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Abstract

Sigmoid functions play an important role in many areas of applied mathematics,
including machine learning, population dynamics and probability. We place the study
of sigmoid functions in the context of the derivative sub-group of the group of exponen-
tial Riordan arrays. Links to families of polynomials are drawn, and it is shown that in
some cases these polynomials are orthogonal. In the non-orthogonal case, transforma-
tions are given that produce orthgonal systems. Alternative means of characterisation
are given, based on the production (Stieltjes) matrix associated to the relevant Riordan
array.

1 Introduction

Sigmoid functions, familiarly known as “S” shaped curves, and typified by the function

f(x) =
1

1 + e−x
,

occur in many areas of applied mathematics. These areas include machine learning, pop-
ulation dynamics, economics, and probability. Sigmoid functions [10] are assumed to be
real-valued and differentiable, and their derivatives exhibit a “bell-shaped” curve over the
interval of interest. See Figure 1.

In this note, we shall focus on the pair (f ′(x), f(x)) where f(x) is a sigmoid function.
Examples of choices for f(x) that we shall meet are tan−1(x), tanh(x), x√

1+x2
, and the

Gudermanian function gd(x) = tan−1(sinh(x)).
We shall place the study of such pairs of functions within the context of the derivative

sub-group of the group of exponential Riordan arrays [13, 14]. This will allow us to develop
a framework for the investigation of the properties of these pairs of functions, and will help
us to elucidate various distinguishing properties. It will be seen that this sub-group provides
a natural approach to the study of analytic sigmoid functions and their derivatives.

A number of integer sequences will be encountered in this note. These, along with
examples of Riordan arrays, can be found in the On-Line Encyclopedia of Integer Sequences
[15, 16].
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Figure 1: The sigmoid pair ( 1
1+e−x )′, 1

1+e−x

2 Exponential Riordan arrays and the derivative sub-

group

Given two power series

g(x) = 1 + g1
x

1!
+ g2

x2

2!
+ · · · =

∞∑
n=0

gn
xn

n!
,

and

f(x) = x+ f2
x2

2!
+ f3

x3

3!
+ · · · =

∞∑
n=1

fn
xn

n!
,

we call the matrix with general (n, k)-th element

tn,k =
n!

k!
[xn]g(x)f(x)k

the exponential Riordan array associated with the pair of power series g(x), f(x), and we
write this matrix as [g, f ], or [g(x), f(x)]. Here, [xn] is the operator that extracts the coeffi-
cient of xn in a power series [11]. In the notation [g(x), f(x)], the variable “x” is a synthetic
or dummy variable, in that

tn,k = [xn]g(x)f(x)k = [zn]g(z)f(z)k.

Every such matrix is lower-triangular, with tn,n = 1 for each n ∈ N0.
For the power series defined above, with their coefficients gn and fn drawn from an

appropriate ring R, the set of matrices [g(x), f(x)] forms a group, for the operation of
matrix multiplication. This corresponds algebraically to the following rule.

[g(x), f(x)] · [u(x), v(x)] = [g(x)u(f(x)), v(f(x))].
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The inverse element of the group of [g(x), f(x)] is given by

[g(x), f(x)]−1 =

[
1

g(f̄(x))
, f̄(x)

]
,

where f̄(x) is the compositional inverse of f(x). This means that we have

f(f̄(x)) = f̄(f(x)) = x.

The identity element of the group is [1, x].
The exponential Riordan array [g(x), f(x)] has a bivariate generating function given by

g(x)eyf(x) =
∞∑
n=0

∞∑
k=0

tn,k
xn

n!
yk.

Example 1. Regarded as an infinite lower-triangular matrix, Pascal’s triangle is the element

[ex, x]

of the group of exponential Riordan arrays (for any base ring R that contains the integers
Z). This is so because we have

tn,k =
n!

k!
[xn]exxk

=
n!

k!
[xn−k]ex

=
n!

k!
[xn−k]

∞∑
i=0

xi

i!

=
n!

k!

1

(n− k)!

