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Abstract

Riordan arrays have been used as a powerful tool for solving applied algebraic
and enumerative combinatorial problems from a number of different settings in
pure and applied mathematics. This thesis establishes relationships between
elliptic functions and Riordan arrays leading to new classes of Riordan arrays
which here are called elliptic Riordan arrays. These elliptic Riordan arrays were
found in many cases to be useful constructs in generating combinatorially and
algebraically significant sequences based on their corresponding trigonometric
and hyperbolic forms. In addition, in some cases the elliptic Riordan arrays
presented interesting structural patterns that were further investigated. By ex-
ploring elliptic Riordan arrays more closely with respect to other fields, several
new applications of Riordan arrays associated with physics and engineering are
illustrated. Furthermore, other non-elliptic type Riordan arrays having impor-
tant applications are also presented based on the connection established in the
thesis between Riordan arrays and the analytic solutions to some of the families
of the Sturm-Liouville differential equations.
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Notations and Abbreviations

• g.f Generating Function.

• e.g.f Exponential generating function.

• o.g.f Ordinary generating functions.

• f.p.s Formal power series.

• ≡ Equivalence relation.

• x ≡ a(mod b) Congruent relation.

• × Multiplication.

• Z The set of Integers.

• N The set of Natural numbers.

• R The set of Real numbers.

• C The set of complex numbers.

• ODE Ordinary Differential Equation.

• PDE Partial Differential Equation.

• [zn]f(z) The coefficient of zn in the power series f(z).

• f̄(z) or Rev(f(z)) the series reversion of the series f(z).

• R A Riordan array.

• R̄ The Riordan matrix such that R̄n,k = Rn+1,k.

• (Axxxx) A number. The Online Encyclopedia of Integer Sequences (OEIS)

• (g, f) An ordinary Riordan array.

• [g, f ] An exponential Riordan array.

• bxc The Floor Function.

• m Elliptic modulus.
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• K(m) Complete elliptic integral of the first kind.

• F (φ,m) Elliptic integral of the first kind.

• E(m) Complete elliptic integral of the second kind.

• E(φ,m) Elliptic integral of the second kind.

• ℘ Weierstrass elliptic function.

• ζ Zeta pseudo-elliptic function.

• σ Sigma psedo-elliptic function.

• sm Dixonian elliptic sine function.

• cm Dixonian elliptic cosine function.

• sn(z,m) ≡ sn(z|m) Elliptic sine.

• cn(z,m) ≡ cn(z|m) Elliptic cosine.

• dn(z,m) ≡ dn(z|m) Difference function.

• ∨ Or.

• s.t such that

• ∀ For every.

• ∈ An element of.

• w.r.t with respect to.
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Chapter 1

Introduction to Riordan

Arrays and Elliptic

Functions

1.1 Background of the study

In this chapter we shall discuss the theory of Riordan arrays and elliptic func-

tions which are two of the main areas of research in this work. The study of

Riordan arrays uses extensively the interchangeable notions of sequences, for-

mal power series, generating functions and in some cases the Lagrange inversion

theorem. These concepts are briefly described below.

• A sequence is a mapping from the set N0 of natural numbers into some

other set of numbers such as the set of Real numbers R , Natural numbers

N0, Rational numbers Q , Complex numbers C. That is for a mapping f

the following holds

f : N0 → R, f : N0 → N0, f : N0 → Q, f : N0 → C.

In this case the sequences can be denoted as (fk)k∈N0
. In the case of a

double sequence the mapping is such that

f : N0 × N0 → Z

11



or mapped into any other well known numeric set of numbers. There are

two ways in which the mapping is denoted, which are {fn,k|n, k ∈ N0}
or (fn,k)n,k∈N0

. The most obvious application of a double sequence is

in the display of an infinite array of numbers usually represented in ma-

trix form. The arrangement of the elements of the array is such that the

first row can be generally seen as representing the sequence of numbers

(f0,0, f0,1, f0,2, f0,3, ...) with the second row given by (f1,0, f1,1, f1,2, f1,3, ...)

with the generalized form of the sequences from subsequent rows devel-

oped using a similar pattern.

The OEIS (Online Encyclopaedia of Integer Sequences)[100] provides a

useful searchable database for researchers working in the area of enumer-

ative combinatorics to identify useful named sequences which are the out-

puts of combinatorial processes or instances of combinatorial objects.

• A formal power series (f.p.s) f over a field of characteristic 0 in the

indeterminate z is an expression of the form

f(z) =

∞∑

k=0

fkz
k = f0 + f1z + f2z

2 + f3z
3 + ...+ fnz

n + ...

where fn are the coefficients of the f.p.s ∀n ∈ N0. A formal power series

can also be regarded as an infinite degree polynomial. The set of formal

power series is denoted by F [[z]] or simply F . The order of f(z), denoted

ord(f(z)) is the smallest index r for which fr 6= 0. The set of all formal

power series having order exactly r is denoted Fr.

• The generating function[44] represents the closed form expression cor-

responding to a formal power series expansion encoding information about

a sequence of numbers. In enumerative combinatorics, the nature of the

counting problem will determine if the generating function will be of ei-

ther the ordinary or the exponential type. The exponential type nor-

mally occurs when the order of the elements being counted is important.

The generating function is a more elegant way of working with sequences

of varying levels of complexities in order to uncover useful patterns and

for mathematical manipulation purposes. Generating functions are some-

times called generating series as it can alternatively be viewed as a se-

quence of terms generating the sequence of term coefficients.

• The Lagrange Inversion Formula can be applied in a variety of ways
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[74, 88]:

– Determining the generating function of many combinatorial sequences.

– In the extraction of the coefficients of a formal power series.

– For the computation of combinatorial sums.

– In the process of carrying out the inversion of combinatorial identi-

ties.

If w = w(t) is a formal power series satisfying the relation that w = tφ(w)

with φ(0) 6= 0 then the Lagrange inversion formula [63] states that

[tn]w(t)k =
k

n
[tn−k]φ(t)n.

Setting f(t) = t/φ(t) =⇒ f(w(t)) = w/φ(w) = t, therefore w(t) can be

considered the compositional inverse of f(t). The multivariate version

of the LIF is given in [37]. Some useful techniques for the extraction

of coefficients in formal power series and the application of the Lagrange

inversion formula have been applied to a variety of combinatorial problems

[105].

This thesis document will be divided into twelve chapters. The first chapter will

introduce the concept of Riordan arrays and will give a brief introduction to the

notion of elliptic functions. Chapters 2, 3, 4 will give the Riordan array repre-

sentation of the three main types of elliptic functions seperately. The Riordan

arrays described in Chapter 2 and 3 in particular, will be subdivided into various

new classes of Riordan array subgroups parameterized by the elliptic modulus

m. In chapter 5 we will highlight interesting sub-matrices and new Riordan

arrays that can be derived from some existing Riordan arrays based on their

structural patterns. In chapter 6 the relationship between Riordan arrays and

the solutions to some useful systems of differential equations that have applica-

tions in mathematical physics and engineering will be highlighted as a preview

to some other interesting applications in subsequent chapters. Chapters 7, 8, 9

will identify Riordan arrays that are constructed based on the solutions arising

from the applications of elliptic functions in mathematical physics. Chapter 10

will focus on other applications of Riordan arrays which represent the solution

of the quantum mechanical oscillator. In chapter 11 we will use Riordan arrays

in the implementation of the Bessel filters and Elliptic filters in signal process-

ing. The last chapter will provide the main conclusions and the future direction
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for further research based on the new results presented in this work. There is

also an appendix section with some relevant symbolic codes using Mathematica

software from which the various investigations were carried out in support of

this work.

1.2 A brief historical time-line on the develop-

ment of Riordan arrays

Riordan arrays were originally identified as a tool for solving combinatorial enu-

meration problems, particularly in lattice path theory [21, 73, 98]. The concept

of Riordan arrays is most closely related to the Lagrange inversion theorem

formulated by Lagrange [63] in 1776 and to the umbral calculus developed in

1970’s by S. Roman [87]. The points highlighted below give a summary of the

key time-line in the development of the Riordan array theory.

• In 1978 Rogers [91] was inspired by L. Shapiro’s work which resulted in the

discovery of the triangle of numbers called the Catalan triangle generated

by its first column. The Catalan triangle was the second type of array

to be generated in a similar manner to the Pascal triangle which was

previously the only known array with combinatorial properties. This led

to the formulation of a new method in determining the generalization of

a family of triangular arrays called the Renewal arrays with arithmetic

properties analogous to the Catalan and the Pascal triangle. The result

was the discovery of the A-sequence represented by a recursive formula

(see [91]) that partially determined the entries of the new array known as

the renewal array.

• A follow-up to the work of Rogers on renewal arrays was the introduction

in 1991 of the Riordan Group [98] led by Louis Shapiro in collaboration

with his colleagues Getu, Woan and Woodson from Howard Unversity,

USA. It was named in honour of John Riordan whose pioneering research

work on combinatorics culminated in the publication of his well known

book titled “Combinatorial Identities”[89] which is a useful resource on

problems involving the inversion of combinatorial sums. Shapiro[98] gives

the initial definition of the properties of the Riordan group, its foremost

theorem which is considered the fundamental theorem of Riordan arrays

with the preliminary applications in evaluating combinatorial sums. Fur-

14



thermore, the new theory of Riordan arrays focused on the columns and

in particular algebraically describing them in terms of their associated

generating functions rather than working with the umbral calculus.

• Sprugnoli [102, 103, 27, 104] expanded the applications of Riordan ar-

rays to the proofs of combinatorial identities, evaluation and inversion of

combinatorial sums.

• The introduction of the Z sequence characterization of Riordan arrays

by Merlini et al. (1997) in [73] which completely solved the problem of

recursively determining all the elements of a Riordan array.

• The connection between production matrices and Riordan arrays by Emeric

Deutsch [31] in 2007 introduced the r and c sequence formulas analogous

to the A and Z sequences to determine the recurrence coefficients and

generating functions for the case of exponential Riordan arrays.

• Previous research has found broader application of Riordan arrays to the

following areas:

– Wireless communications for MIMO calculations [50]

– Computer science for algorithm analysis [75, 6]

– Molecular biology for RNA secondary structure enumeration [80]

– Error correcting codes in computer science [8]

– Chemistry [24]

– Queueing theory relating to birth-and-death processes [22].

Over the years there has been very active research with a multitude of publica-

tions in the area of Riordan arrays. An evidence of this active research effort

can be seen in the over 16300 results when the keyword “Riordan arrays” is

entered into the Google search engine. Sprugnoli in 2008 [106] put together a

bibliography collection of over 60 published research papers in the area. This

number has however increased significantly as can be seen from current updates

available in online academic search engines showing that more research papers

have been published on the subject. Key researchers who have contributed

enormously to the domain of Riordan arrays are: L. Shapiro [98], R. Sprugnoli

[107], D. Merlini [77], P. Barry [14], A. Luzón [70], M. Morón [79], T-X He [49],

G.S Cheon [23] and so forth. Their research contributions can be found on their
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individual profiles available on academic web sites such as ResearchGate and

Google Scholar from where their featured publications on Riordan arrays can

be retrieved.

1.3 Definitions and Examples of Riordan Arrays

This section will provide the definitions to the three types of Riordan arrays

together with some of their examples.

1.3.1 Definitions of Riordan arrays

The original forms of Riordan arrays comprise of the Ordinary and the Expo-

nential Riordan array and these two types are the most often used. A third

type of Riordan array known as the Generalized Riordan array was introduced

later.

Definition : An Ordinary Riordan array can be described as an infinite

lower triangular array (dn,k)0≤k≤n defined by a pair of formal power series

represented by their analytic generating functions d(t) =
∞∑
n=0

dnt
n and h(t) =

∞∑
n=0

hnt
n such that the entries of the array columns are evaluated by the formula

dn,k = [tn]d(t)h(t)k

where k is the column number. It is denoted (d(t), h(t)) .

If all the conditions d(0) 6= 0, h(0) = 0 and h′(0) 6= 0 are satisfied together then

it is considered a proper Riordan array which shows that it is invertible.

In the case of the exponential Riordan arrays the definition is a different

variation of the ordinary Riordan arrays given in terms of ordinary generating

functions which are substituted in terms of exponential generating function.

Definition An Exponential Riordan array is an infinite lower triangular

array consisting of a pair of formal power series represented by their exponential

generating functions given by

d(t) = 1 +

∞∑

n=1

dn(tn/n!) h(t) =

∞∑

n=1

hn(tn/n!)
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with the generic element associated with the coefficients of column k evaluated

by

dn,k =
n!

k!
[tn]d(t)h(t)k.

It is denoted [d(t), h(t)] .

From the above definition it is considered a proper exponential Riordan array

otherwise it is considered a non-proper exponential Riordan array if h(0) 6= 0.

The importance of proper Riordan arrays will later be seen as a key condition

in the sequence characterization of Riordan arrays which will be discussed in

subsequent sections of this chapter. Most of the applications of this thesis will

be based on exponential Riordan arrays.

Alternatively, in terms of bivariate generating function an ordinary Riordan

arrays [102] is given by

d(t, x) =

∞∑

k=0

d(t)h(t)kxk =
d(t)

1− xh(t)
. (1.1)

On the other hand the bivariate generating function of exponential Riordan

arrays is given by

de(t, x) =
1

k!

∞∑

k=0

d(t)h(t)kxk = d(t)exh(t). (1.2)

The case for x = 1 in (1.1) and (1.2) results in the explicit formula for the

row sum of a Riordan array.

Definition The definition of Riordan arrays associated with Laurent series is

given in [47] as a Riordan matrix having entries given by

dn,k = [tn]
1

d(t−1)

(
1

h(t−1)

)k

and denoted by (1/d(t−1), 1/h(t−1)).

The most recently introduced type of Riordan array is the Generalized Riordan

array which is a development of the ordinary and exponential Riordan arrays.
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Definition A Generalized Riordan array [115] consists of a Riordan array

given by the pair (d(t), h(t)) expressed in relation to the non-zero sequence of

elements cn with initial conditions c0 = 1 where

d(t) =

∞∑

k=0

dkt
k/ck h(t) =

∞∑

k=0

hkt
k/ck

such that its generic element from which its columns are generated can be

expressed as

dn,k =

[
tn

ck

]
d(t)h(t)k.

A special feature arising from the definition of generalized Riordan arrays is

that it is a more flexible concept to work with as it can be converted to the

ordinary Riordan arrays if cn = 1 and to exponential Riordan arrays if cn = n!.

1.3.2 Some Basic Examples of Riordan arrays

All Riordan arrays are a generalization of the Pascal triangle that is equivalent

to the binomial matrix
(
n
k

)
which has all its leading diagonal elements equal to

1. The most basic and important example of a Riordan array which gives a good

entry point into investigating the various theories, methods and techniques aris-

ing from the Riordan array concept is the Pascal triangle. The Pascal triangle

consists of binomial coefficients which can be described in terms of its ordinary

generating functions defined by

(
1

1− t ,
t

1− t

)

with its general element given by
(
n
k

)
. The generalized form of the Pascal triangle

is given by (
1

1−mt,
t

1−mt

)
=

(
1

1− t ,
t

1− t

)m
,m ≥ 0

having general term
(
n
k

)
mn−k. Its equivalent exponential Riordan array is de-

fined by [et, t]. The exponential type of Pascal triangle can be generalized as

([et, t])m = [emt, t]

such that m = 1 encodes the binomial matrix entries. We can apply the column

definition of a Riordan array and the properties of binomial coefficients [44, 105]
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to determine the general formula an,k of the binomial matrix as illustrated below.

an,k = [tn]
1

1− t

(
t

1− t

)k
=
[
tn−k

] 1

(1− t)k+1

=
[
tn−k

] ∞∑

j=0

(−(k + 1)

j

)
(−1)jtj

=
[
tn−k

] ∞∑

j=0

(
k + 1 + j − 1

j

)
tj

=
[
tn−k

] ∞∑

j=0

(
k + j

j

)
tj

=

(
k + n− k
n− k

)

=

(
n

n− k

)
=

(
n

k

)
.

