced with a computer

solution. This is a two-fold problem; on one hand, there is a problem of finding a

solution to the issue of complexity, by either helping or replacing the human

operator. On the other hand, humans offer elements that today’s A.I.
46

/expert

systems have no hope of matching; “humans can handle unknown situations and

learn from their experiences” (Hermannet al., 2005). Humans can adapt and

change their approach based on knowledge and results. As shown, the design of a

self-healing engine requires significant knowledge of the platform it will operate

under. The developer needs to be aware of numerous elements within the system

and have a clear, tested understanding regarding the success level of the self-

healing elements of the engine. Otherwise, the application runs the risk of causing

more issues than it could fix by making changes that would not succeed and

affecting components of the system.

Clear and concise standards developed by the key players in the industry are

needed if self-healing and thus self-managing systems are ever to become a

reality. The autonomic computer initiative’s current definitions are sufficiently

well defined.. The four functional areas represent a useful categorisation, but the

differences between them are not clear. As mentioned in this paper, distinguishing

between a faulty system and a system that's not operational optimally isn’t easy.

While a faulty system would be subject to self-healing, a sub-optimal system

should self-optimise. It really depends on how one classes a fault in the same

respect as how one classes as a “heal”. What distinguishes self-healing from self-

optimisation is as much of a problem that requires definition as does what is a

46 A.I.: Artificial Intelligence, a method whereby computer software attempts to simulate and

replicate human intelligence.

 192

fault? These questions are the building blocks for standards that will define self-

managing systems. Other concepts that exist are self-adaptation and self-

organisation. Although we might intuitively regard them as being more general

than the concept of self-management, finding a clear definition of these terms is

extremely difficult, if not impossible, because the concepts behind them are still

only partially understood (Hermann, et al., 2005).

One obvious future development for the engine would need to be the ability to

react and diagnose “unknown” situations and errors in much the same manner as a

human engineer who is presented with a problem he has never seen before. The

S.H.A.D.E engine would thus not just need the ability to diagnose and identify the

issue but would also have to be able to draw on previous experiences and attempt

to change the system (improving its condition). It would be building real artificial

intelligence into the engine and drawing on experience in much the same way as

an automatic expert system. Ideally, the experience could be extracted from

companies’ help desk systems (if standardized), drawing from an already

potentially massive amount of data concerned with possible errors and repairs.

This is where standards need to be designed and adopted so true autonomic

systems are not just moving forward in their daily operations but are (like their

human counterparts) as able to draw from a wealth of previous experience,

whether the same system has experienced it themselves. This could be compared

to a human engineer who finds himself without the knowledge or experience and

calling a colleague or searching the internet/knowledge boards for answers. Since

help desk calls are stored in databases, if they were stored in standard formats and

the systems were open to interrogation, then the data would be of value to

everyone and not just the companies housing the help desk information.

6.3 Conclusions

As stated, an IBM objective for its Autonomic Computing project is to free people

from having to think how computers continue to operate. As operators and end-

 193

users, our time would be better spent using computers as tools, rather than needing

to know how they work, or how to fix them once they stop working.

The term autonomic computing introduces a new interesting and promising

research field. However, this area is not well explored in depth, not yet delineated,

and final targets are not well identified. Researchers have different and

contradictory opinions and ideas about autonomic computing and terminology is

often used in a wrong manner (Tosi, 2004). Self-healing can be regarded a single

piece of the overall puzzle, which is in fact the overall goal of self-management or

autonomic computing.

To have a fully operational self-healing system, each and every component within

the system would need to work in full co-operation. This would require hardware

and software to be aware of each other’s existence and configurations and be able

to control each other’s actions. The software would need to determine if and when

hardware may be at fault, identify that faulted unit and have sufficient resources to

continue without it. Server farms of today can manage this on a simplified level,

whereby the transaction’s load is moved and balanced onto healthy systems when

a system faults, picking up the slack and even bringing passive systems in active

operations to step in for the failed unit. This principle would need to work in a

similar fashion within a self-healing system. A disk fails and a spare disk

automatically becomes active, while the old disk is removed and replaced with a

passive spare disk. A CPU or memory chip faults, a passive chip comes into

operation and the old chip is flagged as faulted. Until advanced robotics and A.I.

are commonplace, however, we will still need the human engineer to remove and

replace the contaminated part.

For self-healing and autonomic computing to progress, it will need the support of

the major hardware and software developers. As suggested, they need to work

together in developing standards and not just using these types of elements as

unique features that can be used to sell their own products. Future studies in the

field of self-healing could work at defining a baseline for these standards and

carrying out some of the foundation work for moving towards the design of self-

healing systems or systems with self-healing features.

 194

If systems continue to become more complex and rely more on the human element

to intervene when problems arise, it will only continue to add to the cost of

ownership and increase the dependency on the human element and their skill-sets.

 195

Chapter 7: Appendices.

 196

7.1 Bibliography

1. Adya, Atul. Paramvir Bahl, Ranveer Chandra & Lili Qiu.Architecture and

Techniques for Diagnosing Faults in IEEE 802.11. Infrastructure

Networks. Tenth Annual International Conference on Mobile Computing

and Networking MobiCom 2004.