=

(
n

k

)
.

The inverse of this array is the array [e−x, x] with general element (−1)n−k
(
n
k

)
.

In this note we shall be interested mainly in the derivative sub-group of the group of
exponential Riordan arrays. This subgroup consists of pairs [f ′(x), f(x)]. That this is a
sub-group follows directly from the rule for the derivative of a composed function.

Example 2. The element [cos(x), sin(x)] is an element of the derivative subgroup, since
sin′(x) = cos(x). This begins

1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −4 0 1 0 0 0
1 0 −10 0 1 0 0
0 16 0 −20 0 1 0
−1 0 91 0 −35 0 1


.
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For this array, we have

tn,k =
n!

k!
[xn] cos(x) sin(x)k

=
n!

k!
[xn]

eix + e−ix

2

(
eix − e−ix

2i

)k
=

n!

k!
[xn]

eix + e−ix

2

1

2kik

k∑
j=0

(
k

j

)
eijx(−1)k−je−i(k−j)x

=
n!

k!
[xn]

eix + e−ix

2

1

2kik

k∑
j=0

(
k

j

)
(−1)k−jei(2j−k)x

=
n!

k!
[xn]

1

2k+1ik

k∑
j=0

(
k

j

)
(−1)k−j

(
ei(2j−k+1)x + ei(2j−k−1)x

)
=

n!

k!

1

2k+1ik

k∑
j=0

(
k

j

)
(−1)k−j

in(2j − k + 1)n + in(2j − k − 1)n

n!

=
1

k!

1

2k+1ik

k∑
j=0

(
k

j

)
(−1)k−j

n∑
`=0

in
(
n

`

)
(2j − k)`(1 + (−1)n−`).

We arrive at

tn,k =
1

k!

1

2k+1

k∑
j=0

(
k

j

)
(−1)k−j

n∑
`=0

(
n

`

)
(2j − k)`(1 + (−1)n−`)(−1)

n−k
2

1 + (−1)n−k

2
.

As in this case cos(x) is an even function, and sin(x) is an odd function, this array is also
an element of what is known as the “checkerboard” sub-group of the group of exponential
Riordan arrays. The fact that sin(x) is odd is due to the fact that sin(−x) = − sin(x), and
similarly cos(x) is even since cos(−x) = cos(x), that is, cos(x) is symmetric about the line
y = 0. Such considerations will be important for some of the sigmoid functions that we will
examine.

We now investigate what is known as the production matrix [4, 5] of the exponential Rior-
dan array [cos(x), sin(x)]. The production matrix of an exponential Riordan array [g(x), f(x)]
is the infinite matrix with bivariate generating function (exponential in x, ordinary in y) given
by

exy(Z(x) + yA(x)),

[2] where
A(x) = f ′(f̄(x)),

and

Z(x) =
g′(f̄(x))

g(f̄(x))
.

For [g(x), f(x)] = [cos(x), sin(x)], we have

f̄(x) = sin−1(x),
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and we obtain

A(x) = cos(sin−1(x)) =
√

1− x2, and Z(x) =
− sin(sin−1(x))

cos(sin−1(x))
=

−x√
1− x2

.

Thus the production matrix P of the exponential Riordan array [cos(x), sin(x)] has generat-
ing function

exy
(
−x√
1− x2

+ y
√

1− x2

)
.

This matrix begins 

0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −3 0 1 0 0 0
−3 0 −6 0 1 0 0
0 −15 0 −10 0 1 0
−45 0 −45 0 −15 0 1

0 −315 0 −105 0 −21 0


.

This matrix has Hessenberg form. It “generates” the array [cos(x), sin(x)] in that the first
row of the n-th power of this matrix is the n + 1-st row of [cos(x), sin(x)]. The production
matrix of the inverse array

[cos(x), sin(x)]−1 =

[
1√

1− x2
, sin−1(x)

]
has generating function

exy(sin(x) sec2(x) + y sec(x)).

This matrix begins 

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 3 0 1 0 0 0
5 0 6 0 1 0 0
0 25 0 10 0 1 0
61 0 75 0 15 0 1
0 427 0 175 0 21 0


.