This shows that a Riordan array is a generalization of the Pascal triangle.

Other well known examples of Riordan arrays that have received much attention

are the Catalan arrays [91, 76] and the Fibonacci arrays [40]. The Catalan

matrix is C =
(

1−√1−4t
2t , 1−√1−4t

2

)
which has general term

cn,k =
k + 1

n+ 1

(
2n− k
n− k

)

forming the Riordan matrix

C =




1

1 1

2 2 1

5 5 3 1

14 14 9 4 1

42 42 28 14 5 1




.

An example of a generalised Riordan array is
(

(1 + t2)−λ0 , −2t
1+t2

)
with respect

to the sequence cn = 1

(−λn )
and

(
1−t2
1+t2 ,

−2t
1+t2

)
. Several other examples of the

generalised Riordan arrays are listed in [115].
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1.4 The Group Structure of Riordan Matrices

The main operation required to determine that a set of Riordan matrices forms

a group is multiplication (∗). The multiplication rule for two Riordan arrays

(g, f) and (h, l) is defined as

(g, f) ∗ (h, l) = (g ∗ (h ◦ f), l ◦ f) . (1.3)

In Shapiro [98] the key criteria for (R, ∗) to be considered a group under the

multiplication operation is stated based on the following conditions listed below.

1. The existence of (1, t) as the identity element.

2. The inverse element is given by

(d(t), h(t))−1 =

(
1

d(h̄(t))
, h̄(t)

)
. (1.4)

We note that for a power series h(t) =
∑∞
n=0 hnt

n with h(0) = 0, we define

the reversion or the compositional inverse of h to be the power series h̄(t)

such that h(h̄(t)) = h̄(h(t)) = t. It can sometimes be denoted simply as h̄

or Rev h.

3. The set is closed under the multiplication of matrices.

4. It is associative since multiplication of matrices is associative.

The next example shows the process of Riordan array multiplication and inverse

computation.

Example Consider the Pascal triangle given by P =
(

1
1−t ,

t
1−t

)

P ∗ P =

(
1

1− t ,
t

1− t

)
∗
(

1

1− t ,
t

1− t

)

=

(
1

1− t
1− t
1− 2t

,
t

1− t
1− t
1− 2t

)

=

(
1

1− 2t
,

t

1− 2t

)
.
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The compositional inverse of 1
1−t in P is t

t+1 . Therefore we have,

P−1 =



(

1

1− t
1+t

)−1

,
t

1 + t




=

(
1

1 + t
,

t

1 + t

)
.

The existence of the inverse element of Riordan arrays therefore makes them

suitable to perform operations involving combinatorial sum inversion.

1.4.1 The Sub-groups of the Riordan Group

Some important sub-groups of the Riordan group have been presented in [99].

The various forms of the subgroups arising from the Riordan array (d(t), h(t))

are listed as follows:

• The Appell subgroup has the form (d(t), t).

• The Lagrange subgroup has the form (1, h(t)) . The Lagrange subgroup

is also known as the Associated subgroup.

• The Renewal subgroup which is also referrred to as the Bell subgroup

has the form (d(t), td(t)).

• The Hitting time subgroup was introduced by Peart and Woan in [84]

and has the form
(
th′(t)
h(t) , h(t)

)
where h′(t) denotes the first derivative of

h(t).

• The Checkerboard subgroup of the Riordan array (d(t), h(t)) represents

a Riordan array such that d(t) is an even generating function and h(t) is

an odd generating function.

• The Derivative subgroup has the form (h′(t), h(t)).

The product of an Appell and a Lagrange Riordan array is such that

(d(t), t) ∗ (1, h(t)) = (d(t), h(t)) .
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1.5 Sequence Characterization of Riordan ar-

rays

Three key theorems have underpinned much of the study within the concept of

Riordan arrays. They are the Fundamental Theorem of Riordan arrays together

with the theorems on the A and Z sequences which characterizes the formation

of a Riordan matrix. The A and Z sequence characterization of a Riordan

array (d(t), h(t)) involves determining both d(t) and h(t) respectively that define

any such array. The theorems arising from the sequence characterization of

Riordan arrays present an alternative definition of a Riordan array in terms of

the recursive formation of its elements. These theorems are summarized below.

1.5.1 The Fundamental Theorem of Riordan Arrays

The Fundamental Theorem of Riordan arrays is an important gateway in prov-

ing many combinatorial identities and in solving problems related to combina-

torial sums. The Fundamental Theorem of Riordan arrays was put forward in

the initial paper which introduced the concept of the Riordan group [98]. The

Fundamental Theorem of Riordan Arrays (FTRA) is formulated as follows:

Theorem 1.5.1 [29] Suppose (d(t), h(t)) is a Riordan array. Let A(t) =
∞∑
k=0

akt
k

and B(t) =
∞∑
k=0

bkt
k with A and B representing column vectors such that A =

(a0, a1, a2, ...)
T and B = (b0, b1, b2, ..)

T . Then (d, h)A = B, if and only if

B(t) = d(t)A(h(t)).

1.5.2 The A-Sequence

The A-sequence introduced by Rogers (1978) [91] characterizes the column ele-

ments after the first column.

Theorem 1.5.2 An infinite lower triangular array D = (dn,k)n,k∈N0
is a Ri-

ordan array if and only if a sequence A = {an}n∈N0
exists such that for every

n.k ∈ N0 it is true:

dn+1,k+1 =

n−k∑

i=0

aidn,k+i.
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Even more, if D = (d(t), h(t)), then the generating function of the A sequence

is such that A(t) =
∑∞
i=0 ait

i satisfies the equation

h(t) = tA(h(t)) ⇒ A(t) =
t

h̄(t)
.

1.5.3 The Z-Sequence

The Z−sequence was introduced by Merlini et al. and defined in the paper [73] as

a follow-up study to completing the sequence characterization of Riordan arrays

which started with the formulation of the A-sequence by Rogers in [91]. The

Z-sequence characterises the elements of the first column of a proper Riordan

arrays as follows:

Theorem 1.5.3 Let (d(t), h(t)) = (dn,k)n.k≥0. Then a unique sequence Z =

(z0, z1, z2, z3, ...) can be determined such that every element in column 0 exclud-

ing the element in the first row can be expressed as a linear combination of all

the elements in the preceding row with the coefficients identified as the elements

of the sequence Z satisfying the relation

dn+1,0 =

n∑

i=0

zidn,i (n ∈ N0).

.

The generating function of the Z sequence satisfies the equation

d(t) =
d0

1− t(Z(h(t))
=⇒ Z(t) =

1

h̄(t)

(
1− d0

d(h̄(t))

)
.

1.6 Production Matrices and Matrix Character-

isation of Riordan Arrays

This section presents an overview of the concepts of production matrices and

the matrix characterization of Riordan arrays which will often be applied in

subsequent chapters. Production matrices were first introduced in the paper

[30]. Production matrices are simply described as infinite matrices that can

be deduced from succession rules and which allows algebraic operations to be

performed [117]. The explicit formula for computing the production matrix P
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associated to an infinite lower triangular matrix D = (dn,k) is given by

P = D−1 · D̄ (1.5)

where D̄ represents the matrix corresponding to the top row of D deleted so

that D̄ = Dn+1,k. The matrix characterization of Riordan arrays which results

from the production matrix P provides an alternative view of the sequence

characterization of Riordan arrays discussed in section (1.5).

1.6.1 Production Matrices of Ordinary Riordan arrays

The production matrix P corresponding to an ordinary Riordan has the struc-

ture:

P =




z0 a0 0 0 0 0 . . .

z1 a1 a0 0 0 0 . . .

z2 a2 a1 a0 0 0 . . .

z3 a3 a2 a1 a0 0 . . .

z4 a4 a3 a2 a1 a0 . . .
...

...
...

...
...

...
. . .




= (Z(t),A(t), tA(t), t2A(t), t3A(t), ...)

where (z0, z1, z2, z3, ...) and (a0, a1, a2, a3, ...) are the Z and A sequences cor-

responding to the generating functions Z(t) and A(t) respectively. The alge-

braic structures of some subgroups of Riordan arrays are determined using their

P−matrix characterization [48].

1.6.2 Production Matrices of Exponential Riordan arrays

The relationship between production matrices and Riordan arrays with the for-

mulation of the r and c sequence characterisation of exponential Riordan arrays

was established by Deutsch [31]. These results are described in the following

statements from [10] on the production matrices of exponential Riordan arrays.

Proposition 1.6.1 Let A = (an,k)n,k≥0 = [g(x), f(x)] be an exponential Rior-

dan array and let

c(y) = c0 + c1y + c2y
2 + . . . , r(y) = r0 + r1y + r2y

2 + . . . (1.6)
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be two formal power series such that

r(f(x)) = f ′(x) (1.7)

c(f(x)) =
g′(x)

g(x)
. (1.8)

Then

(i) an+1,0 =
∑

i

i!cian,i (1.9)

(ii) an+1,k = r0an,k−1 +
1

k!

∑

i≥k
i!(ci−k + kri−k+1)an,i (1.10)

or, defining c−1 = 0,

an+1,k =
1

k!

∑

i≥k−1

i!(ci−k + kri−k+1)an,i. (1.11)

Conversely, starting from the sequences defined by (1.6), the infinite array

(an,k)n,k≥0 defined by (1.11) is an exponential Riordan array.

A consequence of this proposition is that P = (pi,j)i,j≥0 where

pi,j =
i!

j!
(ci−j + jri−j+1) (c−1 = 0)

P =




c0 r0 0 0 0 0 . . .

1!c1
1!
1! (c0 + r1) r0 0 0 0 . . .

2!c2
2!
1! (c1 + r2) 2!

2! (c0 + 2r1) r0 0 0 . . .

3!c3
3!
1! (c2 + r3) 3!

2! (c1 + 2r2) 3!
3! (c0 + 3r1) r0 0 . . .

...
...

...
...

...
...

. . .



.

Furthermore, the bivariate exponential generating function

φP (t, z) =
∑

n,k

pn,kt
k z

n

n!

of the matrix P is given by

φP (t, z) = etz(c(z) + tr(z)).
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Note in particular that we have

r(z) = f ′(f̄(z))

and

c(z) =
g′(f̄(z))

g(f̄(z))
.

1.7 Orthogonal polynomials and Riordan arrays

The modern theory of orthogonal polynomials is based on the research work

by Szegö [110]. The importance of orthogonal polynomials (OPs) are most

often associated to the solutions of mathematical and physical problems. These

polynomials have been identified in areas of study such as wave mechanics, heat

conduction, electromagnetic theory, quantum mechanics, electronic filter design

and mathematical statistics [83].

Definition An orthogonal polynomial sequence(OPS) (pn(x))n≥0 refers to

a sequence of polynomials pn(x), n ≥ 0 of degree n, with real coefficients such

that any pair in the sequence are mutually and continuously orthogonal on an

interval [x0, x1] with respect to a weight function ω : [x0, x1]→ R:

∫ x1

x0

pn(x)pm(x)ω(x)dx = δnm
√
hnhm

where

δnm =

{
1 if n = m

0 if n 6= m

and ∫ x1

x0

p2
n(x)ω(x)dx = hn.

We assume that ω is strictly positive and continuous on the interval (x0, x1).

Additionally, the weight function ω satisfies the first order differential equations

with polynomial coefficients. Some examples of classical orthogonal polynomials

are the Hermite, Laguerre, Legendre, Jacobi, Bessel, Chebyshev [35]. Some of

these polynomials will be treated in subsequent chapters. These systems of

orthogonal polynomials have the following common properties below [81].

1. The weight function ω(x) on the interval of orthogonality (a, b) satisfies
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the Pearson differential equation

ω′(x)

ω(x)
=

p0 + p1x

q0 + q1x+ q2x2
≡ A(x)

B(x)
, x ∈(a, b)

where the following conditions hold at the end points of the interval of

orthogonality:

lim
x→α+0

ω(x)B(x) = lim
x→b−0

ω(x)B(x) = 0.

2. The polynomial y = Pn(x) of order n satisfies the differential equation

B(x)y′′ + [A(x) +B′(x)]y′ − n[p1 + (n+ 1)q2]y = 0.

3. The Rodrigues formula holds:

Pn(x) =
cn
ω(x)

dn

dxn
[ω(x)Bn(x)].

A key characteristic of sequences from a family of orthogonal polynomial se-

quences is that they satisfy a so-called ‘three term recurrence’ [83].

Theorem 1.7.1 [9] A sequence of orthogonal polynomials {pn(x)}∞n=0 satisfies

pn+1(x) = (γnx− αn)pn(x)− βnpn−1(x)

for coefficients γn, αn and βn that depend on n but not x.We note that if

p1(x) = kjx
j + k′jx

j−1 + ... j = 0, 1, ...

then

γn =
kn+1

kn
, αn = γn

(
k′n+1

kn+1
− k′n
kn

)
, βn = γn

(
kn−1hn
knhn−1

)
.

Since the degree of pn(x) is n, the coefficient array of the polynomials is a lower

triangular (infinite) matrix. In the case of monic orthogonal polynomials the

leading coefficient of the polynomial kn = 1 for all n.

The moments associated to the orthogonal polynomial sequence are the numbers

µn =

∫ x1

x0

xnw(x)dx.
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pn(x), αn ,βn and w(x) can be determined from known moments.

If ∆n denotes the Hankel determinant |µi+j |ni,j≥0 and ∆n,x denotes the same

determinant, but with the last row equal to 1, x, x2, . . . then

pn(x) =
∆n,x

∆n−1
. (1.12)

More generally, let H

(
u1 . . . uk

v1 . . . vk

)
be the determinant of Hankel type with

(i, j)-th term µui+vj . Let

∆n = H

(
0 1 . . . n

0 1 . . . n

)
, ∆′n = Hn

(
0 1 . . . n− 1 n

0 1 . . . n− 1 n+ 1

)
.

Thus,

αn =
∆′n
∆n
− ∆′n−1

∆n−1
, βn =

∆n−2∆n

∆2
n−1

.

In summary for a family of polynomials {pn(x)}n≥0 to be formally orthogonal,

then there exists a linear functional L on polynomials satisfying the following

conditions:

1. pn(x) is a polynomial of degree n,

2. L(pn(x)pm(x)) = 0 for m 6= n,

3. L(p2
n(x)) 6= 0.

4. The sequence of numbers µn = L(xn) is called the sequence of moments

of the family of orthogonal polynomials defined by L.

5. There exists an OPS w.r.t L if and only if

∆n 6= 0, ∀n ∈ N0.

In particular, for the given moment sequence (µn)∞n=0

∆n = det[µj+k]nj,k=0 =

∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
...

...
...

µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣∣

.
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The following well-known results listed below specify the links between orthogo-

nal polynomials, three term recurrences, the recurrence coefficients and the g.f.

of the moment sequence of the orthogonal polynomials.

Theorem 1.7.2 [114, 72], Theorem 50.1)(Favard’s Theorem). Let (pn(x))n≥0

be a sequence of monic polynomials, the polynomial pn(x) having degree n =

0, 1, . . . Then the sequence (pn(x)) is (formally) orthogonal if and only if there

exist sequences (αn)n≥0 and (βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the

three-term recurrence

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.

Theorem 1.7.3 [114], Theorem 51.1). Let (pn(x))n≥0 be a sequence of monic

polynomials, which is orthogonal with respect to some functional L. Let

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s the-

orem. Then the generating function

g(x) =

∞∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.