2. Ariolic Software, Active Smart. S.M.A.R.T. Technology. 2007

http://www.ariolic.com/activesmart/smart-technology.html

Accessed 22nd August 2007.

3. Armstrong, P. 2005, Swing into Business Service Management: Seven

strategies for enabling IT to activate the business. BMC Software. p. 5-7.

4. Ballmer S. 2006, “A New Era of Business Productivity and Innovation.

Microsoft Corporation.

http://1010wins.com/pages/136856.php?contentType=4&contentId=25047

Accessed 16th August 2007.

5. Baum, David. Step Into Windows. “Oracle technology on the Windows

platform pumps up performance and reliability”. Oracle Magazine

May/June 2007.

6. Beeler, Diane. Ignacio Rodriguez Database Performance Made Easy:

BMC software 2002.

7. BeyondThrust, A Process-based Approach to Protecting Privileged

Accounts & Meeting Regulatory Compliance. BeyondThrust. 2009.

8. Bloor, Robin. The Extraordinary Failure of Anti-Virus Technology:

Whitelisting Succeeds Where AV Has Failed. Hurwitz & Associates.

2007.

9. BMC software 2006, A Market Analysis: Performance Management: New

“Hybrids” Combine Agent and Agent-less Technology, Deliver Best of

Both Worlds From a Survey of Technology Decision-Makers. Ziff David

Media U.S. p.7-9.

http://www.ariolic.com/activesmart/smart-technology.html

 197

10. Borning, Alan, “Computer System Reliability and Nuclear War”.

Association For Computer Machinery. 1987.

11. Brown Aaron B, Charlie Redlin, “Measuring the Effectiveness of Self-

Healing Autonomic Systems”. Second International Conference on

Autonomic Computing (ICAC'05) By Publication Date: June 2005.

12. Brown, A.B., J. Hellerstein, M. Hogstrom, T. Lau, S. Lightstone, P. Shum,

M. Peterson Yost 2004, Benchmarking Autonomic Capabilities: Promises

and Pitfalls. IBM Laborites U.S. p. 2.

13. Brzezinski, Jerzy, Michal Szychowiak. Poznan SELF-STABILIZATION

IN DISTRIBUTED SYSTEMS – A Short Survey University of

Technology 2000.

14. Burleson, Donald K. Cost Control: Inside the Oracle Optimizer. 2001

http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/

burleson_cbo_pt1.html

Accessed 10
th
 February 2008.

15. Burniece, Tom. DISK AEROBICS™ and MAID (Massive Array of Idle

Disks) A Match Made in Heaven. Copan systems. 2005.

16. Chan-Bin Ling, B. 2004, Self-Healing.

http://www.usenix.org/events/nsdi04/tech/full_papers/ling/ling_html/node

17.html

Accessed 10th August 2007.

17. Cruz, Acacio 2009. Official Gmail Blog. http://gmailblog.blogspot.com/

Accessed 25
th
 February 2009.

18. Czap, H., R. Unland, C. Branki, Self-Organization and Autonomic

Informatics, IOS Press, 2005 pp 267.

19. Daly, Mark A. Task Load And Automation Use In An Uncertain

Environment. Department Of The Air Force Air University Thesis,

Captain, USAF. 2002.

http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/burleson_cbo_pt1.html
http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/burleson_cbo_pt1.html

 198

20. Dashofy, E.M., A. Van der Hoek, R. N. Taylor 2002, Towards

architecture-based self-healing systems. University of California. p 2.

21. Diao, Yixin, Research staff member, Research Lab: Watson Research

Center (Hawthorne).

http://domino.research.ibm.com/comm/research_people.nsf/pages/diao.ind

ex.html 2006

Accessed 5th January 2008.

22. Diao, Yixin, Joseph L. Hellerstein, Gail Kaiser, Sujay Parekh, Dan Phung

“IBM Research Report Self-Managing Systems: A Control Theory

Foundation” RC23374 (W0410-080), 2004 pp 8.

23. Dijkstra, E.W., "Self-Stabilizing Systems in Spite of Distributed Control,"

Comm. ACM, vol. 17, no. 11, 1974, pp. 643-644.

24. Diskeeper Corporation. Background multitasking: A technology report for

IT professionals. 2006.

25. Diskeeper Corporation. Hands-on with diskeeper Whitepaper 2007.

26. Dolev, Shlomi and Reuven Yagel. Ben-Gurion SOSP’05 \ SIGOPS.

Doctoral Workshop, University of the Negev, Beer-Sheva, Israel. Oct

2005.

27. Dunne, S., 2007.Microsoft updates windows without users consent.

http://windowssecrets.com/2007/09/13/01-Microsoft-updates-Windows-

without-users-consent

Accessed 2
nd

 January 2009.

28. Executive Software International. Is daily fragmenting needed in today’s

environment? Whitepaper. 2005.

29. Foley, M.J. 2000 Bugfest! Win2000 has 63,000 'defects'.

http://news.zdnet.co.uk/software/0,1000000121,2076967,00.htm

Accessed 1st August 2007.