For the Binomial matrix (Pascal’s triangle) [ex, x], we can show that its production matrix
has generating function

exy(1 + y).

This matrix begins 

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1


.
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This coincides with the well-known property of the Binomial matrix(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.

An important property of elements of the derivative subgroup of the exponential Riordan
group is the following.

Proposition 3. The production matrix of the exponential Riordan array [f ′(x), f(x)] is given
by

U ·
[

1

f̄ ′(x)
, x

]
,

where U is the shift matrix (with general element n!
(k−1)!

[n− k + 1 = 0]) that begins

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


.

The matrix U ·
[

1
f̄ ′(x)

, x
]

is given by removing the first row from the Riordan array[
1

f̄ ′(x)
, x
]
. It is thus of Hessenberg form. Note that we have used the Iverson bracket notation

here: [P ] is 1 if the proposition P is true, otherwise it is 0.

Proof. The Riordan array
[

1
f̄ ′(x)

, x
]

has bivariate generating function given by

1

f̄ ′(x)
exy.

Removing the first row of the corresponding matrix corresponds to taking the derivative of
this generating function with respect to x. We get

d

dx

(
1

f̄ ′(x)
exy
)

= exy
(
d

dx

1

f̄ ′(x)
+ y

1

f̄ ′(x)

)
.

Now
f(f̄(x)) = x =⇒ f ′(f̄(x)).f̄ ′(x) = 1

and hence

f ′(f̄(x)) =
1

f̄ ′(x)
.
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Now

d

dx

(
1

f̄ ′(x)
exy
)

= exy
(
d

dx

1

f̄ ′(x)
+ y

1

f̄ ′(x)

)
= exy

(
d

dx
f ′(f̄(x)) + yf̄ ′(f(x))

)
= exy

(
f ′′(f̄(x))f̄ ′(x) + yf̄ ′(f(x))

)
= exy

(
f ′′(f̄(x))

f ′((̄f)(x))
+ yf̄ ′(f(x))

)
= exy

(
g′(f̄(x))

g(f̄(x))
+ yf̄ ′(f(x))

)
,

where g(x) = f ′(x).

Exponential Riordan arrays whose production matrices are of the form

exy(α + βx+ y(1 + γx+ δx2))

define families of orthogonal polynomials [6, 3, 17]. Such production matrices are of a tri-
diagonal form which begins

α 1 0 0 0 0 0
β α + γ 1 0 0 0 0
0 2(β + δ) α + 2γ 1 0 0 0
0 0 3β + 6δ α + 3γ 1 0 0
0 0 0 4β + 12δ α + 4γ 1 0
0 0 0 0 5β + 20δ α + 5γ 1
0 0 0 0 0 6β + 30δ α + 6γ


.

This is the Jacobi matrix associated to the family of orthogonal polynomials Pn(x) that
satisfy the three-term recurrence relation

Pn(x) = (x− (α + nγ))Pn−1(x)− ((n− 1)β + (n− 1)(n− 2)δ)Pn−2(x),

with P0(x) = 1, P1(x) = x− α.
Every family of orthogonal polynomials defines a lower-triangular matrix of coefficients

an,k where

Pn(x) =
n∑
k=0

an,kx
k.

The inverse of this coefficient array is the “moment matrix” of the family of orthogonal
polynomials, and its first column contains the moments mn of the family. Regarded as
a sequence mn, we can form its Hankel transform, which is the sequence of determinants
hn = |mi+j|0≤i,j≤n.

We finish this section by remarking that all the pairs (f ′, f) that we shall examine are such
that f(x) is an odd function, and therefore f ′(x) is an even function. Thus the exponential
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Riordan array [f ′(x), f(x)] will be an element of the checkerboard sub-group of the Riordan
group, consisting of those arrays whose first element is even and whose second element is
odd. Thus each sigmoid array to follow is in the intersection of the derivative sub-group and
the checkerboard sub-group.