Given a family of monic orthogonal polynomials

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), p0(x) = 1, p1(x) = x− α0,

we can write

pn(x) =

n∑

k=0

an,kx
k.
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Then we have

n+1∑

k=0

an+1,kx
k = (x− αn)

n∑

k=0

an,kx
k − βn

n−1∑

k=0

an−1,kx
k

from which we deduce

an+1,0 = −αnan,0 − βnan−1,0 (1.13)

and

an+1,k = an,k−1 − αnan,k − βnan−1,k (1.14)

We note that if αn and βn are constant, equal to α and β, respectively, then

the sequence (1,−α,−β, 0, 0, . . .) forms an A-sequence for the coefficient array.

Proposition 1.7.4 [85] If L = (g(x), f(x)) is a Riordan array and P = SL is

tridiagonal, then necessarily

P = SL =




a1 1 0 0 0 0 . . .

b1 a 1 0 0 0 . . .

0 b a 1 0 0 . . .

0 0 b a 1 0 . . .

0 0 0 b a 1 . . .

0 0 0 0 b a . . .
...

...
...

...
...

...
. . .




where

f(x) = Rev
x

1 + ax+ bx2
and g(x) =

1

1− a1x− b1xf
,

and vice-versa.

This leads to the important corollary

Corollary 1.7.5 [11] If L = (g(x), f(x)) is a Riordan array and P = SL is
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tridiagonal, with

P = SL =




a1 1 0 0 0 0 . . .

b1 a 1 0 0 0 . . .

0 b a 1 0 0 . . .

0 0 b a 1 0 . . .

0 0 0 b a 1 . . .

0 0 0 0 b a . . .
...

...
...

...
...

...
. . .




then L−1 is the coefficient array of the family of orthogonal polynomials pn(x)

where p0(x) = 1, p1(x) = x− a1, and

pn+1(x) = (x− an)pn(x)− bnpn−1(x), n ≥ 1,

where bn is the sequence , b1, b, b, b, . . ..

Theorem 1.7.6 [11] A Riordan array L = (g(x), f(x)) is the inverse of the co-

efficient array of a family of orthogonal polynomials if and only if its production

matrix P = SL is tri-diagonal.

Proposition 1.7.7 Let L = (g(x), f(x)) be a Riordan array with tri-diagonal

production matrix SL. Then

[xn]g(x) = L(xn),

where L is the linear functional that defines the associated family of orthogonal

polynomials.

Based on (1.7.7) the moment sequence is given by the first column of the

Riordan array L whenever the conditions established for the orthogonality of a

Riordan array is satisfied.

1.8 Introduction to the theory of Elliptic Func-

tions

In the mathematical area of complex analysis, an elliptic function is considered

to be a function of a complex variable which is meromorphic on an open set and
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is doubly periodic [118, 58]. On the other hand, an elliptic integral from which

the development of elliptic functions originates, represents an integral of the

form ∫
R(x,

√
p(x))dx

where R(x,w) is a rational function in two variables and p(x) is a polynomial

of degree 3 or 4 having no repeated roots.

The development of the theory of elliptic functions is historically linked to ear-

lier theoretical studies of elliptic integrals beginning from the 17th century as

outlined in [39]. During this period many interesting integrals arose during the

process of solving mechanical problems. One of the most notable of such prob-

lems was when Wallis in 1655 began studying the arc length of an ellipse by

considering the lengths of various cycloids and then relating them to the arc

length of an ellipse. This culminated in the publication of an infinite series

expansion of the arc length of an ellipse. This result was followed by the work

of the mathematician Jacob Bernoulli (1654− 1705) who in 1694 extended the

results on the theory of elliptic integrals. The result of J. Bernoulli derived

from his experiment on compressing an elastic rod at its ends, showed that the

resulting curve satisfied the equation [39]

ds

dt
=

1√
1− t4

.

This was followed by the introduction of the lemniscate curve given by

(x2 + y2)2 = (x2 − y2).

The arc length of the lemniscate curve was subsequently determined by com-

puting an elliptic integral referred to as the lemniscate integral given by

∫ x

0

dt√
1− t4

.

The above integral can be expressed in terms of arcsine x given by

sin−1(x) =

∫ x

0

dt√
1− t2

.

Another important observation by Jacob Bernoulli in 1694 found that the inte-
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gral ∫
t2dt√
1− t4

could not be expressed in terms of existing transcendental functions. This na-

ture of problem served later as one of the motivations for further research on

such integrals.

The origins of the main theory of elliptic functions can be traced back to the

19th century work on integral calculus by the famous mathematician Niels H.

Abel (1802 − 1829) [51]. His most remarkable achievement in this area was

implementing the main technique of inverting elliptic integrals which led to el-

liptic functions. Abel using the main results of Euler, Lagrange and Legendre

on elliptic integrals defines his elliptic function ϕα = x published in his memoir

titled Recherches Sur Les Fonctions Elliptiques(1828)[1] by the relation

α =

∫ x

o

dt√
(1− c2t2)(1 + e2t2)

(1.15)

where c and e are real numbers. In addition, the definition (1.15) is equivalent

to the differential equation

ϕ′α =
√

(1− c2ϕ2α)(1 + e2ϕ2α).

Abel extends the definition of ϕα = x to the entire complex domain using the

addition theorem based on Euler addition theorem for elliptic integrals.

The main motivation to investigate the inverse of elliptic integrals was due to

the three forms of elliptic integrals put forward by Legendre in his publication

Traité des fonctions elliptiques et des intégrales eulériennes (Paris,1825)[67].

These forms are

1. F (φ, k) =
∫ φ

0
dφ√

1−k2 sin2 φ
≡
∫ x

0
dx√

(1−x2)(1−k2x2)
(if x = sinφ)

2. E(φ, k) =
∫ φ

0

√
1− k2 sin2 φdφ ≡

∫ x
0

√
1−k2x2

1−x2 dx (if x = sinφ)

3. Π(φ, n, k) =
∫ φ

0
dφ

(1+n sin2 φ)
√

1−k2 sin2 φ
which is equivalent to

∫ x
0

dx

(1+nx2)
√

(1−x2)(1−k2x2)
(if x = sinφ).

These integrals are called elliptic integrals of the first, second and third kind

respectively. These integrals were the outcome of the effort by Legendre to
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compute the arc length of an ellipse. N.H. Abel (1802 − 1829) contributed

by inverting the Legendre elliptic integral of the first kind. This led to the

introduction of the possibility of working with complex variables rather than the

restriction to only real variables. The inverse function derived from inverting

the elliptic integral is considered the simplest elliptic function. During the same

period when Abel put forward his work on the inversion of elliptic integrals

another mathematician Carl G. Jacobi(1804 − 1851) also worked in the same

area. In 1829 Jacobi introduced the Jacobi elliptic functions denoted as

sn u, cn u,dn u. A key characteristic of these functions is that they satisfy the

equation describing quartic elliptic curves given by

(y′)2 = (1− x2)(1− k2x2)

Jacobi’s work on elliptic functions primarily focused on the inverse function as

presented in the sequence below:

φ = am u (am u is the Jacobi amplitude function)

of the integral of the first type

u =

∫ φ

0

dφ√
1− k2 sin2 φ

.

This leads to the 3 single valued functions derived from the inverse function

am u which is multivalued, these functions are

sinφ = sin am u

cosφ = cos am u

4φ = 4 am u.

The standard notation of Jacobi elliptic functions are denoted from the results

above as follows

sin am u ≡ sn u

cos am u ≡ cn u

4 am u ≡ dn u.

The Jacobi elliptic functions may be explicitly defined by first defining sn u ≡
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sn(x, k) such that

sn(x, k) = Rev

(∫ x

0

dt√
(1− t2)(1− k2t2)

)
.

Jacobi’s work on elliptic functions led to his well known publication titled Fun-

damenta nova theoriae functionum ellipticarum (1829) in which he presented

the four theta functions [55]. The most remarkable achievement of Jacobi was

establishing the relation between the elliptic theta functions that are closely

related to the elliptic functions [45]. The Jacobi theta functions are the elliptic

analogs of the exponential functions which can be expressed in terms of the

Jacobi elliptic functions.

Following on from the work of Jacobi on ellliptic functions, the mathemati-

cian Karl Weierstrass (1815 − 1897) also made significant contributions to the

theory of elliptic functions. His main contributions was introducing new func-

tions which behave in a simpler way. In particular, he replaced the 3 basic types

of Jacobi elliptic functions sn u, cn u and dn u by the single function known as

the Weierstrass ℘ which is also referred to as the (Weierstrass ′P ′ ) function.

Similarly, he replaced the Jacobi theta functions by the sigma and the zeta

functions. The Weierstrass elliptic functions are known to parametrize cubics

given in the Weierstrass form by

(y′)2 = 4x3 − g2x− g3.

A third type of elliptic function known as the Dixon’s elliptic functions was

introduced by the British mathematician Alfred Cardew Dixon (1865 − 1936).

His main work on elliptic functions is collected in his publication The elemen-

tary properties of the elliptic functions, with examples (1894) [33]. There are few

available research publications on Dixon elliptic functions compared to the Ja-

cobi and Weierstrass elliptic functions that have received considerable research

focus to date. The most recent publication on Dixon elliptic functions is the

work by Langer & Singer (2013)[65] in which the arc length of a sextic curve

referred to as the trefoil is expressed in terms of Dixon elliptic functions. A prior

publication by Conrad and Flajolet(2006) [26] extensively covers the combina-

torial aspects and certain pattern permutations arising from a study of these

functions.
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The first six terms of the coefficients of the Taylor series expansion of

sn(x, k) = Rev

(∫ x

0

dt√
(1− t2)(1− k2t2)

)

are {
0, 1, 0,−k2 − 1, 0, k4 + 14k2 + 1, 0

}

and for

arcsn(x, k) =

∫ x

0

dt√
(1− t2)(1− k2t2)

are

{
0, 1, 0, k2 + 1, 0, 3

(
3k4 + 2k2 + 3

)
, 0
}
.

We note that we can find the power series coefficients of sn(x, k) in the first

column of the inverse Riordan array

[
arcsn(x, k)

x
, arcsn(x, k)

]−1

.

More recent work over the last century has focused on aspects of the Taylor series

coefficients of elliptic functions such as getting recurrence formulas and combi-

natorial interpretations with enumerative properties [41, 94, 95, 26, 62]. Elliptic

functions have also been studied in relation to their connection to orthogonal

polynomials [53, 54]. Using the aid of concrete examples we shall relate elliptic

functions to exponential Riordan arrays in the next three chapters. More details

pertaining to each of these functions will be elaborated in the subsequent chap-

ters. For the purpose of this thesis the Riordan arrays generated from the Jacobi

elliptic functions, Dixonian elliptic functions and Weierstrass elliptic functions

respectively will simply be referred to as Jacobi Riordan arrays, Dixonian

Riordan arrays and Weierstrass Riordan arrays respectively.

1.8.1 Ellipse arc length:

We begin with
x2

a2
+
y2

b2
= 1.
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Thus
x2

a2
= 1− x2

y2
=⇒ y2 = b2

(
1− x2

a2

)
.

We also get
2xdx

a2
+

2ydy

b2
= 0

Thus,

dx2 + dy2 = dx2 + x2 dx
2

y2

b4

a4

= dx2 + x2dx2 b
4

a4

1

b2
(
1− x2

a2

)

= dx2 + x2dx2 b
2

a2

1

a2 − x2

= dx2

(
1 + x2 b

2

a2

1

a2 − x2

)

= dx2

(
(a2 − x2) + x2 b2

a2

a2 − x2

)

= dx2

(
(1− x2

a2 ) + x2 b2

a4

1− x2

a2

)

= dx2
1− x2

a2

(
1− b2

a2

)

1− x2

a2

Thus,

s =

∫ x

0

√
dx2 + dy2

=

∫ x

0

√
1− x2

a2

(
1− b2

a2

)

1− x2

a2

dx

=

∫ x

0

√
1− x2

a2

(
a2−b2
a2

)

1− x2

a2

dx

= a

∫ x
a

0

√
1− k2t2

1− t2 dt

where k2 = a2−b2
a2 and we have set t = x

a . Note that 0 < k2 < 1.
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1.9 Elliptic functions derived from the A and Z

generating functions of Riordan arrays

In this section the relationship betweeen elliptic functions and the A and Z

generating functions of Riordan arrays is established. This relationship serves

as the key motivation for further research on elliptic functions and Riordan

arrays that has previously not been investigated. We know that a Riordan

array can be defined in terms of its generating functions. But an alternative

definition of Riordan arrays can be described in terms of its A and Z sequences

and their corresponding generating functions [13]. That is for a given pair of

generating functions g(x) ∈ F0 and f(x) ∈ F1 where x is an indeterminate,

we can define the Riordan array symbolically as [g(x), f(x)] . In terms of the A

and Z generating functions associated to the Riordan matrix corresponding to

[g(x), f(x)] , we can symbolically define the Riordan matrix as [g0,A; Z] .

We let M = [g, f ] denote an exponential Riordan array. The production

matrix of M is the matrix

M−1M,

where M is the matrix M with the top row removed. The array M deter-

mines and is determined by its production matrix. The production matrix has

bivariate generating function

exy(ZM (x) + yAM (x)),

where we have

AM (x) = f ′(f̄(x))

and

ZM (x) =
g′(f̄(x))

g(f̄(x)
.

For the inverse exponential Riordan array M−1 = [g, f ]−1, we have

AM−1 =
1

f ′(x)
,

and

ZM−1 = − 1

f ′(x)

g′(x)

g(x)
.

We can express the array [g, f ] in terms of A = AM and Z = ZM as follows.

38



[g(x), f(x)] =

[
e
∫ x
0

Z(Rev(
∫ t
0

dt
A(t) ))dt,Rev

(∫ x

0

dt

A(t)

)]
.

Alternatively, we can write

[g(x), f(x)] =

[
e
∫ Rev(

∫x
0

dt
A(t) )

0
Z(t)
A(t)

dt,Rev

(∫ x

0

dt

A(t)

)]
.

Now we recall that an integral is called an elliptic integral if it is of the form

∫
R(x,

√
P (x)) dx,

where P (x) is a polynomial in x of degree three or four and R is a rational

function of its arguments.

Thus if
1

A(t)
= R(t,

√
P (t)),

then the above exponential Riordan array can be said to be defined by an elliptic

integral.

Elliptic functions are defined as the inverses of elliptic integrals. Thus the

expression

Rev

(∫ x

0

dt

A(t)

)

in the defining relation for [g, f ] is an elliptic function when 1
A(t) = R(t,

√
P (t)).

In this case we will have

A(t) =
1

R(t,
√
P (t))

= R̃(t,
√
P (t)),

where

R̃ =
1

R

will also be a rational function.

It is therefore natural to call an exponential Riordan array M = [g, f ] an

elliptic Riordan array if

AM (t) = R(t,
√
P (t)),

where R is a rational function and P (t) is a polynomial of degree three or four.

Lagrange showed that any elliptic integral can be written in terms of the
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following three fundamental or normal elliptic integrals.

F (x, k) =

∫ x

0

dt√
(1− t2)(1− k2t2)

,

E(x, k) =

∫ x

0

√
1− k2t2

1− t2 dt,

Π(x, α2, k) =

∫ x

0

dt

(1− α2t)
√

(1− t2)(1− k2t2)
.

These integrals are called elliptic integrals of the first, second and third kind,

respectively.

As an example of elliptic functions, the Jacobi elliptic functions may be

defined by first defining sn(x, k) as follows,

sn(x, k) = Rev

(∫ x

0

dt√
(1− t2)(1− k2t2)

)
,

involving the elliptic integral of the first kind, and then we define

cn(x, k) =
√

1− sn(x, k)2 and dn(x, k) =
√

1− k2sn(x, k)2.

Thus if
1

A(t)
=

1√
(1− t2)(1− k2t2)

,

i.e.

A(t) =
√

(1− t2)(1− k2t2),

then we obtain an exponential Riordan array with

f(x) = sn(x, k).
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Chapter 2

Jacobi Elliptic Functions

and Riordan Arrays

In this chapter we shall begin by giving an introduction of the Jacobi elliptic

functions. This will be followed by various examples of Riordan arrays generated

from these functions.