 199

30. Food and Drug Administration, 2002. General Principles of Software

Validation; Final Guidance for Industry and FDA Staff. U.S. Department

Of Health and Human Services p 8-9.

31. Fontana, John. Microsoft reissues patch, encourages XP SP2, SP3 re-

installs., Network World.

http://www.networkworld.com/news/2008/061908-microsoft-reissues-

patch.html?t51hb&netht=mr_062308&nladname=062308dailynewsamal

Accessed June 16th 2008.

32. Frankenhaeuser, Marianne. To Err is Human: Nuclear War by Mistake?*.

Stockholm Sweden, Psychology Division, Karolinska Institute, Stockholm

(1997).

33. Ganek. A.G. and T.A. Corbi, "The Dawning of the Autonomic Computing

Era," IBM Systems J., vol. 42, no. 1, 2003, pp. 5-18.

34. Ganesh, Amit. Sushil Kumar The Self-Managing Database: Proactive

Space & Schema Object Management with Oracle Database 10g Release

2. Oracle Corporation. 2005.

35. Gao, J., G. Kar, and P. Kermani. Approaches to building self-healing

systems using dependency analysis. IEEE/IFIP Network Operations and

Management Symposium 2004.

36. George, Selvin, David Evans, Steven Marchette, A Biological

Programming Model for Self-Healing. University of Virginia. 2003.

37. Gillen, Al, Randy Perry, Bob O'Donnell and Brett Waldman. Analysis of

the Business Value of Windows Vista. IDC 2006.

38. Gongloor, Prabhaker, Cecilia Gervasio, & Sushil Kumar Oracle Database

10g: Intelligent Self-Management Infrastructure. Oracle Corporation.

2006.

39. Google, 2009. Google Apps – Gmail Incident Report February 24, 2009.

P 1.

 200

40. Griffith, R., R. Virmani and G. Kaiser 2007, The Role of Reliability,

Availability and Serviceability (RAS) Models in the Design and

Evaluation of Self-Healing Systems. p. 1-3. Columbia University U.S. p.

1-3.

41. Griffith, Rean, Gail Kaiser. “A runtime adaptation framework for native C

and bytecode applications.” IEEE 2006.

42. Griffith, Rean, Gail Kaiser. “Adding Self-healing capabilities to the

Common Language Runtime” Columbia University 2006.

43. Herrmann, K., G. Muhl and K. Geihs. 2005, Self Management: The

solution to complexity or just another problem? IEEE distributed systems

online p. 5-6.

44. Hewlett-Packard .HP openview Self-healing Services Data sheet. 2005.

45. Hunt, Preston. Dylan Larson.Addressing IT Challenges with Self-Healing

Technology. Intel Corporation 2003.

46. International Business Machines Corporation, Autonomic Computing

Concepts, IBM press 2001.

47. International Business Machines Corporation (2006a), Autonomic

Computing White Paper An architectural blueprint for autonomic

computing fourth edition. International Business Machines U.S. p. 3, 6-7,

18-20.

48. International Business Machines Corporation 2001, “Autonomic

Computing: IBM’s Perspective on the state of Information Technology”.

International Business Machines U.S. p. 1-2, 21-23, 25-27,30-32.

49. International Business Machines research. Deep Blue Technology:

http://www.research.ibm.com/know/blue.html

Accessed March 22nd 2008.

 201

50. International Business Machines Corporation (2008). When the going gets

tough, the tough need insight. Performance management in the weak

economy. P 8.

51. International Business Machines: IBM Internet Security systems. X-Force

2008 Trend and Risk report. P. 6, 30.

52. Jonssonm, Håkan: Algorithm Lecture with course “Object-Oriented

Design” Luleå University of Technology: 2006.

53. Jupiter Research, RETAIL WEB SITE PERFORMANCE: Consumer

Reaction to a Poor Online Shopping Experience: 2006.

54. Kandogan, Eser, Christopher S. Campbell, Peter Khooshabeh, John Bailey,

and Paul P. Maglio, Policy-based Management of an E-commerce

Business Simulation: An Experimental Study. University of California.

2006.

55. Kelton research 2007, “65 Percent of Americans Spend More Time with

Their Computer than Their Spouse”. Support Soft. Research survey.

56. Kephart, J. O. and D. M. Chess 2003, The vision of autonomic computing.

IBM Thomas J.Watson Research Center p. 9-10.

57. Kephart, J. O. “Research Challenges of Autonomic Computing” IBM

Thomas J. Watson Research Center 2005.

58. Kessler, Michael. Maintaining Windows 2000 Peak Performance Through

Defragmentation. Microsoft Corporation.

http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintai

n/optimize/w2kexec.mspx

Accessed 9th September 2008.

59. Kumar, Sushil. Oracle Database 10g Release 2: The Self-Managing

Database. Oracle Corporation. 2006.

 202

60. Lahiri, Tirthankar, Arvind Nithrkashyap The Self-Managing Database:

Automatic Shared Memory Management with Oracle Database 10g

Release 2. Oracle Corporation. 2005.