With this review of the exponential Riordan group completed, we are now in a position
to study sigmoid functions in the context of the exponential Riordan group.

3 A Riordan analysis of sigmoid pairs

We begin by looking at a scaled (and translated) version of the standard sigmoid function

f(x) =
1

1 + e−x
.

We first translate in the y direction to get

f(x)− 1

2
=

1

1 + e−x
− 1

2

=
2− 1− e−x

2(1 + e−x)

=
1

2

1− e−x

1 + e−x

=
1

2

e
x
2 − e−x

2

e
x
2 + e

−x
2

=
1

2
tanh

(x
2

)
.

Now 1
2

tanh
(
x
2

)
=
∑∞

n=0 an
xn

n!
, where the sequence an begins

0,
1

4
, 0,−1

8
, 0,

1

8
, 0,−17

16
, 0,

31

4
, 0, . . . .

We prefer to work with integer valued coefficients, for simplicity, so we rescale again to study
the function

f̃(x) =
2

1 + e−2x
.

We then have

f̃(x)− 1 =
2

1 + e−2x
− 1 = tanh(x).

Thus we commence our study of sigmoid functions with the pair (tanh′(x), tanh(x)) =
(sech2(x), tanh(x)). See Figure 2.

The associated exponential Riordan array, which we shall call a sigmoid array, is

[sech2(x), tanh(x)] =

[
1

1− x2
, tanh−1(x)

]−1

.
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Figure 2: The sigmoid pair sech2(x), tanh(x)

The production array of [sech2(x), tanh(x)] has generating function

exy
(
−2x+ y(1− x2)

)
.

This implies that the inverse of sigmoid array [sech2(x), tanh(x)] is the coefficient array of
the family of formally orthogonal polynomials that satisfy the three-term recurrence

Pn(x) = xPn−1(x)− n(1− n)Pn−2(x).

These polynomials begin

1, x, x2 + 2, x(x2 + 8), x4 + 20x2 + 24, x(x4 + 40x2 + 184), x6 + 70x4 + 784x2 + 720, . . . .

The production matrix of the sigmoid array [sech2(x), tanh(x)] is given by

P = U.[1− x2, x].

We deduce that the Hankel transform [1, 7, 8, 9] of the expansion of f ′(x) = sech2(x) is
given by

hn =
n∏
k=0

((k + 2)(1− (k + 2)))n−k,

which begins

1,−2,−24, 3456, 9953280,−859963392000,−3120635156889600000, . . . .

We also have that the Hankel transform of the expansion of sigmoid function tanh(x) is given
by

n∏
k=0

k!2(−1)
n+1
2

1− (−1)n

2
.
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Figure 3: The sigmoid pair sech2(2x), 1
2

tanh(2x)

This sequence begins

0,−1, 0, 144, 0,−1194393600, 0, 15728001190723584000000, . . .

A related sigmoid array is the array

[sech2(2x),
1

2
tanh(2x)] =

[
1

1− 4x2
,
1

2
tanh−1(2x)

]−1

,

based on the sigmoid function 1
2

tanh(2x). See Figure 3.
This sigmoid array has its production matrix generated by

exy(−8x+ y(1− 4x2)),

and hence its inverse array is the coefficient array of a family of formally orthogonal poly-
nomials Qn(x) that satisfy the three-term recurrence

Qn(x) = xQn−1(x)− 4n(1− n)Qn−2(x).

The production matrix of this sigmoid array is given by

P = U · [1− 4x2, x].

The next sigmoid array that we shall study is given by[
1

1 + x2
, tan−1(x)

]
= [1 + tan2(x), tan(x)]−1 = [sec2(x), tan(x)]−1,

based on the sigmoid function tan−1(x). See Figure 4.
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Figure 4: The sigmoid pair 1
1+x2

, tan−1(x)

We find that the generating function of the inverse array [sec2(x), tan(x)] is given by

exy
(
2x+ y(1 + x2)

)
,

and thus the sigmoid array
[

1
1+x2

, tan−1(x)
]

is itself the coefficient array of the family of
orthogonal polynomials Pn(x) that satisfy the three-term recurrence

Pn(x) = xPn−1(x)− n(n− 1)Pn−2(x),

with P0(x) = 1, P1(x) = x. These polynomials begin

1, x, x2 − 2, x(x2 − 8), x4 − 20x2 + 24, x(x4 − 40x2 + 184), x6 − 70x4 + 784x2 − 720, . . . .