2.1 Types of Jacobi Elliptic Functions and their

properties

The initial point to understanding elliptic functions is from the perspective

of the two basic trigonometric functions of the sine and cosine. The elliptic

function is considered a generalization of these functions since its most basic

form reduces to a trigonometric function. The basic properties of the various

types of Jacobi elliptic functions can be traced back to the trigonometric sine

and cosine functions. The parity property of these functions will later become

useful in the construction of a new class of Riordan arrays which is referred here

as Jacobi Riordan arrays. The Riordan arrays generated from these functions

can be viewed to fall under the Double Riordan group [29] and in particular the

checkerboard subgroup of Riordan arrays. The Jacobi elliptic functions were

originally derived from the elliptic integral of the first kind [58]. We can define

the Jacobi elliptic function sn using a reversion technique, beginning with what

will be its reversion such that
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sn(z, k) = Rev

(∫ z

0

dt√
(1− t2)(1− k2t2)

)
,

which can be rewitten as

arcsn(z, k) =

∫ z

0

1√
(1− k2t2)(1− t2)

dt.

An alternative method for defining sn(z, k) is to start with the function

F (φ, k) =

∫ φ

0

1√
1− k2sin(θ)

dθ.

arcsn(z,m) ≡ u(ϕ,m) =

∫ sinϕ

0

dz√
(1− z2)(1−mz2)

(2.1)

where m = k2. The parameter k where 0 ≤ k < 1 is called the modulus of the

elliptic integral and ϕ is called the amplitude. The complementary modulus is

k′ =
√

1− k2. The Legendre form of the elliptic integral which is an alternative

definition of elliptic sn(z,m) is given by

arcsn(z,m) ≡ u(ϕ,m) =

∫ ϕ

0

dθ√
1−m sin2 θ

. (2.2)

Equation (2.2) follows from a change of variables which can be determined from

(2.1) using the substitution z = sin θ such that dz = cos zdθ =
√

1− z2dθ. We

then revert the function F to get the amplitude function

am(u, k) = F−1(u, k) = φ.

Finally we define

sn(u, k) = sin(am(u, k)) = sin(φ).

The two forms of the elliptic integral u in (2.1) & (2.2) are also known as the

incomplete elliptic integrals. On the other hand the complete elliptic integrals

are given by

K(m) := u
(π

2
,m
)

=

∫ 1

0

dz√
(1− z2)(1−mz2)
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u
(π

2
,m
)

=

∫ π
2

0

dθ√
1−m sin2 θ

with its complete complementary elliptic integral defined as

K ′(m) := u
(π

2
,m′

)
=

∫ 1

0

dz√
(1− z2)(1− (1−m)z2)

u
(π

2
,m′

)
=

∫ π
2

0

dθ√
1− (1−m) sin2 θ

where

m+m′ = 1 & m = (k′)2 & | m |≤ 1 & −K < z < K.

The hypergeometric interpretation of the complete elliptic integral is defined by

K(m) =
π

2
2F1

(
1

2
,

1

2
; 1;m

)
K ′(m) =

π

2
2F1

(
1

2
,

1

2
; 1; 1−m

)
.

The Jacobi elliptic functions are derived by inverting the elliptic integral (2.2) .

The three basic Jacobi elliptic functions from which other forms are obtained

are: the elliptic sine sn(u;m)= sinϕ, the elliptic cosine cn(u;m)= cosϕ and

the difference function dn(u;k)= dϕ
du . The basic properties of the elliptic Jacobi

functions are analogous to those of the well known trigonometric functions. The

basic ellliptic functions satisfy the equation

sn2(u;m) + cn2(u;m) = 1

from the trigonometric relation sin2 ϕ+ cos2 ϕ = 1. Thus,

sn(u;m) =
√

1− cn2(u;m) & dn(u;m) =
dϕ

du
=
√

1−msn2(u;m).

All three functions sn(u, k), cn(u, k) and dn(u, k) are doubly periodic. The fol-

lowing holds true for Jacobi elliptic functions:
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sn(u+ 4K, k) = sn(u, k), where sn(K, k) = 1.

sn(u+ 2L, k) = sn(u, k), where cs(L, k) = i

cn(u+ 4K, k) = cn(u, k).

cn(u+ 4L, k) = cn(u, k).

dn(u+ 4K, k) = dn(u, k).

dn(u+ 4L, k) = dn(u, k).

dn2(u, k) + k2sn2(u, k) = 1.

In addition, the three basic forms of the Jacobi elliptic function determine the

other 9 forms of Jacobi elliptic functions such that the definitions are quotients

of any of these three. These twelve forms of Jacobi elliptic functions are:

s c d n

s sc sd sn

c cs cd cn

d ds dc dn

n ns nc nd

.

For example sd(u;m) = sn(u;m)
dn(u;m) and similar results apply to each of the other

forms shown on the table. The basic properties of the Jacobi elliptic functions

are:

• sn(0; k) = 0 sn(K; k) = 1.

• cn(0; k) = 1 cn(K; k) = 0.

• dn(0; k) = 1 dn(K; k) = k′.

In the limit we have,
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lim
m→0

sn(u,m) = sin(u)

lim
m→0

cn(u,m) = cos(u)

lim
m→0

dn(u,m) = 1

lim
m→1

sn(u,m) = tanh(u)

lim
m→1

cn(u,m) = sech(u)

lim
m→1

dn(u,m) = sech(u).

The Jacobi elliptic functions satisfy the differential system:

d

du
sn(u,m) = cn(u,m)dn(u,m)

d

du
cn(u,m) = −dn(u,m)sn(u,m)

d

du
dn(u,m) = −msn(u,m)cn(u,m)

for the initial conditions

sn(0,m) = 0, cn(0,m) = 1 dn(0,m) = 1.

The systems of differential equations satisfied by the Jacobi elliptic functions

forms the basis of their applications to some dynamical systems [78].

The plots corresponding to Jacobi sn, Jacobi cn, Inverse Jacobi sn,

Inverse Jacobi cn respectively for m = 1/3:

-10 -5 5 10

-1.0

-0.5

0.5

1.0

Figure 2.1: A plot of Jacobi sn for m = 1/3
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Figure 2.2: A plot of Jacobi cn for m = 1/3
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Figure 2.3: A plot of Inverse Jacobi sn for m = 1/3
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Figure 2.4: A plot of Inverse Jacobi cn for m = 1/3
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2.2 The Coefficient Arrays of the Jacobi Elliptic

Functions

By reviewing the Jacobi elliptic function arcsn(z, k) in section (2.1), we find

that [20, 15]

arcsn(z, k) =

∫ z

0

1√
(1− k2t2)(1− t2)

dt

=

∫ z

0

1√
1− (k2 + 1)t2 + k2t4

dt

=

∫ z

0

1√
1− 2k

2+1
2

u
k + u2

dt u = kt2

=

∫ z

0

∞∑

n=0

Pn

(
k2 + 1

2k

)
un dt

=

∫ z

0

∞∑

n=0

Pn

(
k2 + 1

2k

)
knt2n dt

=

∞∑

n=0

knPn

(
1

2

(
k +

1

k

))
z2n+1

2n+ 1
.

The first of the power series coefficients for arcsn(x, k) are therefore given
by

{
0, 1, 0,

m+ 1

6
, 0,

1

40

(
3m

2
+ 2m+ 3

)
, 0,

1

112

(
5m

3
+ 3m

2
+ 3m+ 5

)
, 0,

35m4 + 20m3 + 18m2 + 20m+ 35

1152
, 0, . . .

}

where we write m = k2. It is clear from the power series expansion above that
arcsn(0, k) = 0 for all k, and hence we can revert this power series to obtain the
reversion of arcsn(x, k), which is the Jacobi elliptic function sn(x, k). The first
power series coefficients for sn(x, k), where we use m = k2, are as follows

{
0, 1, 0,

1

6
(−m− 1), 0,

1

120

(
m

2
+ 14m+ 1

)
, 0,
−m3 − 135m2 − 135m− 1

5040
, 0,

m4 + 1228m3 + 5478m2 + 1228m+ 1

362880
, 0

}
.

Thus we have

sn(x, k) = x− 1

3!
(1 + k2)x3 +

1

5!
(1 + 14k2 + k4)x5 − . . . .

We see that sn(x, k) is an odd function.

We shall spend some time studying these coefficients. Ignoring the zero
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entries for the moment, we note that the denominator sequence begins

1, 6, 120, 5040, 362880, 39916800, 6227020800, 1307674368000, 355687428096000, . . . .

This is the sequence (2n+ 1)!.

We now look at the polynomial sequence in m given by the numerators of the

power series coefficients of sn(x, k). We shall multiply this sequence by (−1)n

to simplify it. We obtain the sequence in m that begins

{
1,m+ 1,m

2
+ 14m+ 1,m

3
+ 135m

2
+ 135m+ 1,m

4
+ 1228m

3
+ 5478m

2
+ 1228m+ 1, . . .

}

The coefficient array for this sequence of polynomials begins




1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 14 1 0 0 0 0

1 135 135 1 0 0 0

1 1228 5478 1228 1 0 0

1 11069 165826 165826 11069 1 0




We note immediately that this is a symmetric triangle, reminiscent of Pas-

cal’s triangle and of the Narayana triangle. Its resemblance in form to the

Narayana triangle is not an accident.

We recall that the Narayana triangle has a continued fraction bivariate gen-

erating function given by

1

1− x− xy −
x2y

1− x− xy −
x2y

1− x− xy −
x2y

1− · · ·

.

It turns out that the above sn(x, k) inspired triangle has a similar type

bivariate generating function
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1

1− x− xy −
12x2y

1− 9x− 9xy −
240x2y

1− 25x− 25xy −
1260x2y

1− 49x− 49xy −
4032x2y

1− · · ·

.

The coefficients in this fraction are based on the sequence

1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, . . .

where the numbers are taken in groups of 4 (1 · 2 · 2 · 3 = 12 etc) for the “β”

coefficients, and two by two for the “α” coefficients (3 · 3 = 9 etc).

This J-fraction [25] may also be written equivalently as follows:

1

1− x−
xy

1−
12x

1 +
√

9
1x−

9xy

1−
240
9 x

1 +
√

25
9 x−

25xy

1−
1260
25 x

1 +
√

49
25x−

49xy

1− · · ·

,

or
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1

1− x−
xy

1−
12x

1 + 3
1x−

9xy

1−
240
9 x

1 + 5
3x−

25xy

1−
1260
25 x

1 + 7
5x−

49xy

1− · · ·

.

The Hankel transform of the sequence

1,m+ 1,m2 + 14m+ 1,m3 + 135m2 + 135m+ 1, . . .

can be calculated to be [25]

hn = kn(n+1)
2n+1∏

i=0

i!.

We note that there is a recurrence for the coefficients b(n, k) = n!a(n, k),

where a(n, k) = [xn]sn(x, k) which can be described as follows [119].

b(n, k) =





0 if n is even,

1 if n = 1,

−(k2 + 1) if n = 3,

k4 + 2k2 + 1 if n = 5,

f(n) if n > 5, n odd

where
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(n− 5)f(n) = (n− 1)(1 + k2)b(n− 2, k)

+

n−1
2∑

i=2

b(2i− 1, k)b(n+ 2− 2i, k)

((
n+ 1

2i− 1

)
− 3

(
n− 1

2i− 1

))

+

n−1
2∑

i=2

(1 + k2)

(
n− 1

2i− 1

)
b(2i− 1, k)b(n− 2i, k).

The power series coefficients for cn(x, k) begin

{
1, 0,− 1

2
, 0,

m

6
+

1

24
, 0,

1

720

(
−16m

2 − 44m− 1
)
, 0,

64m3 + 912m2 + 408m+ 1

40320

}

and so we have

cn(x, k) = 1− 1

2!
x2 +

1

4!
(1 + 4k2)x4 − 1

6!
(1 + 44k2 + 16k4)x6 + . . . .

We see that cn(x, k) is an even function.

The adjusted sequence of coefficients (multiplying by the denominators mul-
tiplying by (−1)n as appropriate) gives us the polynomial sequence

1,−1, 1+4m,−1−44m−16m
2
, 1+408m+912m

2
+64m

3
,−1−3688m−30768m

2−15808m
3−256m

4
, . . .

which has the coefficient array




1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 4 0 0 0 0 0

1 44 16 0 0 0 0

1 408 912 64 0 0 0

1 3688 30768 15808 256 0 0

1 33212 870640 1538560 259328 1024 0




This array has the following continued fraction bivariate generating function.
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1

1−
x

1−
4xy

1−
9x

1−
16xy

1−
25x

1− · · ·

.

The Hankel transform of the sequence

1,−1, 1+4m,−1−44m−16m
2
, 1+408m+912m

2
+64m

3
,−1−3688m−30768m

2−15808m
3−256m

4
, . . .

can be calculated to be [25]

hn(m) = m(n2)

(
n∏

k=1

(2k − 2)!

)2

.

The coefficients for the power series of dn(u, k) begin

1, 0,−m
2
, 0,

1

24

(
m

2
+ 4m

)
, 0,

1

720

(
−m3 − 44m

2 − 16m
)
, 0,

m4 + 408m3 + 912m2 + 64m

40320
, . . .

and thus we have

dn(x, k) = 1− 1

2!
k2x2 +

1

4!
(4k2 + k4)x4 − . . . .

The function dn(x, k) is an even function.

From it we obtain the polynomial sequence

1,−m,m2
+ 4m,−m3 − 44m

2 − 16m,m
4

+ 408m
3

+ 912m
2

+ 64m, . . .

from which (dropping signs) we derive the coefficient array
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


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 4 1 0 0 0 0

0 16 44 1 0 0 0

0 64 912 408 1 0 0

0 256 15808 30768 3688 1 0

0 1024 259328 1538560 870640 33212 1




This array has the continued fraction bivariate generating function given by

1

1−
xy

1−
4x

1−
9xy

1−
16x

1−
25xy

1− · · ·

,

or equivalently,

1

1− xy −
4x2y

1− 4x− 9xy −
144x2y

1− 16x− 25xy −
400x2y

1− . . .

.

2.2.1 The Binomial transform in m

The matrix [15]




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 4 1 0 0 0 0

0 16 44 1 0 0 0

0 64 912 408 1 0 0

0 256 15808 30768 3688 1 0

0 1024 259328 1538560 870640 33212 1



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is more correctly associated to the Jacobi elliptic function dc as it is the coeffi-

cient array of

(2n)![x2n]dc(x,−m+ 1).

Multiplying this matrix on the right by the binomial matrix B is the same

as letting m→ m+ 1. We get




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 4 1 0 0 0 0

0 16 44 1 0 0 0

0 64 912 408 1 0 0

0 256 15808 30768 3688 1 0

0 1024 259328 1538560 870640 33212 1




·B =




1 0 0 0 0 0 0

1 1 0 0 0 0 0

5 6 1 0 0 0 0

61 107 47 1 0 0 0

1385 3116 2142 412 1 0 0

50521 138933 130250 45530 3693 1 0

2702765 8783986 10430983 5353260 1036715 33218 1




.

This is the coefficient array associated to the Jacobi elliptic function dc(x,−m).

More precisely, it is the coefficient array for

(2n)![x2n]dc(x,−m).