61. Lamport, Leslie, “My Writings/ Solved Problems, Unsolved Problems and

NonProblems in Concurrency”, 1984 section 57.

http://research.microsoft.com/users/lamport/

Accessed 10
th
 September 2008.

62. Laliberte, Bob. Emc, 2009. An Innovative Approach to increasing

Operational efficiencies. P3.

63. Ling, Chan-Bin Self-Healing. Benjamin. 2004.

http://www.usenix.org/events/nsdi04/tech/full_papers/ling/ling_html/node

17.html

Accessed 30th September 2008.

64. Locasto, Michael E. Micro-speculation, Micro-sandboxing, and Self-

Correcting Assertions: Support for Self-Healing Software and Application

Communities. Department of Computer Science Columbia University.

2005.

65. Marti, Sergio, T.J. Giuli, Kevin Lai, and Mary Baker.Mitigating Routing

Misbehavior in Mobile Ad Hoc Networks. Stanford University. 2000.

66. McKendrick, Joe. Research Analyst The Rise of the Renaissance Data

Professional – 2007 and Beyond. By. Conducted by Unisphere Research

for the Independent Oracle Users Group (IOUG). 2007.i

67. Mazzotta, Mary Y. Nutrition and wound healing. Journal of the American

PodiatricMedical Association. Volume 84, Number 9, p. 456–62.

September 1994.

68. Middlemiss, Jim. Fragmentation: A $50 Billion A Year Problem (Citibank

and Wells Fargo achieve performance gains and cost savings through

defragmentation.). Miller Freeman Inc 2000.

 203

69. Microsoft Vista Techcenter Reducing Support Costs with Windows Vista.

2006.

 http://technet.microsoft.com/en-us/windowsvista/aa906019.aspx

Accessed 3
rd

 February 2008.

70. Microsoft. Windows Vista customer solution case study. 2007.

71. Mushkatin, Victor. Application Health Monitoring and Modeling,

AVIcode, Intercept Studio, 2006.

72. Murray, S. A. 1997. "Effects of Operator Alertness on Human-Machine

Interaction and Supervisory Control Performance." Doctoral Dissertation,

University of Wisconsin-Madison.

73. Opsware, Selecting a Flexible, Custom Platform to Automate Your Data

Center Management. 2006.

74. Olofson, Carl W. Oracle Database 10g Standard Edition One: Meeting

the Needs of Small and Medium-Sized Businesses. IDC 2005.

75. Oracle Corporation, Oracle Database 10g, Enterprise Edition, Oracle

Datasheet 2006. pp 5.

76. Oracle corporation Oracle Enterprise Manager 10g: Oracle Diagnostic

pack. 2005.

77. Pinheiro, Eduardo, Wolf-Dietrich Weber and Luiz Andr´e Barroso Failure

Trends in a Large Disk Drive Population. Google Inc. Feb 2007.

78. Randall, D. “Mystery virus hits 15 million PCs around the world”. 2009.

http://www.independent.co.uk/life-style/gadgets-and-tech/news/mystery-

virus-hits-15-million-pcs-around-the-world-1515314.html

Accessed 25th January 2009.

79. Ryan, S, Quinn-Whelton, N, McCarthy, M “SELF-HEALING

COMPUTER SYSTEMS: THEIR ROLE IN FUTURE SYSTEM

DESIGNS”. IMC 25, 2008.

 204

80. Ryan, Sean & Ryan, Lisa. P.O.P.A: Pocket Oracle PDA admin. BSc

project W.I.T. 2005.

81. Samsung, S.M.A.R.T. Introduction Self-Monitoring Analysis and

Reporting Technology, Samsung. 2007.

http://www.samsung.com/Products/HardDiskDrive/whitepapers/WhitePap

er_07.htm

Accessed 15th April 2009.

82. Sarter, N.B. , D. D. Woods, and C.E. Billings, “AUTOMATION

SURPRISES”, Cognitive Systems Engineering Laboratory, The Ohio

State University, 1997.

83. Scalability Experts, Inc. Microsoft® SQL Server 2005: Changing the

Paradigm (SQL Server 2005 Public Beta Edition). Scalability Experts, Inc.

84. Seagate Technology “Get S.M.A.R.T. for Reliability.” 1999.

85. Shaw, Mary. Sufficient Correctness and Homeostasis in Open Resource

Coalitions: How Much Can You Trust Your Software System? 2000.

86. Shaw, M. 2002, "Self-Healing": Softening Precision to Avoid Brittleness

Position paper for WOSS '02: Workshop on Self-Healing Systems.

Institute for Software Research, International School of Computer Science.

Carnegie Mellon University. p. 2-3.

87. Stanek, W.R., Introducing Microsoft Windows Vista. p 206 Microsoft

press U.S. 2006.

88. Stauffer, Andr´e, Daniel Mange, Gianluca Tempesti, and Christof

Teuscher A Self-Repairing and Self-Healing Electronic Watch: The

BioWatch. Logic Systems Laboratory, Swiss Federal Institute of

Technology, 2001.