The moments of this family of polynomials, which begin

1, 0, 2, 0, 16, 0, 272, 0, 7936, 0, 353792, 0, 22368256, 0, . . .

therefore have their generating function given by sec2(x), with Hankel transform given by

n∏
k=0

((k + 1)(k + 2))n−k.

The production matrix of this sigmoid array is given by

U · [cos2(x), x].

We next consider the sigmoid array[
1

(1 + x2)
3
2

,
x√

1 + x2

]
=

[
1

(1− x2)
3
2

,
x√

1− x2

]−1

,

based on the sigmoid function x√
1+x2

. See Figure 5.
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Figure 5: The sigmoid pair 1
(1+x2)3/2

, x√
1+x2

The generating function of the production matrix of the sigmoid array is

exy(−3x
√

1− x2 + y(1− x2)
3
2 ).

Similarly, the generating function of the inverse array is given by

exy(3x
√

1 + x2 + y(1 + x2)
3
2 ).

Clearly, neither array is the coefficient array of a family of orthogonal polynomials. Thus this
sigmoid pair is qualitatively different from the previous examples. The production matrix
of this sigmoid array is given by

U ·
[
(1− x2)

3
2 , x
]
.

A related sigmoid array (one of an obvious family) is given by[
1

(1 + x4)
5
4

,
x

(1 + x4)
1
4

]
=

[
1

(1− x4)
5
4

,
x

(1− x4)
1
4

]−1

.

We find that the production matrix of the sigmoid array has generating function

exy(−5x3(1− x4)
1
4 + y(1− x4)

5
4 ),

with an analogous result for the inverse array.
The production matrix of this sigmoid array is given by

U ·
[
(1− x4)

5
4 , x
]
.
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Figure 6: The sigmoid pair sec(x), gd(x)

We next consider the sigmoid array given by

[sech(x), gd(x)]

where the Gudermanian function gd(x) is defined by

gd(x) = tan−1(sinh(x)) = sin−1(tanh(x)) = cos−1(sech(x)).

See Figure 6.

The inverse of this sigmoid array may be expressed in many ways. Some are

[sech(x), gd(x)]−1 = [sec(x), sinh−1(tan(x))] = [sec(x), log(sec(x) + tan(x))],

and

[sech(x), gd(x)]−1 = [sec(x),

∫ x

0

sec(t) dt].

Here, gd′(x) = sech(x) and gd−1(x) = sech−1(cos(x)). Using these expressions we can show
that the generating function of the production matrix of the sigmoid array [sech(x), gd(x)]
is given by

exy(− sin(x) + y cos(x)).

In a similar manner, we can show that the generating function of the inverse sigmoid array
is given by

exy(sinh(x) + y cosh(x)).

Clearly, neither of these represent the production array of a coefficient array of orthogonal
polynomials. However, we note that the exponential Riordan array [sech(x), tanh(x)] is the
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moment array (inverse of the coefficient array) of the formally orthogonal polynomial family
given by

Pn(x) = xPn−1(x) + (n− 1)2Pn−2(x),

with P0(x) = 1, P1(x) = x. We also have

[sech(x), gd(x)]−1 · [sech(x), tan(x)] =

[
1

cos(x)
, sinh−1(tan(x))

]
· [sech(x), tanh(x)]

=

[
1

cos(x)
sech(sinh−1(tan(x))), tanh(sinh−1(tan(x)))

]
= [1, sin(x)].