This array has bi-variate generating function given by

1

1−
x(y + 1)

1−
4x

1−
9x(y + 1)

1−
16x

1−
25x(y + 1)

1− · · ·

.
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In like manner, the array




1 0 0 0 0 0 0

1 1 0 0 0 0 0

5 6 1 0 0 0 0

61 107 47 1 0 0 0

1385 3116 2142 412 1 0 0

50521 138933 130250 45530 3693 1 0

2702765 8783986 10430983 5353260 1036715 33218 1




·B =




1 0 0 0 0 0 0

2 1 0 0 0 0 0

12 8 1 0 0 0 0

216 204 50 1 0 0 0

7056 8640 3384 416 1 0 0

368928 550800 289008 60312 3698 1 0

28340928 50018688 33043248 9832320 1202820 33224 1




,

is the array associated to

(2n)![x2n]dc(x,−m− 1),

with bi-variate generating function

1

1−
x(y + 2)

1−
4x

1−
9x(y + 2)

1−
16x

1−
25x(y + 2)

1− · · ·

.
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In a similar manner, the array




1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 14 1 0 0 0 0

1 135 135 1 0 0 0

1 1228 5478 1228 1 0 0

1 11069 165826 165826 11069 1 0

1 99642 4494351 13180268 4494351 99642 1




is given by

n!(−1)n[x2n+1]sn(x,m),

with bivariate generating function

1

1− x−
xy

1−
12x

1 +
√

9
1x−

9xy

1−
240
9 x

1 +
√

25
9 x−

25xy

1−
1260
25 x

1 +
√

49
25x−

49xy

1 +
√

81
49x− · · ·

.

Then the array




1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 14 1 0 0 0 0

1 135 135 1 0 0 0

1 1228 5478 1228 1 0 0

1 11069 165826 165826 11069 1 0

1 99642 4494351 13180268 4494351 99642 1




·B =
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


1 0 0 0 0 0 0

2 1 0 0 0 0 0

16 16 1 0 0 0 0

272 408 138 1 0 0 0

7936 15872 9168 1232 1 0 0

353792 884480 729728 210112 11074 1 0

22368256 67104768 71997696 32154112 4992576 99648 1




has bivariate generating function

1

1− x−
x(y + 1)

1−
12x

1 + 3x−
9x(y + 1)

1−
240
9 x

1 + 5
3x−

25x(y + 1)

1−
1260
25 x

1 + 7
5x−

49x(y + 1)

1− · · ·

.

It is the array for

n!(−1)n[x2n+1]sn(x,m+ 1).

2.3 Jacobi Riordan arrays

In this section Riordan arrays are constructed based on the Jacobi elliptic func-

tions in terms of the elliptic modulus m under their various subgroups. A

combinatorial interpretaion for each of these matrices corresponding to their

trigonometric and hyperbolic generating functions will be noted using the OEIS

online resource. The possible combinatorial interpretations of the Taylor series

coefficients of the Jacobi elliptic functions sn and cn have been investigated in

[41, 94, 95, 119]. Using the Taylor series coefficients of these functions we shall

proceed with the construction of Riordan matrices with their corresponding

production matrices to get an alternative view in the study of such functions.
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2.3.1 Mixed subgroup of Jacobi Riordan arrays

2.3.1.1 [cn(z,m), sn(z,m)]

The coefficient matrix of [cn(z,m), sn(z,m)] begins

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 6

(
−m

6 − 2
3

)
0 1 0 0 0

24
(
m
6 + 1

24

)
0 12

(
−m

3 − 5
6

)
0 1 0 0

0 m2 + 44m+ 16 0 20
(
−m

2 − 1
)

0 1 0
−16m2 − 44m− 1 0 16m2 + 224m+ 91 0 30

(
− 2m

3 − 7
6

)
0 1




which is equivalent to

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −m− 4 0 1 0 0 0

4m+ 1 0 −2(2m+ 5) 0 1 0 0
0 m2 + 44m+ 16 0 −10(m+ 2) 0 1 0

−16m2 − 44m− 1 0 16m2 + 224m+ 91 0 −5(4m+ 7) 0 1




.

Remark:

• The row sums for m = 0 form the sequence (1, 1, 0,−3,−8,−3, 56, ...)

which has e.g.f cos(z)esin(z).

• The row sums for m = 1 form the sequence (1, 1, 0,−4,−8, 32, 216, ...)

corresponds to A009265 with e.g.f etanh(z)

cosh(z) .

The production matrix of A in terms of m :

C =




0 1 0 0 0 0
−1 0 1 0 0 0
0 −m− 3 0 1 0 0

3(m− 1) 0 −3(m+ 2) 0 1 0
0 −3

(
m2 − 6m+ 5

)
0 −2(3m+ 5) 0 1

15
(
m2 + 2m− 3

)
0 −15

(
m2 − 4m+ 3

)
0 −5(2m+ 3) 0



.

If m = 0,−1, 1 then [cn(z,m), sn(z,m)] produces the Riordan arrays

D = {[cos(z), sin(z)] , [cn(z,−1), sn(z,−1)] , [sech(z), tanh(z)]} respectively.

The production matrices from C for m=-1,0,1 associated to the Riordan arrays

in D are as follows:

E =








0 1 0 0 0
−1 0 1 0 0
0 −2 0 1 0
−6 0 −3 0 1
0 −36 0 −4 0



,




0 1 0 0 0
−1 0 1 0 0
0 −3 0 1 0
−3 0 −6 0 1
0 −15 0 −10 0



,




0 1 0 0 0
−1 0 1 0 0
0 −4 0 1 0
0 0 −9 0 1
0 0 0 −16 0







.
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Remark: The production matrix in E at m = 1 is tridiagonal which indicates

that the inverse of [cn(z, 1), sn(z, 1)] = [sech(z), tanh(z)]
−1

=
[

1√
1−z2 , tanh−1(z)

]

is the coefficient array of a family of orthogonal polynomials. The three term

recurrence relation for the family of orthogonal polynomials is given by

Pn+1(z) = zPn(z) + n2Pn−1(z), ∀n ≥ 1

with P0(z) = 1, P1(z) = z.

In particular, let Qn(z) =
Pn(iz)

in
, (i2 = −1)

we get

Qn+1(z) = zQn(z)− n2Qn−1(z), ∀n ≥ 1.

The generating functions of the r and c sequences associated to the production

matrices of D and C are listed below:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

r(z, 1) = 1− z2

r(z, 0) =
√

1− z2

c(z,m) =
zcn

(
sn−1(z|m)

∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

z2 − 1
c(z, 1) = −z
c(z, 0) = − z√

1− z2
.

Alternatively, we can derive the r and c generating function of [cn(z,m), sn(z,m)]

using the elliptic integrals defined in (2.1) as follows:

c(z) ≡ A(z) = sn′(sn(z,m)) & Z(z) =
cn′(sn(z,m))

cn(sn(z,m))
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For

A(z) = sn′(sn(z,m))

= sn′
(∫ z

0

1√
(1−mu2)(1− u2)

du

)

= cn(sn(z,m))dn(sn(z,m))

= (
√

1− sn2(sn(z,m)))(
√

1−msn2(sn(z,m)))

= (
√

1− z2)(
√

1−mz2).

For

r(z) ≡ Z(z) =
cn′(sn(z,m))

cn(sn(z,m)))

=
−sn(sn(z,m))dn(sn(z,m))

cn(sn(z,m))

=
−z
√

1−mz2

√
1− z2

.

2.3.1.2 [cd(z,m), sn(z,m)]

The coefficient matrix of [cd(z,m), sn(z,m)] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

m− 1 0 1 0 0 0 0
0 2(m− 2) 0 1 0 0 0

5m2 − 6m+ 1 0 2(m− 5) 0 1 0 0
0 16

(
m2 −m+ 1

)
0 −20 0 1 0

61m3 − 107m2 + 47m− 1 0 31m2 + 14m+ 91 0 −5(m+ 7) 0 1




.

Remark:

• The row sums of A for m = 0 form the sequence (1, 1, 0,−3,−8,−3, 56, ...)

which has the e.g.f cos(z)esin(z).

• The row sums of A for m = 1 form the sequence (1, 1, 1,−1,−7,−3, 97, ...)

corresponds to A003723 with e.g.f etanh(z).
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The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
m− 1 0 1 0 0 0

0 m− 3 0 1 0 0
3
(
m2 − 1

)
0 −6 0 1 0

0 9m2 + 6m− 15 0 −2(m+ 5) 0 1
15
(
3m3 −m2 +m− 3

)
0 15

(
m2 + 2m− 3

)
0 −5(m+ 3) 0



.

If m = −1, 0, 1 then [cd(z,m), sn(z,m)] produces the Riordan arrays: C =

{[−1, sn(z,−1)] , [cos(z), sin(z)] , [1, tanh(z)] respectively. The production ma-

trices from B in terms of m = −1, 0, 1 corresponding to the Riordan arrays in

C respectively are as follows:

D =








0 1 0 0 0
−2 0 1 0 0
0 −4 0 1 0
0 0 −6 0 1
0 −12 0 −8 0



,




0 1 0 0 0
−1 0 1 0 0
0 −3 0 1 0
−3 0 −6 0 1
0 −15 0 −10 0



,




0 1 0 0 0
0 0 1 0 0
0 −2 0 1 0
0 0 −6 0 1
0 0 0 −12 0







.

Remark: The production matrix in D at m = 1 is tridiagonal which indicates

that the inverse of [cn(z, 1), sn(z, 1)] = [1, tanh(z)]
−1

=
[
1, tanh−1(z)

]
is the

coefficient array of a family of orthogonal polynomials.

The generating functions of the r and c sequences associated to the produc-

tion matrices of B and D are listed below:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

r(z, 1) = 1− z2

r(z, 0) =
√

1− z2

c(z,m) =
(m− 1)

(
mz2 − 1

)
cd
(

sn−1(z|m)
∣∣m
)

nd
(

sn−1(z|m)
∣∣m
)

sd
(

sn−1(z|m)
∣∣m
)

z2 − 1
c(z, 1) = 0

c(z, 0) = − z√
1− z2

.

2.3.1.3 [cd(z,m), sc(z,m)]

The coefficient matrix of [cd(z,m), sc(z,m)] is given by:
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A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

m− 1 0 1 0 0 0 0
0 2m− 1 0 1 0 0 0

5m2 − 6m+ 1 0 2(m+ 1) 0 1 0 0
0 16m2 − 16m+ 1 0 10 0 1 0

61m3 − 107m2 + 47m− 1 0 31m2 − 46m+ 31 0 −5(m− 5) 0 1




.

• The row sums ofA form = 0 form the sequenceM = (1, 1, 0, 0, 4, 12, 56, ...)

which has e.g.f cos(z)etan(z). If M is multiplied with −1n such that n =

0, 1, 2, 3, .... is the index of M then (−1)nM corresponds to A009114 with

e.g.f cos(z)
etan(z) .

• The row sums of A for m = 1 form the sequence (1, 1, 1, 2, 5, 12, 37, ...)

which corresponds to A003724 with e.g.f esinh(z).

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
m− 1 0 1 0 0 0

0 m 0 1 0 0
3(m− 1)m 0 3 0 1 0

0 3m(3m− 4) 0 8− 2m 0 1
15m

(
3m2 − 7m+ 4

)
0 15(m− 2)m 0 −5(m− 3) 0



.

If m = −1, 0, 1 then [cd(z,m), sc(z,m] produces the Riordan arrays:

C = {[cd(z,−1), sc(z,−1)] , [cos(z), tan(z)] , [1, sinh(z)]} respectively.

The production matrix of C for the case m = −1, 0, 1 is given by

D =








0 1 0 0 0
−2 0 1 0 0
0 −1 0 1 0
6 0 3 0 1
0 21 0 10 0



,




0 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 3 0 1
0 0 0 8 0



,




0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 3 0 1
0 −3 0 6 0







.

The r and c generating functions of the production matrix of B and D are listed

as follows:

r(z,m) =
(
z2 + 1

)
dn
(

sc−1(z|m)
∣∣m
)

r(z, 1) =
√
z2 + 1

c(z,m) =
(m− 1)cd

(
sc−1(z|m)

∣∣m
)

nd
(

sc−1(z|m)
∣∣m
)

sd
(

sc−1(z|m)
∣∣m
)

1− (m− 1)z2

c(z, 1) = 0.
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2.3.1.4 [cd(z,m), sd(z,m)]

The coefficient matrix of [cd(z,m), sd(z,m)] is given by

A =




1 0 0 0 0 0
0 1 0 0 0 0

m− 1 0 1 0 0 0
0 6

(
5m
6 − 2

3

)
0 1 0 0

5m2 − 6m+ 1 0 12
(
7m
6 − 5

6

)
0 1 0

0 61m2 − 76m+ 16 0 20
(
3m
2 − 1

)
0 1




which is equivalent to




1 0 0 0 0 0
0 1 0 0 0 0

m− 1 0 1 0 0 0
0 5m− 4 0 1 0 0

5m2 − 6m+ 1 0 2(7m− 5) 0 1 0
0 61m2 − 76m+ 16 0 30m− 20 0 1



.

Remark

• The numbers 1, 6, 12, 20, 30, ... positioned along the (n+2) diagonal of the

matrix A corresponds to A180291.

• The row sums of A for m = 0 form the sequence (1, 1, 0,−3,−8,−3, 56, ...)

which has the e.g.f cos(z)esin(z).

• The row sums of A for m = 1 form the sequence (1, 1, 1, 2, 5, 12, 37, ...)

corresponds to A003724 with e.g.f esinh(z).

The production matrix of A in terms of m is given by

B =




0 1 0 0
m− 1 0 1 0

0 4m− 3 0 1
3m− 3 0 9m− 6 0


 .

If m = −1, 0, 1 then [cd(z,m), sd(z,m)] produces the Riordan arrays:

C = {[cd(z,−1), sd(z,−1)] , [cos(z), sin(z)] , [1, sinh(z)]} respectively.

The production matrices of B corresponding to the Riordan arrays C if m =

−1, 0, 1 respectively are given by

D =








0 1 0 0
−2 0 1 0
0 −7 0 1
−6 0 −15 0


 ,




0 1 0 0
−1 0 1 0
0 −3 0 1
−3 0 −6 0


 ,




0 1 0 0
0 0 1 0
0 1 0 1
0 0 3 0







.
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The r and c generating functions of the production matrices B and D are listed

below.

r(z,m) = cd
(

sd−1(z|m)
∣∣m
)

nd
(

sd−1(z|m)
∣∣m
)

r(z, 1) =
√
z2 + 1

r(z, 0) =
√

1− z2

c(z,m) =
(m− 1)zcd

(
sd−1(z|m)

∣∣m
)

nd
(

sd−1(z|m)
∣∣m
)

(m− 1)z2 + 1

c(z, 1) = 0

c(z, 0) = − z√
1− z2

.

2.3.1.5 [dn(z,m), sn(z,m)]

The coefficient matrix of [dn(z,m), sn(z,m)] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

−m 0 1 0 0 0 0
0 6

(
− 2m

3 − 1
6

)
0 1 0 0 0

m2 + 4m 0 12
(
− 5m

6 − 1
3

)
0 1 0 0

0 16m2 + 44m+ 1 0 20
(
−m− 1

2

)
0 1 0

−m3 − 44m2 − 16m 0 91m2 + 224m+ 16 0 30
(
− 7m

6 − 2
3

)
0 1




which is equivalent to




1 0 0 0 0 0 0
0 1 0 0 0 0 0

−m 0 1 0 0 0 0
0 −4m− 1 0 1 0 0 0

m(m+ 4) 0 −2(5m+ 2) 0 1 0 0
0 16m2 + 44m+ 1 0 −10(2m+ 1) 0 1 0

−m
(
m2 + 44m+ 16

)
0 91m2 + 224m+ 16 0 −5(7m+ 4) 0 1




.

Remark

• The numbers 1, 6, 12, 20, 30, ... positioned along the n + 2, n diagonal of

the matrix A corresponds to A180291.

• The row sums of A for m = 0 form the sequence (1, 1, 1, 0,−3,−8,−3, ...)

which correspond to A002017 with e.g.f esin(z).

• The row sums of A for m = 1 form the sequence (1, 1, 0,−4,−8, 32, 216, ...)

which corresponds to A009265 with e.g.f etanh(z)

cosh(z) .
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The production matrix of A in terms of m is given by:

B =




0 1 0 0 0 0
−m 0 1 0 0 0
0 −3m− 1 0 1 0 0

−3(m− 1)m 0 −6m− 3 0 1 0
0 −3

(
5m2 − 6m+ 1

)
0 −2(5m+ 3) 0 1

15m
(
−3m2 + 2m+ 1

)
0 −15

(
3m2 − 4m+ 1

)
0 −5(3m+ 2) 0



.