89. Sterritt, R. M. Parashar, H. Tianfield, R. Unland 2005, A concise

introduction to autonomic computing. Engineering Informatics. p 5.

 205

90. Stork, Dr. David G. The end of an era, the beginning of another? HAL,

Deep Blue and Kasparov : Chief Scientist at Ricoh Silicon Valley 1998.

http://www.research.ibm.com/deepblue/learn/html/e.8.1.html

Accessed 10
th
 December 2008.

91. Stojanovic, L. et.al. The role of ontologies in autonomic computing

systems. IBM Systems Journal, 43(3), 2004.

92. Sudhir, B. Kumar Reddy, MTech(IT) Kanwal Rekhi School of Information

Technology. Control and Coordination of Software Adaptation for

Automization. Indian Institute of Technology – Bombay. 2004.

93. Sun Microsystems, Predictive Self-healing in the Solaris 10 Operating

system: Delivering relentless availability. 2004.

94. Sweeny, Tim. The next Mainstream Programming language: A game

Developers perspective. Epic Games. 2006.

95. Tesauro, G., D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O.

Kephart and S. R. White 2004 A Multi-Agent Systems Approach to

Autonomic Computing. IBM T.J. Watson Research Center. U.S. p. 1-3.

96. Tewari, Vijay. Milan Milenkovic Standards for Autonomic Computing.

Intel Technology journal. Volume 10. Issue 04. 2006. Vijay Tewari. Milan

Milenkovic.

97. Tosi, Bicocca Davide: Research Perspectives in Self-Healing Systems

Università degli Studi di Milano 2004.

98. Vanden Eynden, K. 2007, How can you possibly test modern software

fully?

http://www.regdeveloper.co.uk/2007/07/15/all_pairs_testing/

Accessed 28th July 2007.

99. Vilja, John O. Operationally Efficient Propulsion System Study (OEPSS)

Data Book.Volume III. Kennedy Space Center (NASA). 1990. P 25-27.

 206

100. Wellbrink, Joerg. Modeling reduced human performance as a complex

adapative system. Naval Postgraduate School. California. 2003.

101.Williams, H. R. , R. S. Trask, A. C. Knights, E. R. Williams and I. P.

Bond Biomimetic reliability strategies for self-healing vascular networks

in engineering materials. Department of Aerospace Engineering,

University of Bristol, 2007.

102. Wiseth, Kelli. Oracle Database 10g: The world’s first Self managing,

Grid-ready Database arrives. Oracle Magazine October 2003.

103. Wood, G. and K. Hailey, 2006, The Self-Managing Database: Automatic

Performance Diagnosis with Oracle Database 10g Release 2. Oracle

Corporation. U.S. p. 3-4, 16.

104. Zhang, Zheng, Qiao Lian, Shiding Lin, Wei Chen, Yu Chen, Chao Jin

BitVault: a Highly Reliable Distributed Data Retention Platform.

Microsoft Research Asia. 2005.

 207

7.2. Other referenced material during agent design.

1. A History of the Personal Computer: The People and the Technology

By Roy A. Allan.

2. Manufacturing Information and Data Systems: Analysis, Design and

Practice By Brian (EDT) Griffiths, Franjo Cecelja.

3. Encyclopaedia of Computer Science and Technology: Volume 19 -

Supplement 4: Access Technology: Inc. By Allen Kent, Kent Kent.

4. Computer & Information Systems By Cambridge Communications

Corporation, Inc Cambridge Scientific Abstracts.

5. Computer Security - Esorics 2004: 2004 Esorics By Pierangela (EDT)

Samarati.

6. Organic and Pervasive Computing -- Arcs 2004 By C Müller-Schloer,

Theo Ungerer, Bernhard Bauer.

7. The Grid: Core Technologies by Maozhen Li, Mark Baker.

8. A course in probability theory: Third addition. Stanford University.

Academic press 2001. Kai Lai Chung.

9. A course in modern analysis and its applications. Cambridge University

Press 2003. Graeme L.Cohen.

10. Concepts in Programming Languages. Cambridge University Press 2003.

John C. Mitchell.

11. Administrator's Guide to SQL Server 2005. Addison Wesley Professional

2006. Buck Woody.

12. ASP.NET 2.0 Illustrated. Addison Wesley Professional. 2006.

Alex Homer, Dave Sussman.

13. Building High Availability Windows Server™ 2003 Solutions. Addison

Wesley Professional. 2004. Jeffrey R. Shapiro, Marcin Policht.

14. Designing Effective Database Systems. Addison Wesley Professional.

2005. Rebecca M. Riordan.

15. Essential ASP.NET with Examples in Visual Basic .NET. Addison

Wesley. 2003. Fritz Onion.

16. A First Look at ASP.NET v. 2.0. Addison Wesley. 2003. Alex Homer,

Dave Sussman, Rob Howard.

 208

17. How To Run Successful Projects III: The Silver Bullet. Addison Wesley.

2001. Fergus O'Connell.

18. Inside SQL Server 2005 Tools. Addison Wesley Professional. 2006.

Michael Raheem, Dima Sonkin, Thierry D'Hers, Kami LeMonds.