We therefore obtain the relation

[sech(x), gd(x)] = [sech(x), tanh(x)] · [1, sin−1(x)],

relating the sigmoid matrix [sech(x), gd(x)] to the moment array of the above family of
orthogonal polynomials. Equivalently, we have

[sech(x), gd(x)]−1 = [1, sin(x)] · [sech(x), tanh(x)]−1

which shows that the coefficient array [sech(x), tanh(x)]−1 of the above family of orthogonal
polynomials is related to the inverse of the sigmoid array by the invertible transformation
[1, sin(x)].

The production matrix of the sigmoid array [sech(x), gd(x)] is given by

U · [cos(x), x].

We next consider the sigmoid array[
e−x

2

,

√
π

2
erf(x)

]
,

based on the sigmoid function
√
π

2
erf(x). See Figure 7.

This array begins 

1 0 0 0 0 0 0
0 1 0 0 0 0 0
−2 0 1 0 0 0 0
0 −8 0 1 0 0 0
12 0 −20 0 1 0 0
0 112 0 −40 0 1 0
−120 0 532 0 −70 0 1


,
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x0

erf(x)

Figure 7: The sigmoid pair e−x
2
,
√
π

2
erf(x)

and it has a production matrix that begins

0 1 0 0 0 0 0
−2 0 1 0 0 0 0
0 −6 0 1 0 0 0
−4 0 −12 0 1 0 0
0 −20 0 −20 0 1 0
−56 0 −60 0 −30 0 1

0 −392 0 −140 0 −42 0


.

Clearly, this is not the production matrix of a moment matrix for a family of orthogonal
polynomials (it is not tri-diagonal). However, we can again apply an invertible transform to
this matrix to obtain the moment matrix of a family of orthogonal polynomials.

Thus we consider the exponential Riordan array
[
e−x

2
, x
]
. This matrix has a production

matrix with generating function
exy(−2x+ y),

and hence it is the moment matrix for the family of orthogonal polynomials given by

Pn(x) = xPn−1(x) + 2(n− 1)Pn−2(x).

These polynomials begin

1, x, x2 + 2, x3 + 6x, x4 + 12x2 + 12, x5 + 20x3 + 60x, x6 + 30x4 + 180x2 + 120, . . . .

We have [
e−x

2

,

√
π

2
erf(x)

]
=
[
e−x

2

, x
]
·
[
1,

√
π

2
erf(x)

]
.

In this case, the lack of a closed form for the inverse of erf(x) limits the amount of analysis
that can be carried out.
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Figure 8: The Gompertz sigmoid pair e1−x−e−x
, e1−e−x − 1

Our final example differs from the previous one in that the sigmoid function we consider
is not an odd function - we do not have g(−x) = −g(x). It finds application in many areas
of applied mathematics including actuarial science and population dynamics. This is the
Gompertz function [12]

g(x) = e1−e−x − 1

which along with its derivative
g′(x) = e1−x−e−x

defines the sigmoid array (which we shall call the Gompertz sigmoid array)[
e1−x−e−x

, e1−e−x − 1
]

=

[
1

(1 + x)(1− log(1 + x))
, log

(
1

1− log(1 + x)

)]−1

which begins 

1 0 0 0 0 0 0
0 −1 0 0 0 0 0
−1 0 1 0 0 0 0
1 4 0 −1 0 0 0
2 −3 −10 0 1 0 0
−9 −22 5 20 0 −1 0
9 50 112 −5 −35 0 1


.

See Figure 8.
The production matrix of this array is given by

U · [(1 + x)(1− log(1 + x)), x].
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The elements of the first column of the Gompertz sigmoid array, which have exponential
generating function g′(x) = e1−x−e−x

are the moments for the family of formally orthogonal
polynomials given by

Pn(x) = (x+ (n− 1))Pn−1(x) + (n− 1)Pn−2(x),

with P0(x) = 1, P1(x) = 1. This means that the moment sequence

1, 0,−1, 12,−9, 9, . . .

has an ordinary generating function given by the continued fraction [18]

1

1 +
x2

1 + x+
2x2

1 + 2x+
3x2

1 + 3x+
4x2

1 + · · ·

.