If m = −1, 0, 1 then [dn(z,m), sn(z,m)] produces the Riordan arrays

C = {[dn(z,−1), sn(z,−1)] , [1, sin(z)] , [sech(z), tanh(z)]} respectively.

The production matrices of B associated to the Riordan arrays in C for m =

−1, 0, 1 are as follows:

D =








0 1 0 0 0
1 0 1 0 0
0 2 0 1 0
−6 0 3 0 1
0 −36 0 4 0



,




0 1 0 0 0
0 0 1 0 0
0 −1 0 1 0
0 0 −3 0 1
0 −3 0 −6 0



,




0 1 0 0 0
−1 0 1 0 0
0 −4 0 1 0
0 0 −9 0 1
0 0 0 −16 0







.

Remark: The tri-diagonal matrix for m = 1 in D indicates that the inverse

of the Riordan array [sech(z), tanh(z)] forms the coefficient array of a family of

orthogonal polynomials. This is A060524 the number of degree n− permuta-

tions with k odd cycles.
[

1√
1−z2 , tanh−1(z)

]
is the coefficient array of a family

of orthogonal polynomials. The three term recurrence relation for the family of

orthogonal polynomials is given by

Pn+1(z) = zPn(z) + n2Pn−1(z), ∀n ≥ 1

with P0(z) = 1, P1(z) = z.

In particular, let Qn(z) =
Pn(iz)

in
, (i2 = −1)

we get

Qn+1(z) = zQn(z)− n2Qn−1(z), ∀n ≥ 1.

The generating functions of the r and c sequences associated to the produc-
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tion matrices of B and D are listed below:

r(z,m) = cn
(

sn−1(z,m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

= (
√

1− z2)(
√

1−mz2)

=
√

(1− z2)(1−mz2).

r(z, 1) = 1− z2.

r(z, 0) =
√

1− z2.

c(z,m) =
−msn(s̄n(z,m),m)cn(s̄n(z,m),m)

dn(s̄n(z,m),m)

=
−mz

√
1− z2

√
1−mz2

.

c(z, 1) = −z
c(z, 0) = 0.

2.3.1.6 [dc(z,m), sn(z,m)]

The coefficient matrix of [dc(z,m), sn(z,m)] :

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

1−m 0 1 0 0 0 0
0 6

(
1
3 − 2m

3

)
0 1 0 0 0

m2 − 6m+ 5 0 12
(
1
6 − 5m

6

)
0 1 0 0

0 16
(
m2 −m+ 1

)
0 −20m 0 1 0

−m3 + 47m2 − 107m+ 61 0 91m2 + 14m+ 31 0 30
(
− 7m

6 − 1
6

)
0 1




which is equivalent to

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

1−m 0 1 0 0 0 0
0 2− 4m 0 1 0 0 0

m2 − 6m+ 5 0 2− 10m 0 1 0 0
0 16

(
m2 −m+ 1

)
0 −20m 0 1 0

−m3 + 47m2 − 107m+ 61 0 91m2 + 14m+ 31 0 −5(7m+ 1) 0 1




.

Remark

• The numbers 1, 6, 12, 20, 30, ... positioned along the n + 2, n diagonal of

the matrix A correspond to A180291.

• The row sums of A for m = 0 form the sequence (1, 1, 2, 3, 8, 17, 88, ...)

corresponding to A009207 with e.g.f esin(z)

cos(z) .
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• The row sums of A for m = 1 form the sequence (1, 1, 1,−1,−7,−3, 97, ...)

corresponding to A003723 having e.g.f etanh(z).

The production matrix of [dc(z,m), sn(z,m)] in terms of m is given by

B =




0 1 0 0 0 0
1−m 0 1 0 0 0

0 1− 3m 0 1 0 0
3− 3m2 0 −6m 0 1 0

0 −15m2 + 6m+ 9 0 −2(5m+ 1) 0 1
−15

(
3m3 −m2 +m− 3

)
0 −45m2 + 30m+ 15 0 −5(3m+ 1) 0



.

If m = −1, 0, 1 then [dc(z,m), sn(z,m)] produces the Riordan arrays

C = {[dc(z,−1), sn(z| − 1)] , [sec(z), sin(z)] , [1, tanh(z)] , } respectively.

The production matrices of B associated to the Riordan arrays C if m = −1, 0, 1

are as follows respectively:

D =








0 1 0 0 0
2 0 1 0 0
0 4 0 1 0
0 0 6 0 1
0 −12 0 8 0



,




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
3 0 0 0 1
0 9 0 −2 0



,




0 1 0 0 0
0 0 1 0 0
0 −2 0 1 0
0 0 −6 0 1
0 0 0 −12 0







.

Remark: The tri-diagonal matrix for m = 1 in D indicates that the inverse of

the Riordan array [1, tanh(z)] forms the coefficient array of a family of orthog-

onal polynomial sequence. This is A111594 the triangle of arctanh numbers.

The r and c sequences corresponding of the production matrices of B and D

are listed as follows:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

r(z, 1) = 1− z2

r(z, 0) =
√

1− z2

c(z,m) =
(m− 1)zcn

(
sn−1(z|m)

∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

(z2 − 1) (mz2 − 1)

c(z, 1) = 1

c(z, 0) = − z√
1− z2

.

2.3.1.7 [cn(z,m),am(z,m)]

The coefficient matrix of [cn(z,m), am(z,m)] is given by:
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A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 6

(
−m

6 − 1
2

)
0 1 0 0 0

24
(
m
6 + 1

24

)
0 12

(
−m

3 − 1
2

)
0 1 0 0

0 m2 + 34m+ 5 0 20
(
−m

2 − 1
2

)
0 1 0

−16m2 − 44m− 1 0 16m2 + 144m+ 15 0 30
(
− 2m

3 − 1
2

)
0 1




which is equivalent to




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −m− 3 0 1 0 0 0

4m+ 1 0 −4m− 6 0 1 0 0
0 m2 + 34m+ 5 0 −10(m+ 1) 0 1 0

−16m2 − 44m− 1 0 16m2 + 144m+ 15 0 −5(4m+ 3) 0 1




.

Remark

• The numbers 1, 6, 12, 20, 30, ... positioned along the n + 2, n diagonal of

the matrix A correspond to A180291.

• The row sums of A for m = 0 form the sequence (1, 1, 0,−2,−4,−4, 0, ...)

correspond to A146559 with o.g.f ez cos(z).

• The row sums of A for m = 1 form the sequence (1, 1, 0,−3,−4, 21, 80, ...)

corresponds to A012123 with e.g.f e(sin−1(tanh(z))) = egdz (Gudermannian

function).

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
−1 0 1 0 0 0
0 −m− 2 0 1 0 0

3m− 2 0 −3(m+ 1) 0 1 0
0 −3m2 + 16m− 8 0 −6m− 4 0 1

15m2 − 16 0 −5
(
3m2 − 10m+ 4

)
0 −5(2m+ 1) 0



.

If m = 0, 1 then [cn(z,m), am(z,m)] produces the Riordan arrays:

{[cos(z), z] ,
[
sech(z), sin−1(tanh(z))

]
}.

The matrix
[
sech(z), sin−1(tanh(z))

]
corresponds to A147308 . The inverse

matrix of
[
sech(z), sin−1(tanh(z))

]
is [sec(z), log(sec(z) + tan(z))] which corre-

sponds to A147309. Its row sums are the once shifted Euler up/down numbers
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(A000111) . The production matrices derived from B if m = −1, 0, 1 are

respectively as follows:

D =








0 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
−5 0 0 0 1
0 −27 0 2 0



,




0 1 0 0 0
−1 0 1 0 0
0 −2 0 1 0
−2 0 −3 0 1
0 −8 0 −4 0



,




0 1 0 0 0
−1 0 1 0 0
0 −3 0 1 0
1 0 −6 0 1
0 5 0 −10 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = dn(F (z|m)|m)

r(z, 1) = sech(F (z|1))

c(z,m) = −dn(F (z|m)|m)sn(F (z|m)|m)

cn(F (z|m)|m)

c(z, 1) = − tanh(F (z|1))

c(z, 0) = − tan(z).

2.3.2 Appell subgroup of Jacobi Riordan arrays

Recall from (1.4.1) that the elements of the Appell subgroup are of the form

[d(z), z] .

2.3.2.1 [cd(z,m), z]

The coefficient matrix of [cd(z,m), z] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

m− 1 0 1 0 0 0 0
0 3(m− 1) 0 1 0 0 0

5m2 − 6m+ 1 0 6(m− 1) 0 1 0 0
0 5

(
5m2 − 6m+ 1

)
0 10(m− 1) 0 1 0

61m3 − 107m2 + 47m− 1 0 15
(
5m2 − 6m+ 1

)
0 15(m− 1) 0 1




.

Remark

• The numbers 1, 3, 6, 10, 15, ... positioned along the n+ 2, n diagonal of the

matrix A correspond to A000217.

• The row sums of A for m = 0 form the sequence (1, 1, 0,−2,−4,−4, 0, ...)

corresponds to A146559 with e.g.f ez cos(z).
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• The row sums of A for m = 1 form the sequence (1, 1, 1, 1, 1, 1, 1, ...) cor-

responds to A000012 with e.g.f ez.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
m− 1 0 1 0 0 0

0 2(m− 1) 0 1 0 0
2
(
m2 − 1

)
0 3(m− 1) 0 1 0

0 8
(
m2 − 1

)
0 4(m− 1) 0 1

16
(
m3 − 2m2 + 2m− 1

)
0 20

(
m2 − 1

)
0 5(m− 1) 0



.

If m = −1, 0, 1 then [cd(z,m), z] produces the Riordan arrays:

C = {[cd(z,−1), z] , [cos(z), z] , [1, z]} respectively.

The production matrices from B if m = −1, 0, 1 are as follows:

D =








0 1 0 0 0 0
−2 0 1 0 0 0
0 −4 0 1 0 0
0 0 −6 0 1 0
0 0 0 −8 0 1

−96 0 0 0 −10 0



,




0 1 0 0 0 0
−1 0 1 0 0 0
0 −2 0 1 0 0
−2 0 −3 0 1 0
0 −8 0 −4 0 1

−16 0 −20 0 −5 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0








.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D and to the Riordan arrays in C are listed below.

r(z,m) = 1 ∀(m)

c(z,m) =
(m− 1)nd(z|m)sd(z|m)

cd(z|m)

c(z, 1) = 0

c(z, 0) = − tan(z)

2.3.2.2 [nd(z,m), z]

The case of the exponential Riordan array [nd(z,m), z] has the coefficient matrix

given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
m 0 1 0 0 0 0
0 3m 0 1 0 0 0

m(5m− 4) 0 6m 0 1 0 0
0 5m(5m− 4) 0 10m 0 1 0

m
(
61m2 − 76m+ 16

)
0 15m(5m− 4) 0 15m 0 1




.
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Remark

• The numbers 1, 3, 6, 10, 15, ... positioned along the n+ 2, n diagonal of the

matrix A correspond to A000217.

• The row sums of A for m = 0 form the sequence (1, 1, 1, 1, 1, 1, 1, ...) cor-

responds to A000012 with e.g.f ez.

• The row sums of A for m = 1 form the sequence (1, 1, 2, 4, 8, 16, 32, ...)

corresponds to A011782 with e.g.f cosh(z)ez = e2z+1
2 .

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
m 0 1 0 0 0
0 2m 0 1 0 0

2(m− 2)m 0 3m 0 1 0
0 8(m− 2)m 0 4m 0 1

16m
(
m2 −m+ 1

)
0 20(m− 2)m 0 5m 0



.

The production matrices for the case m = −1, 0, 1 in B corresponding to the

Riordan arrays

C = {[nd(z| − 1), z] , [1, z] , [cosh(z), z]} respectively,

are given by:

D =








0 1 0 0 0 0
−1 0 1 0 0 0
0 −2 0 1 0 0
6 0 −3 0 1 0
0 24 0 −4 0 1

−48 0 60 0 −5 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



,




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
−2 0 3 0 1 0
0 −8 0 4 0 1
16 0 −20 0 5 0








.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = 1 ∀m

c(z,m) =
mcd(z|m)sd(z|m)

nd(z|m)

c(z, 1) = tanh(z)

c(z, 0) = 0
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2.3.2.3 [nc(z,m), z]

The coefficient array of [nc(z,m), z] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 3 0 1 0 0 0

5− 4m 0 6 0 1 0 0
0 25− 20m 0 10 0 1 0

16m2 − 76m+ 61 0 75− 60m 0 15 0 1




.

Remark:

• The numbers 1, 3, 6, 10, 15, ... positioned along the n+ 2, n diagonal of the

matrix A correspond to A000217.

• The row sums of A for m = 0 form the sequence (1, 1, 2, 4, 12, 36, 152, ...)

corresponds to A003701 with e.g.f ez

cos(z) .

• The row sums of A for m = 1 form the sequence (1, 1, 2, 4, 8, 16, 32, ...)

corresponds to A011782 with e.g.f cosh(z)ez = e2z+1
2 .

The production matrix of A in terms of m is

B =




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0

2− 4m 0 3 0 1 0
0 8− 16m 0 4 0 1

16
(
m2 −m+ 1

)
0 20− 40m 0 5 0



.

The Riordan matrices from [nc(z,m), z] for m = −1, 0, 1 are

C = {[−1,nc(z,−1)] , [sec(z), z] , [cosh(z), z]} respectively.

The production matrix from B if m = −1, 0, 1 are as follows:

D =








0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
6 0 3 0 1 0
0 24 0 4 0 1
48 0 60 0 5 0



,




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
2 0 3 0 1 0
0 8 0 4 0 1
16 0 20 0 5 0



,




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
−2 0 3 0 1 0
0 −8 0 4 0 1
16 0 −20 0 5 0








.

72



The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = 1 ∀m

c(z,m) =
dn(z|m)sn(z|m)

cn(z|m)

c(z, 1) = tanh(z)

c(z, 0) = tan(z).

2.3.3 The Associated subgroup of Jacobi Riordan arrays

Recall from (1.4.1) that the elements of the Associated subgroup are of the

form [1, f(z)] .

2.3.3.1 [1, sn(z,m)]

The coefficient matrix of [1, sn(z,m)] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 −m− 1 0 1 0 0 0
0 0 −4(m+ 1) 0 1 0 0
0 m2 + 14m+ 1 0 −10(m+ 1) 0 1 0
0 0 8

(
2m2 + 13m+ 2

)
0 −20(m+ 1) 0 1




.

Remark:

• The columns of matrix A after the first column are Palindromic.

• The row sums of A for m = 0 form the sequence (1, 1, 1, 0,−3,−8,−3, ...)

corresponds to A002017 with e.g.f esin(z).

• The row sums of A for m = 1 form the sequence (1, 1, 1,−1,−7,−3, 97, ...)

corresponds to A003723 with e.g.f etanh(z).

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 −m− 1 0 1 0 0
0 0 −3(m+ 1) 0 1 0
0 −3(m− 1)2 0 −6(m+ 1) 0 1
0 0 −15(m− 1)2 0 −10(m+ 1) 0



.
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If m = −1, 0, 1 then [1, sn(z,m)] produces the Riordan arrays:

C = {[1, sn(z,−1)] , [1, sin(z)] , [1, tanh(z)]}.