19. JavaServer Pages™, Second Edition. Addison Wesley. 2003.

Larne Pekowsky.

20. .NET Web Services: Architecture and Implementation. Addison Wesley.

2003. Keith Ballinger.

21. SQL Server 2005 Distilled. Addison Wesley Professional. 2006.

Eric L. Brown.

22. The Java™ Programming Language, Fourth Edition. Addison Wesley

Professional. 2005. Ken Arnold, James Gosling, David Holmes.

23. Windows Forensics and Incident Recovery. Addison Wesley. 2004.

Harlan Carvey.

24. Ajax patterns and best practices. Apress. 2006. Christian Gross.

25. An introduction to probability theory. 2004. Christel Geiss and Stefan

Geiss.

26. Applied Statistics and Probability for Engineers Third Edition. John Wiley

& Sons, Inc. 2003 Douglas C. Montgomery, George C. Runger.

27. Windows administration at the command line. For windows 2003,

Windows XP and Windows 2000. Sybex. 2006. John Paul Mueller.

28. Ajax on Rails. Scott Raymond. O’Reilly 2006.

 209

7.3 APPENDICES

7.3.1 Database repository for the S.H.A.D.E engine.

Definitions and descriptions of the S.H.A.D.E database repository concerned with

log files and enfine configurations.

Note: Final structure illustrated.

Broken Watches:

This table holds data regarding the “heals” that have failed and needed to be

parked because they are not suiting defined failure parameters. Any watches listed

in this table will not fire again until removed. The engine displays the context of

this table in the user interface and inserts jobs into the log when they have failed

more times than allowed. S.H.A.D.E also references this table to verify if heals

should be fired.

Illustrated example shows watch 28 (database cache heal) has failed and is

thus parked.

Code:

CREATE TABLE S.H.A.D.E..BROKEN_WATCHES

(

 DB_NAME VARCHAR2(50 BYTE),

 WATCH_ID NUMBER NOT NULL,

 FIX_ID NUMBER,

 DATE_BROKEN DATE NOT NULL

)

TABLESPACE GENERAL_DATA

 210

Error Log:

This table only exists to ease the operations of debugging each and every change

to the engine – either to code or database-residing parameters.

Illustrated example shows S.H.A.D.E is not able to connect to database –

database server is down

Code:

CREATE TABLE S.H.A.D.E..ERROR_LOG

(

 ERROR_SOURCE VARCHAR2(30 BYTE) NOT NULL,

 ERROR_DESCRIPTION VARCHAR2(4000 BYTE) NOT NULL,

 LOG_DATE DATE NOT NULL

)

TABLESPACE GENERAL_DATA

Fix audit trail:

This table contains data especially for S.H.A.D.E fixes that have been fired by the

engine. The audit trail is also useful for tracking errors. S.H.A.D.E also references

this table to decide which watches are failing and showed to be parked to prevent

continuous looping of heals. If the listed heal has been fired and has exhausted re-

tries/other options available to it within its designation timescale, it will be set to

broken and parked/flagged to the administrator and show in the interface.

 211

Illustrated example shows data on heal/fex 28 that failed and was thus set as

broken

Code:

CREATE TABLE S.H.A.D.E..FIX_AUDIT_TRAIL

(

 DB_NAME VARCHAR2(50 BYTE),

 WATCH_ID NUMBER,

 FIX_ID NUMBER,

 TASK_ID NUMBER,

 EXECUTION_TIME DATE,

 ERRORS VARCHAR2(4000 BYTE),

 AUTO VARCHAR2(1 BYTE),

 EXECUTION_OUTPUT VARCHAR2(4000 BYTE)

)

TABLESPACE GENERAL_DATA

Passwords:

This table contains look up data for the engine to allow it to connect to databases

outside of its own engine for monitoring purposes.

Illustrated example shows the passwords are also encrypted to make sure

sensitive data cannot be read from the engine’s repository.

 212

Code:

CREATE TABLE S.H.A.D.E..PASSWORDS

(

 DB_TYPE CHAR(1 BYTE) NOT NULL,

 USERNAME VARCHAR2(20 BYTE) NOT NULL,

 PASSWORD VARCHAR2(50 BYTE) NOT NULL,

 ENCRYPTED CHAR(1 BYTE) NOT NULL,

 DESCRIPTION VARCHAR2(50 BYTE) NOT NULL

)

TABLESPACE GENERAL_DATA

Servers:

This table contains look-up data for the engine to allow it to connect to databases

and servers outside of its own repository for monitory purposes. The S.H.A.D.E

engine uses TNS(less) connectivity, which allows the administrator to change

connections by just changing look-up data.

Illustrated example shows a list of servers monitored during S.H.A.D.E

development/monitoring.