The moment matrix of these polynomials is given by the exponential Riordan array[
e1−x−e−x

, 1− e−x
]
,

and we have the relation[
e1−x−e−x

, e1−e−x − 1
]

=
[
e1−x−e−x

, 1− e−x
]
· [1, ex − 1] .

The right-most exponential array is the array of Stirling numbers S2(n, k) of the second
kind, which begins 

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 3 1 0 0 0
0 1 7 6 1 0 0
0 1 15 25 10 1 0
0 1 31 90 65 15 1


.

Thus we have

gn,k =
n∑
j=0

mn,jS2j,k

where mn,k are the moment matrix elements for the orthogonal polynomials above, and
where gn,k is the general element of the Gombertz sigmoid array.

In fact, it is possible to define gn,k solely in terms of the Stirling numbers of the second
kind. Thus we have

gn,k =
n∑
j=0

S2(n+ 1, j + 1)(−1)n−jS2(j + 1, k + 1),
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Figure 9: Parametric plot of t 7→ (cos(t), sin(t))

which follows from the equality of exponential Riordan arrays[
e1−x−e−x

, e1−e−x − 1
]

=
[
e−x, 1− e−x

]
· [ex, ex − 1] .

In particular, the elements in the expansion of the derivative of the Gompertz sigmoid
function are given by

gn,0 =
n∑
j=0

S2(n+ 1, j + 1)(−1)n−jS2(j + 1, 1) =
n∑
j=0

S2(n+ 1, j + 1)(−1)n−j.

4 Parametric visualizations

We can visualize the exponential Riordan arrays [f ′(x), f(x)] that we have studied by pro-
viding parametric plots of the pair (f ′(t), f(t)). For the example of [cos(x), sin(x)], we get
the unit circle. We provide visualizations of the sigmoid arrays that we have considered.
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Figure 10: Parametric plot of t 7→ (sech2(t), tanh(t))
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Figure 11: Parametric plot of t 7→
(

1
1+t2

, tan−1(t)
)
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Figure 12: Parametric plot of t 7→
(

1
(1+t2)3/2

, t
(1+t2)1/2

)
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Figure 13: Parametric plot of t 7→ (sech(t), gd(t))
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Figure 14: Parametric plot of t 7→
(
e−t

2
,
√
π

2
erf(t)

)
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Figure 15: Parametric plot of t 7→
(
e1−t−e−t

, e1−e−t − 1
)
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Figure 16: First five polynomials defined by the sigmoid array

[
1

(1+x2)
3
2
, x

(1+x2)
1
2

]

5 Polynomial families

We have seen that for some sigmoid arrays, either they or their inverses define a family of
orthogonal polynomials. Due to the lower-triangular nature of Riordan arrays, a family of
polynomials is always produced, when the Riordan array multiplies the vector (1, x, x2, . . .)T .

For instance, the sigmoid array

(
1

(1+x2)
3
2
, x√

1+x2

)
, which begins



1 0 0 0 0 0 0
0 1 0 0 0 0 0
−3 0 1 0 0 0 0
0 −12 0 1 0 0 0
45 0 −30 0 1 0 0
0 360 0 −60 0 1 0

−1575 0 1575 0 −105 0 1


,

produces the family of polynomials that begins

1, x, x2 − 3, x3 − 12x, x4 − 30x2 + 45, x5 − 60x3 + 360x, x6 − 105x4 + 1575x2 − 1575, . . . .

See Figure 16. Further studies may encompass a detailed examination of the properties of
these polynomials.
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6 Conclusions

We have studied a range of sigmoid functions within the novel setting of exponential Riordan
arrays. This has proven fruitful, bringing into play links to families of orthogonal polynomials
in some cases, and suggesting that the new sigmoid arrays may define interesting families
of polynomials in their own right. Both similarities and differences have been found in
the different functions studied. The links between the Gompertz function and the Stirling
numbers of the second kind, studied by Rzadkowski et al [12], for instance, are made clear
within the context exponential Riordan arrays. It is hoped that further investigation using
these methods will lead to other significant results.
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