The production matrices from B if m = −1, 0, 1 are as follows:

D =








0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −12 0 0 0



,




0 1 0 0 0
0 0 1 0 0
0 −1 0 1 0
0 0 −3 0 1
0 −3 0 −6 0



,




0 1 0 0 0
0 0 1 0 0
0 −2 0 1 0
0 0 −6 0 1
0 0 0 −12 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrix of B and D are listed as follows:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

r(z, 1) = 1− z2

r(z, 0) =
√

1− z2

c(z,m) = 0 ∀m

2.3.3.2
[
1, z2ns(z,m)

]

The exponential Riordan matrix of
[
1, z2ns(z,m)

]
is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 m+ 1 0 1 0 0 0
0 0 4(m+ 1) 0 1 0 0
0 1

3

(
7m2 − 22m+ 7

)
0 10(m+ 1) 0 1 0

0 0 24
(
m2 −m+ 1

)
0 20(m+ 1) 0 1




.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 m+ 1 0 1 0 0
0 0 3(m+ 1) 0 1 0
0 1

3

(
−5m2 − 46m− 5

)
0 6(m+ 1) 0 1

0 0 − 5
3

(
5m2 + 46m+ 5

)
0 10(m+ 1) 0



.

The production matrix B for the case m = −1, 0, 1 corresponding to the Riordan

arrays

C = {
[
1, z2ns(z| − 1)

]
,
[
1, z2 csc(z)

]
,
[
1, z2 coth(z)

]
},
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are given by:

D =








0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 12 0 0 0



,




0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 3 0 1
0 − 5

3 0 6 0



,




0 1 0 0 0
0 0 1 0 0
0 2 0 1 0
0 0 6 0 1
0 − 56

3 0 12 0







.

2.3.3.3 [1, znc(z,m)]

The exponential Riordan matrix of [1, znc(z,m)] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 3 0 1 0 0 0
0 0 12 0 1 0 0
0 25− 20m 0 30 0 1 0
0 0 −120(m− 2) 0 60 0 1




.

Remark

• The row sums of A for m = 0 form the sequence (1, 1, 1, 4, 13, 56, 301, ...)

corresponds to A009300 with e.g.f e
z

cos(z) .

• The row sums of A for m = 1 form the sequence (1, 1, 1, 4, 13, 36, 181, ...)

corresponds to A003727 with e.g.f ez cosh(z).

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 3 0 1 0 0
0 0 9 0 1 0
0 −20m− 11 0 18 0 1
0 0 −5(20m+ 11) 0 30 0



.

The production matrix above for the case m = 1, 0,−1 of B corresponding to

the Riordan arrays

C = {[1, znc(z| − 1)] , [1, z sec(z)] , [1, z cosh(z)]} respectively

are given by:

D =








0 1 0 0 0
0 0 1 0 0
0 3 0 1 0
0 0 9 0 1
0 9 0 18 0



,




0 1 0 0 0
0 0 1 0 0
0 3 0 1 0
0 0 9 0 1
0 −11 0 18 0



,




0 1 0 0 0
0 0 1 0 0
0 3 0 1 0
0 0 9 0 1
0 −31 0 18 0







.
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2.3.4 Derivative Subgroup of Jacobi Riordan arrays

Recall from (1.4.1) that the elements of the derivative subgroup have the form

(h′(z), h(z)), where h′(z) denotes the first derivative of h(z).

2.3.4.1
[
d
dz sn(z,m), sn(z,m)

]

The coefficient array of
[
d
dz sn(z,m), sn(z,m)

]
where d

dz sn(z,m) = cn(z|m)dn(z|m)

is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

−m− 1 0 1 0 0 0 0
0 −4(m+ 1) 0 1 0 0 0

m2 + 14m+ 1 0 −10(m+ 1) 0 1 0 0
0 8

(
2m2 + 13m+ 2

)
0 −20(m+ 1) 0 1 0

−m3 − 135m2 − 135m− 1 0 91m2 + 434m+ 91 0 −35(m+ 1) 0 1




Remark:

• The coefficient matrix of
[
d
dz sn(z,m), sn(z,m)

]
forms a Palindromic Ri-

ordan array.

• The row sums of A for m = 0 form the sequence (1, 1, 0,−3,−8,−3, 56, ...)

which has the e.g.f cos(z)esin(z).

• The row sums ofA form = 1 form the sequence (1, 1,−1,−7,−3, 97, 275, ...)

which has the e.g.f sech2(z)etanh(z).

• The non-zero entries of the first column of A corresponds to the matrix

A[1] =




1
−1 −1
1 14 1
−1 −135 −135 −1


 .

By multiplying the matrix A[1] by −1m if n ≡ m(mod2) where n is the

column number s.t n = 0, 1, 2, ... we get the matrix

B[1] =




1
1 1
1 14 1
1 135 135 1


 .

The matrix B[1] corresponds to A060628.
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The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
−m− 1 0 1 0 0 0

0 −3(m+ 1) 0 1 0 0
−3(m− 1)2 0 −6(m+ 1) 0 1 0

0 −15(m− 1)2 0 −10(m+ 1) 0 1
−45(m− 1)2(m+ 1) 0 −45(m− 1)2 0 −15(m+ 1) 0




If m = −1, 0, 1 then
[
d
dz sn(z,m), sn(z,m)

]
produces the Riordan arrays

C = {[cn(z,−1)dn(z,−1), sn(z,−1)] , [cos(z), sin(z)] ,
[
sech2(z), tanh(z)

]
} respectively.

The production matrices of B in terms of m = −1, 0, 1 are as follows:

D =








0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−12 0 0 0 1
0 −60 0 0 0



,




0 1 0 0 0
−1 0 1 0 0
0 −3 0 1 0
−3 0 −6 0 1
0 −15 0 −10 0



,




0 1 0 0 0
−2 0 1 0 0
0 −6 0 1 0
0 0 −12 0 1
0 0 0 −20 0







.

REMARK: The tri-diagonal production matrix for m = 1 in D which is asso-

ciated to the Riordan array
[
sech2(z), tanh(z)

]
in C forms an orthogonal poly-

nomial sequence for
[
sech2(z), tanh(z)

]
.−1 Furthermore,

[
sech2(z), tanh(z)

]−1
=

[
1

1− z2
, tanh−1(z)

]

represents the coefficient matrix of the family of formal orthogonal polynomials.

The three term recurrence relation for these polynomials is given by

Pn+1(z) = zPn(z) + n(n+ 1)Pn−1(z)

with P0(z) = 1, P1(z) = z s.t − 1 < z < 1.

In particular, let Qn(z) =
Pn(iz)

in
, (i2 = −1)

we get

Qn+1(z) = zQn(z)− n(n+ 1)Qn−1(z), ∀n ≥ 1.

The generating functions of the r and c sequences corresponding to the pro-
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duction matrix of B and D are listed as follows:

A(z,m) = cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

=
√

(1− sn2(s̄n(z,m),m)(1−m2sn2(s̄n(z,m),m))

=
√

(1− z2)(1−m2z2)

A(z, 1) = 1− z2

A(z, 0) =
√

1− z2

Z(z,m) =
z
(
m
(
2z2 − 1

)
− 1
)

cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

(z2 − 1) (mz2 − 1)

=
z
(
m
(
2z2 − 1

)
− 1
)√

(1− sn2(s̄n(z,m),m)(1−m2sn2(s̄n(z,m),m))

(z2 − 1) (mz2 − 1)

=
z
(
m
(
2z2 − 1

)
− 1
)√

(1− z2)(1−m2z2)

(z2 − 1) (mz2 − 1)

Z(z, 1) =
−z
(
2z2 − 2

)

(z2 − 1)

= −2z

Z(z, 0) = − z√
1− z2

.

2.3.4.2
[
d
dz sc(z,m), sc(z,m)

]

The coefficient array of
[
d
dz sc(z,m), sc(z,m)

]
where d

dz sc(z,m) = dc(z|m)nc(z|m)

is given by

A =




1 0 0 0 0
0 1 0 0 0

2−m 0 1 0 0
0 8− 4m 0 1 0

m2 − 16m+ 16 0 −10(m− 2) 0 1



.

Remark:

• The row sums of A for m = 0 form the sequence (1, 1, 3, 9, 37, 177, 959, ...)

which has the e.g.f sec(z)2etan(z).

• The row sums of A for m = 1 form the sequence (1, 1, 2, 5, 12, 37, 128, ...)

which has the e.g.f cosh(z)esinh(z).

The production matrix of A in terms of m is given by

B =




0 1 0 0 0
2−m 0 1 0 0

0 6− 3m 0 1 0
−3m2 0 12− 6m 0 1

0 −15m2 0 20− 10m 0



.
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If m = −1, 0, 1 then
[
d
dz sc(z,m), sc(z,m)

]
produces the Riordan arrays:

C = {[dc(z,−1)nc(z,−1), sc(z,−1)] ,
[
sec2(z), tan(z)

]
, [cosh(z), sinh(z)]} respectively.

The production matrices from B corresponding to m = −1, 0, 1 are as follows

D =








0 1 0 0
3 0 1 0
0 9 0 1
−3 0 18 0


 ,




0 1 0 0
2 0 1 0
0 6 0 1
0 0 12 0


 ,




0 1 0 0
1 0 1 0
0 3 0 1
−3 0 6 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrix of B and D are listed as follows:

r(z,m) =
(
z2 + 1

)
dn
(

sc−1(z|m)
∣∣m
)

r(z, 1) =
√
z2 + 1

r(z, 0) = z2 + 1

c(z,m) =
z
(
2(m− 1)z2 +m− 2

)
dn
(

sc−1(z|m)
∣∣m
)

(m− 1)z2 − 1

c(z, 1) =
z√

z2 + 1

c(z, 0) = 2z.

2.3.4.3
[
d
dzam(z,m),am(z,m)

]

The coefficient array
[
d
dzam(z,m), am(z,m)

]
where d

dzam(z,m) = dn(z|m) is

given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

−m 0 1 0 0 0 0
0 −4m 0 1 0 0 0

m(m+ 4) 0 −10m 0 1 0 0
0 8m(2m+ 3) 0 −20m 0 1 0

−m
(
m2 + 44m+ 16

)
0 7m(13m+ 12) 0 −35m 0 1




.

Remark:

• The row sums of A for m = 0 form the sequence (1, 1, 1, 1, 1, 1, 1, ...) cor-

responds to A000012 with e.g.f ez.

• The row sums of A for m = 1 form the sequence (1, 1, 0,−3,−4, 21, 80, ...)

corresponds to A012123 with e.g.f esin−1(tanh(z)) = egdz where g is the
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Gudermannian function such that

gd(z) =

∫ z

0

1

cosh t
dt −∞ < z <∞.

• The non-zero elements of the first column of the matrix A generated from

the derivative of the Jacobi amplitude function forms the coefficient matrix

A[1] =




1 0 0 0 0 0
0 −1 0 0 0 0
0 4 1 0 0 0
0 −16 −44 −1 0 0
0 64 912 408 1 0
0 −256 −15808 −30768 −3688 −1



.

The production matrix of A in terms of m:

B =




0 1 0 0 0 0
−m 0 1 0 0 0
0 −3m 0 1 0 0

(4− 3m)m 0 −6m 0 1 0
0 5(4− 3m)m 0 −10m 0 1

m
(
−45m2 + 60m− 16

)
0 15(4− 3m)m 0 −15m 0



.

If m = 1 and m = 0 then
[
d
dzam(z,m), am(z,m)

]
produces the Riordan arrays

C = {
[

2ez

e2z + 1
, 2 tan−1 (ez)− π

2

]
, [1, z]} respectively.

Remark: We note that 2ez

e2z+1 has an ordinary generating function given by

1

1 +
x2

1 +
4x2

1 +
9x2

1 +
25x2

1 + · · ·

.

The production matrices from B in terms of m = −1, 0, 1 are as follows

D =








0 1 0 0 0 0
1 0 1 0 0 0
0 3 0 1 0 0
−7 0 6 0 1 0
0 −35 0 10 0 1
121 0 −105 0 15 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



,




0 1 0 0 0 0
−1 0 1 0 0 0
0 −3 0 1 0 0
1 0 −6 0 1 0
0 5 0 −10 0 1
−1 0 15 0 −15 0








.
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Remark: We note that the generating function of the matrix D at m = 1 is

exy(− sin(x) + y cos(x)).

The generating functions of the r and c sequences corresponding to the produc-

tion matrix of B and D are listed as follows:

r(z,m) = dn(F (z|m)|m)

r(z, 1) = sech(F (z|1))

= sech(log(tan(z) + sec(z)))

=
2(tan(z) + sec(z))

(tan(z) + sec(z))2 + 1

= cos(z)

r(z, 0) = 1

c(z,m) =
mcn(F (z|m)|m)sn(F (z|m)|m)

dn(F (z|m)|m)

c(z, 1) = − tanh(F (z|1))

= − tanh(log(tan(z) + sec(z)))

=
1− (tan(z) + sec(z))2

1 + (tan(z) + sec(z))2

= sin(z)

c(z, 0) = 0

Recall: The incomplete elliptic integral of the first kind (2.1) denoted F (φ,m)

where 0 < φ < π
2 . If φ = π

2 we have the complete elliptic integral of the first

kind K. It has a series expansion given by

F (φ,m) = φ+
mφ3

6
+

1

120

(
9m2 − 4m

)
φ5+

(
225m3 − 180m2 + 16m

)
φ7

5040
+O

(
φ9
)
.

The Mathematica code to compute F (z|1) is as follows: EllipticF[z, 1]EllipticF[z, 1]EllipticF[z, 1]

EllipticF[z, 1]

FunctionExpand
[
%, 0 < z < Pi

2

]
FunctionExpand

[
%, 0 < z < Pi

2

]
FunctionExpand

[
%, 0 < z < Pi

2

]

Log[Sec[z] + Tan[z]]
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2.3.4.4
[
d
dz sd(z,m), sd(z,m)

]

The coefficient array of
[
d
dz sd(z,m), sd(z,m)

]
where d

dz sd(z,m) = cd(z|m)nd(z|m)

is given by

A =




1 0 0 0 0 0
0 1 0 0 0 0

2
(
m− 1

2

)
0 1 0 0 0

0 6
(
4m
3 − 2

3

)
0 1 0 0

16m2 − 16m+ 1 0 12
(
5m
3 − 5

6

)
0 1 0

0 8
(
17m2 − 17m+ 2

)
0 20(2m− 1) 0 1




which is equivalent to




1 0 0 0 0 0
0 1 0 0 0 0

2m− 1 0 1 0 0 0
0 8m− 4 0 1 0 0

16m2 − 16m+ 1 0 20m− 10 0 1 0
0 8

(
17m2 − 17m+ 2

)
0 40m− 20 0 1



.

REMARK:

• The numbers 2, 6, 12, 20, 30, 42, ... located on the n + 2, n diagonal corre-

spond to A002378.

• The row sums of A for m = 0 form the sequence (1, 1, 0,−3,−8,−3, 56, ...)

with e.g.f cos(z)esin(z).

• The row sums of A for m = 1 form the sequence (1, 1, 2, 5, 12, 37, 128, ...)

which has e.g.f cosh(z)esinh(z).

If m = 1 and m = 0 then
[
d
dz sd(z,m), sd(z,m)

]
produces the Riordan arrays

C = {[cosh(z), sinh(z)] , [cos(z), sin(z)]}. The production matrix of A in terms

of m is given by

B =




0 1 0 0 0 0
2m− 1 0 1 0 0 0

0 6m− 3 0 1 0 0
−3 0 12m− 6 0 1 0
0 −15 0 20m− 10 0 1

90m− 45 0 −45 0 30m− 15 0



.

The production matrices from B in terms of m = −1, 0, 1 are as follows:

D =








0 1 0 0 0
−3 0 1 0 0
0 −9 0 1 0
−3 0 −18 0 1
0 −15 0 −30 0



,




0 1 0 0 0
−1 0 1 0 0
0 −3 0 1 0
−3 0 −6 0 1
0 −15 0 −10 0



,




0 1 0 0 0
1 0 1 0 0
0 3 0 1 0
−3 0 6 0 1
0 −15 0 10 0







.
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The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = cd
(

sd−1(z|m)
∣∣m
)

nd
(

sd−1(z|m)
∣∣m
)

r(z, 1) =
√
z2 + 1

r(z, 0) =
√

1− z2

c(z,m) =
z
(
2(m− 1)mz2 + 2m− 1

)
cn
(

sd−1(z|m)
∣∣m
)

(m− 1)z2 + 1

c(z, 1) =
z√

z2 + 1

c(z, 0) = − z√
1− z2

.