Code:

CREATE TABLE S.H.A.D.E..SERVERS

(

 SERVERNAME VARCHAR2(56 BYTE),

 DB_NAME VARCHAR2(50 BYTE),

 DB_TYPE VARCHAR2(1 BYTE) NOT NULL,

 KEEP_ARCHIVE_DATA VARCHAR2(1 BYTE),

 IN_USE CHAR(1 BYTE) NOT NULL,

 MONITORING_SERVER VARCHAR2(56 BYTE) NOT NULL,

 PRIORITY NUMBER NOT NULL,

 DB_TNS VARCHAR2(255 BYTE) NOT NULL

)

TABLESPACE GENERAL_DATA

 213

Watch archive data:

This table contains the archived live data from the engine on servers monitored

and healed. All watches that have been fired will archive under defined

parameters and remain permanently in this table for final analysis and compare.

All watches are set to archive when a defined count (of rows) is reached (can be

individually defined for each watch).

Illustrated example shows data archived on the 22
nd

 March 2009

Code:

CREATE TABLE S.H.A.D.E..WATCH_ARCHIVE_DATA

(

 DB_NAME VARCHAR2(56 BYTE) NOT NULL,

 WATCH_ID NUMBER NOT NULL,

 TIME_LOGGED DATE NOT NULL,

 VAL VARCHAR2(50 BYTE) NOT NULL,

 LOW_VAL VARCHAR2(50 BYTE),

 HIGH_VAL VARCHAR2(50 BYTE),

 SDEVIATION VARCHAR2(50 BYTE),

 NUM_ITEMS NUMBER

)

TABLESPACE GENERAL_DATA

 214

Watch configs:

This table defines communications for sending emails as well as location of

repository for the S.H.A.D.E engine and Ajax/web server configuration.

Illustrated example shows stmp settings for email alerts

Code:

CREATE TABLE S.H.A.D.E..WATCH_CONFIGS

(

 DBA_EMAILS VARCHAR2(100 BYTE) NOT NULL,

 SMTP_SERVER VARCHAR2(56 BYTE) NOT NULL,

 AJAX_REFRESH NUMBER NOT NULL,

 PDC_DOMAIN VARCHAR2(30 BYTE) NOT NULL,

 AD_PRIV_FOR_LOGON VARCHAR2(30 BYTE) NOT NULL,

 WATCH_DB_NAME VARCHAR2(56 BYTE) NOT NULL,

 WEB_HOST VARCHAR2(150 BYTE) NOT NULL

)

TABLESPACE GENERAL_DATA

Current data:

This table contains data on heals and items being monitored by the engine, pre-

archiving of data. What has been detected and what has been fixed is stored in this

table for reference and archiving by the engine when row counts are met.

 215

Illustrated example shows S.H.A.D.E healing buffer cache for monitored

database

Code:

CREATE TABLE S.H.A.D.E..WATCH_CURRENT_DATA

(

 WATCH_ID NUMBER NOT NULL,

 DB_NAME VARCHAR2(56 BYTE) NOT NULL,

 ENTRY_TIME DATE NOT NULL,

 EXPIRY_TIME DATE NOT NULL,

 RESULT VARCHAR2(100 BYTE) NOT NULL,

 ERROR_LEVEL NUMBER NOT NULL,

 FIX_ID NUMBER,

 DESCRIPTION VARCHAR2(50 BYTE) NOT NULL

)

TABLESPACE GENERAL_DATA

Fix Link:

Contains configuration data on heals. Which heal is to be fired if first option fails

to solve the problem and how many fixes are assigned to each watch. Order is

defined in this table, and the engine references which fix should be used if more

than one fix is defined.

 216

Illustrated example shows heal options for watch 28:

Code:

CREATE TABLE S.H.A.D.E..WATCH_FIX_LINK

(

 FIX_ID NUMBER,

 TASK_ID NUMBER,

 TASK_GROUP NUMBER DEFAULT 0 NOT

NULL,

 FIRE_ORDER NUMBER

)

TABLESPACE GENERAL_DATA

 217

Watch fixes:

This table contains parameters that the engine references to define how many

times a “heal” can be fired inside a defined time window before it is set to fail.

Re-try attempts are also defined.

Illustrated example shows watch 28 can fail only 5 times in 86400 seconds

before being flagged as being in an error state.

Code:

CREATE TABLE S.H.A.D.E..WATCH_FIXES

(

 FIX_ID NUMBER,

 MAX_ERROR_COUNT NUMBER NOT NULL,

 ERROR_COUNT_WINDOW_SECS NUMBER NOT NULL,

 FIX_FIRE_INTERVAL_SECS NUMBER DEFAULT 0

NOT NULL,

 FIX_DESCRIPTION VARCHAR2(1024 BYTE) NOT NULL

)

TABLESPACE GENERAL_DATA

 218

Watch Items:

This is one of the main tables for the repository and configuration of the engine as

it defines how the watches query the database, what code they execute and how

often the code is fired.

Illustrated example shows code that is fired by watch 28 to query the

database

Code:

CREATE TABLE S.H.A.D.E..WATCH_ITEMS

(

 WATCH_ID NUMBER,

 DESCRIPTION VARCHAR2(255 BYTE) NOT NULL,

 IS_OS VARCHAR2(1 BYTE) NOT NULL,

 CATEGORY_NAME VARCHAR2(30 BYTE),

 COUNTER_NAME VARCHAR2(100 BYTE),

 INSTANCE_NAME VARCHAR2(30 BYTE),

 IN_USE CHAR(1 BYTE) NOT NULL,

 REFRESH_INTERVAL NUMBER,

 SQL VARCHAR2(1024 BYTE),

 VIEW_IN_PANEL CHAR(1 BYTE) NOT NULL,

 ARCHIVE_COUNT NUMBER NOT NULL,

 KEEP_ARCHIVE_DATA CHAR(1 BYTE) NOT NULL,

 OK_MESSAGE VARCHAR2(128 BYTE),

 CONSEC_ERROR_HALT NUMBER NOT NULL,

 ERROR_MSECS_RETRY NUMBER NOT NULL

)

TABLESPACE GENERAL_DATA

 219

Raw Data

This table stores live data from the engine on server watches being monitored and

alerts being detected. This table is basically the stored results obtained from each

watch. Watch id, time, value retrieved and database name are stored here for

reference by the engine to decide what is faulted and what needs healing.

Illustrated example shows watch 11 data collection for test system on specific

date

Code:

CREATE TABLE S.H.A.D.E..WATCH_RAW_DATA

(

 WATCH_ID NUMBER NOT NULL,

 TIME_LOGGED DATE NOT NULL,

 VAL VARCHAR2(50 BYTE) NOT NULL,

 DB_NAME VARCHAR2(56 BYTE) NOT NULL

)

TABLESPACE GENERAL_DATA

 220

Server Link:

This is a look-up table for the engine that decides which watch is allowed for

which system. If the watch is not listed for a specific system here, the engine will

not fire the monitoring and thus healing code for that server/database.

Illustrated example shows list of watches for Kernel10 test system

Code

CREATE TABLE S.H.A.D.E..WATCH_SERVER_LINK

(

 WATCH_ID NUMBER NOT NULL,

 DB_NAME VARCHAR2(56 BYTE) NOT NULL,

 ORDER_COL NUMBER

)

TABLESPACE GENERAL_DATA

 221

Watch tasks:

This table contains parameters and code for the individual heals assigned to task

identifiers. If a “heal” exists for a watch, it will be referenced and fired by the

engine here. If the task fails and has another option for the task that it can re-try,

this task is assigned and defined here also.

Illustrated example shows code to be fired by the engine for task id 24

Code:

CREATE TABLE S.H.A.D.E..WATCH_TASKS

(

 TASK_ID NUMBER,

 TYPE CHAR(1 BYTE),

 ACTION VARCHAR2(4000 BYTE),

 RETRY_FIX_ID NUMBER DEFAULT NULL,

 AUTO CHAR(1 BYTE) NOT NULL,

 NOTIFY_ON_SUCCESS VARCHAR2(1 BYTE) DEFAULT 'N'

NOT NULL,

 NOTIFY_ON_FAILURE VARCHAR2(1 BYTE) DEFAULT 'N'

NOT NULL

)

TABLESPACE GENERAL_DATA

 222

Watch tolerance

This table contains data on parameters that define the error levels for issues

detected. Each watch has a level of 1 to 3 where 3 is in high alert and will fire a

fix, if one is defined. Anything outside of a 3 is simply flagged as a potential

future problem.

Illustrated example shows task 14 and its defined tolerances

Code:

CREATE TABLE S.H.A.D.E..WATCH_TOLERANCE

(

 WATCH_ID NUMBER NOT NULL,

 ERROR_LEVEL NUMBER NOT NULL,

 FROM_VAL NUMBER,

 TO_VAL NUMBER,

 IN_LIST VARCHAR2(50 BYTE),

 DB_NAME VARCHAR2(50 BYTE),

 FIX_ID NUMBER,

 ERROR_MESSAGE VARCHAR2(128 BYTE),

 NOTIN_LIST VARCHAR2(50 BYTE)

)

TABLESPACE GENERAL_DATA

 223

7.4 Appendix 2 – Commercial Software with Self-Healing

Capabilities (present and future versions).

Company Product WebSite (for reference only)

Oracle Oracle 10 + 11g www.oracle.com

Microsoft Windows Vista www.microsoft.com

Microsoft Sql Server 2005 www.microsoft.com

Diskeeper Corp. Diskeeper www.diskeeper.com

Google Google apps/search www.google.com

Intel Support and services www.intel.com

 224

7.5 Products tested, researched and utilised during engine

design.

 Oracle 9i release 2 &10g release 2.

 Quest Iwatch.

 Quest Foglight.

 Quest Spotlight (Windows and Oracle Database versions).

 Quest TOAD.

 Quest Central for Databases.

 Quest Database expert.

 Quest SQL tuning.

 Quest Performance Analysis.

 Oracle Enterprise Manager.

 Oracle Tuning pack.

 Oracle Diagnostic pack.

 Nimbus for Database monitoring and reporting.

 BMC.

 Solaris 10 O/S.

 Windows Vista/2000/XP.

 Microsoft SQL Server 2005.

 DisKeeper 2007 premium.

 BitVault

 Ariolic Software: Active Smart.