2.3.4.5
[
d
dz sc

−1(z,m), sc−1(z,m)
]

The coefficient matrix of
[
d
dz sc−1(z,m), sc−1(z,m)

]
where d

dz sc−1(z,m) =
nd( sc−1(z|m)|m)

z2+1 :

A =




1 0 0 0 0
0 1 0 0 0

m− 2 0 1 0 0
0 4(m− 2) 0 1 0

3
(
3m2 − 8m+ 8

)
0 10(m− 2) 0 1



.

Remark: The row sums ofA form = 0 form the sequence (1, 1,−1,−7, 5, 145,−5, ...)

which has the e.g.f 1
1+z2 e

tan−1(z). The production matrix of A in terms of m is

given by

B =




0 1 0 0 0
m− 2 0 1 0 0

0 3(m− 2) 0 1 0
m(5m− 8) + 8 0 6(m− 2) 0 1

0 5(m(5m− 8) + 8) 0 10(m− 2) 0



.

If m = 1 and m = 0 then
[
d
dz sc−1(z,m), sc−1(z,m)

]
produces the Riordan

arrays C = {
[

1√
z2+1

, sinh−1(z)
]
,
[

1
z2+1 , tan−1(z)

]
}. The production matrices

from B for m = −1, 0, 1 are as follows:

D =








0 1 0 0 0
−3 0 1 0 0
0 −9 0 1 0
21 0 −18 0 1
0 105 0 −30 0



,




0 1 0 0 0
−2 0 1 0 0
0 −6 0 1 0
8 0 −12 0 1
0 40 0 −20 0



,




0 1 0 0 0
−1 0 1 0 0
0 −3 0 1 0
5 0 −6 0 1
0 25 0 −10 0







.
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The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = cn(z|m)2nd
(

sc−1(sc(z|m)|m)
∣∣m
)

r(z, 1) =
1

cosh(z)

r(z, 0) = cos2(z)

c(z, 1) = tanh(z)(−sech(z))

c(z, 0) = − sin(2z)

c(z,m) =

cn(z|m)4
(
sc(z|m)2 + 1

)
(mcd

(
sc−1(sc(z|m)|m)

∣∣m
)

sd
(

sc−1(sc(z|m)|m)
∣∣m
)
−

2sc(z|m)).

2.3.4.6
[
d
dz sd

−1(z|m), sd−1(z|m)
]

The coefficient matrix
[
d
dz sd−1(z|m), sd−1(z|m)

]
where

d

dz
sd−1(z|m) =

cn
(

sd−1(z|m)
∣∣m
)

(m− 1)z2 + 1
.

A =




1 0 0 0 0
0 1 0 0 0

2
(
1
2 −m

)
0 1 0 0

0 6
(
2
3 − 4m

3

)
0 1 0

24
(
m2 −m+ 3

8

)
0 12

(
5
6 − 5m

3

)
0 1




which is equivalent to




1 0 0 0 0
0 1 0 0 0

1− 2m 0 1 0 0
0 4− 8m 0 1 0

3
(
8m2 − 8m+ 3

)
0 10− 20m 0 1



.

REMARK:

• The numbers 2, 6, 12, 20, 30, 42, ... located on the n + 2, n diagonal corre-

spond to A002378

• The row sums of A for m = 0 form the sequence (1, 1, 2, 5, 20, 85, 520, ...)

which has e.g.f 1√
1−z2 e

sin−1 (z).

84



The production matrix of A in terms of m:

B =




0 1 0 0
1− 2m 0 1 0

0 3− 6m 0 1
8m2 − 8m+ 5 0 6− 12m 0


 .

If m = 1 and m = 0 then
[
d
dz sd−1(z,m), sd−1(z,m)

]
produces the Riordan

arrays C = {
[

1√
z2+1

, sinh−1(z)
]
,
[

1√
1−z2 , sin

−1(z)
]
} respectively. In particular

we have that,

[
1√

z2 + 1
, sinh−1(z)

]−1

= [cosh(z), sinh(z)] .

The production matrices from B for m = −1, 0, 1 are as follows

D =








0 1 0 0
3 0 1 0
0 9 0 1
21 0 18 0


 ,




0 1 0 0
1 0 1 0
0 3 0 1
5 0 6 0


 ,




0 1 0 0
−1 0 1 0
0 −3 0 1
5 0 −6 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) =
cn
(

sd−1(sd(z|m)|m)
∣∣m
)

(m− 1)sd(z|m)2 + 1

r(z, 1) =
1

cosh(z)

r(z, 0) =
1

cos(z)

c(z,m) = −dn
(

sd−1(sd(z|m)|m)
∣∣m
)

sn
(

sd−1(sd(z|m)|m)
∣∣m
)

+ 2(m− 1)sd(z|m)

(m− 1)sd(z|m)2 + 1

c(z, 1) = tanh(z)(−sech(z))

c(z, 0) = tan(z) sec(z)

2.3.4.7
[
d
dz sn

−1(z,m), sn−1(z,m)
]

The coefficient array of
[
d
dz sn−1(z,m), sn−1(z,m)

]
where

d

dz
sn−1(z,m) =

cd
(

sn−1(z,m)
∣∣m
)

1− z2
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is given by

A =




1 0 0 0 0 0
0 1 0 0 0 0

m+ 1 0 1 0 0 0
0 4(m+ 1) 0 1 0 0

3
(
3m2 + 2m+ 3

)
0 10(m+ 1) 0 1 0

0 8
(
8m2 + 7m+ 8

)
0 20(m+ 1) 0 1



.

REMARK:

• The numbers 1, 4, 10, 20, ... located on the (n + 2, n) diagonal correspond

to A000292.

• The row sums of A for m = 0 form the sequence (1, 1, 2, 5, 20, 85, 520, ...)

which has e.g.f 1√
1−z2 e

sin−1 (z).

• The row sums of A for m = 1 form the sequence (1, 1, 3, 9, 45, 225, 1575, ...)

which has e.g.f 1
1−z2

√
1+z
1−z .

The production matrix of A expressed in terms of m

B =




0 1 0 0 0
m+ 1 0 1 0 0

0 3(m+ 1) 0 1 0
5m2 − 2m+ 5 0 6(m+ 1) 0 1

0 5
(
5m2 − 2m+ 5

)
0 10(m+ 1) 0



.

If m = 1 and m = 0 then
[
d
dz sn−1(z,m), sn−1(z,m)

]
produces the Riordan

arrays C =
[

1
1−z2 , tanh−1(z)

]
,
[

1√
1−z2 , sin

−1(z)
]

respectively. In particular,

[
1

1− z2
, tanh−1(z)

]−1

=
[
sech2(z), tanh(z)

]

corresponds to a signed version of A059419. We recall that tanh−1(z) =
1
2 ln

(
1+z
1−z

)
. The production matrices from B in terms of m = −1, 0, 1 are as

follows:

D =








0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
12 0 0 0 1
0 60 0 0 0



,




0 1 0 0 0
1 0 1 0 0
0 3 0 1 0
5 0 6 0 1
0 25 0 10 0



,




0 1 0 0 0
2 0 1 0 0
0 6 0 1 0
8 0 12 0 1
0 40 0 20 0







.

The generating functions of the r and c sequence corresponding to the produc-
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tion matrices of B and D are listed as follows:

r(z,m) =
cd
(

sn−1(sn(z|m)|m)
∣∣m
)

cn(z|m)2

r(z, 1) = cosh2(z)

r(z, 0) =
1√

cos2(z)

c(z,m) =

(
m−1

dn(z|m)2 + 2
)

sn(z|m)

cn(z|m)2

c(z, 1) = sinh(2z)

c(z, 0) = tan(z) sec(z).

2.4 Products of Jacobi Riordan arrays

We use the multiplication rule of Riordan arrays (1.3) in the context of Riordan

arrays defined by Jacobi elliptic functions.

2.4.1 [cn(z,m), sn(z,m)]2

Consider the product [cn(z,m), sn(z,m)]
2

= [cn(z,m), sn(z,m)] [cn(z,m), sn(z,m)] ≡
[cn(z,m)cn(sn(z,m),m), sn(sn(z,m),m)]. The resulting coefficient matrix is given

by

A =




1 0 0 0 0
0 1 0 0 0
−2 0 1 0 0
0 6

(
−m

3 − 4
3

)
0 1 0

12(m+ 1) 0 12
(
− 2m

3 − 5
3

)
0 1



.

which is equivalent to




1 0 0 0 0
0 1 0 0 0
−2 0 1 0 0
0 −2(m+ 4) 0 1 0

12(m+ 1) 0 −4(2m+ 5) 0 1



.

REMARK The numbers 2, 6, 12, 20, 30, ... located on the (n+ 2, n) diagonal of

A correspond to A002378.
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The production matrix of A in terms of m is given by

B =




0 1 0 0
−2 0 1 0
0 −2(m+ 3) 0 1

8m− 4 0 −6(m+ 2) 0


 .

If m = 1 and m = 0 then [cn(z,m), sn(z,m)]
2

produces the Riordan arrays C =

{[sech(z)sech(tanh(z)), tanh(tanh(z))] , [cos(z) cos(sin(z)), sin(sin(z))]} respectively.

The production matrices from B in terms of m = −1, 0, 1 are as follows:

D =








0 1 0 0
−2 0 1 0
0 −4 0 1

−12 0 −6 0


 ,




0 1 0 0
−2 0 1 0
0 −6 0 1
−4 0 −12 0


 ,




0 1 0 0
−2 0 1 0
0 −8 0 1
4 0 −18 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

cn
(

sn−1
(

sn−1(z|m)
∣∣m
)∣∣m

)
×

dn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1
(

sn−1(z|m)
∣∣m
)∣∣m

)

r(z, 1) =
(
z2 − 1

) (
tanh−1(z)2 − 1

)

r(z, 0) =
√

1− z2

√
1− sin−1(z)2

c(z, 1) = tanh−1(z)
(
z tanh−1(z)− 1

)
− z

c(z, 0) =
sin−1(z)

(√
1− z2 − z sin−1(z)

)
+ z

√
1− z2

√
1− sin−1(z)2

2.4.2 [cn(z,m), sn(z,m)]
[
d
dz

sn(z,m), sn(z,m)
]

Consider the product

[cn(z,m), sn(z,m)]

[
d

dz
sn(z,m), sn(z,m)

]
= [cn(z,m), sn(z,m)] [cn(z,m)dn(z,m), sn(z,m)]

= [cn(z,m)cn(sn(z,m),m)dn(sn(z,m),m), sn(sn(z,m),m)] .
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The resulting coefficient matrix is given by :

A =




1 0 0 0 0
0 1 0 0 0

2
(
−m

2 − 1
)

0 1 0 0
0 6

(
− 5m

6 − 4
3

)
0 1 0

5m2 + 32m+ 12 0 12
(
− 7m

6 − 5
3

)
0 1




which is equivalent to




1 0 0 0 0
0 1 0 0 0

−m− 2 0 1 0 0
0 −5m− 8 0 1 0

5m2 + 32m+ 12 0 −2(7m+ 10) 0 1



.

REMARK The numbers 2, 6, 12, 20, 30, ... located on the n + 2, n diagonal of

A correspond to A002378.

The production matrix of A in terms of m : is given by

B =




0 1 0 0
−m− 2 0 1 0

0 −4m− 6 0 1
14m− 4 0 −9m− 12 0


 .

The production matrices from B in terms of m = −1, 0, 1 : are as follows

D =








0 1 0 0
−1 0 1 0
0 −2 0 1

−18 0 −3 0


 ,




0 1 0 0
−2 0 1 0
0 −6 0 1
−4 0 −12 0


 ,




0 1 0 0
−3 0 1 0
0 −10 0 1
10 0 −21 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

cn
(

sn−1
(

sn−1(z|m)
∣∣m
)∣∣m

)
dn
(

sn−1(z|m)
∣∣m
)
×

dn
(

sn−1
(

sn−1(z|m)
∣∣m
)∣∣m

)

r(z, 1) =
(
z2 − 1

) (
tanh−1(z)2 − 1

)

r(z, 0) =
√

1− z2

√
1− sin−1(z)2
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c(z, 1) = −
√

1− z2
(
z tanh−1(z)− 1

) (
tanh−1(z)2 − 1

)
tanh

(√
1− z2 tanh−1(z)

)

− tanh−1(z)

c(z, 0) = − sin−1(z)
(√

1− z2 − z sin−1(z)
)

+ z
√

1− z2

√
1− sin−1(z)2

2.4.3
[
d
dz

sn(z,m), sn(z,m)
]2

Consider the product:

[
d

dz
sn(z,m), sn(z,m)

]2

=

[
d

dz
sn(z,m), sn(z,m)

] [
d

dz
sn(z,m), sn(z,m)

]

= [cn(z,m)dn(z,m), sn(z,m)] [cn(z,m)dn(z,m), sn(z,m)]

= [cn(z,m)dn(z,m)cn(sn(z,m),m)dn(sn(z,m),m), sn(sn(z,m),m)] .

The resulting coefficient matrix is given by

A =




1 0 0 0 0
0 1 0 0 0

2(−m− 1) 0 1 0 0
0 −8(m+ 1) 0 1 0

12
(
m2 + 4m+ 1

)
0 −20(m+ 1) 0 1



.

The production matrix of A in terms of m is given by

B =




0 1 0 0
−2(m+ 1) 0 1 0

0 −6(m+ 1) 0 1
−4
(
m2 − 4m+ 1

)
0 −12(m+ 1) 0


 .

If m = 1 and m = 0 then
[
d
dz sn(z,m), sn(z,m)

]2
produces the Riordan arrays

{
[
sech2(z)sech2(tanh(z)), tanh(tanh(z))

]
, [cos(z) cos(sin(z)), sin(sin(z))]} respectively.

The production matrices from B in terms of m = −1, 0, 1 are as follows:

D =








0 1 0 0
0 0 1 0
0 0 0 1

−24 0 0 0


 ,




0 1 0 0
−2 0 1 0
0 −6 0 1
−4 0 −12 0


 ,




0 1 0 0
−4 0 1 0
0 −12 0 1
8 0 −24 0







.

The generating functions of the r and c sequences corresponding to the produc-
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tion matrices of B and D are listed as follows:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

cn
(

sn−1
(

sn−1(z|m)
∣∣m
)∣∣m

)
dn
(

sn−1(z|m)
∣∣m
)
×

dn
(

sn−1
(

sn−1(z|m)
∣∣m
)∣∣m

)

r(z, 1) =
(
z2 − 1

) (
tanh−1(z)2 − 1

)

r(z, 0) =
√

1− z2

√
1− sin−1(z)2

c(z, 1) = 2 tanh−1(z)
(
z tanh−1(z)− 1

)
− 2z

c(z, 0) = − sin−1(z)
(√

1− z2 − z sin−1(z)
)

+ z
√

1− z2

√
1− sin−1(z)2

2.4.4
[
d
dz

sc(z,m), sc(z,m)
] [

d
dz

sn(z,m), sn(z,m)
]

Consider the product

[
d

dz
sc(z,m), sc(z,m)

] [
d

dz
sn(z,m), sn(z,m)

]

= [dc(z,m)nc(z,m), sn(z,m)] [cn(z,m)dn(z,m), sn(z,m)]

= [dc(z,m)nc(z,m)cn(sc(z,m),m)dn(sc(z,m),m), sn(sc(z,m),m)] .

The resulting coefficient matrix is given by

A =




1 0 0 0 0
0 1 0 0 0

2
(
1
2 −m

)
0 1 0 0

0 6
(
2
3 − 4m

3

)
0 1 0

3
(
4m2 − 4m− 1

)
0 12

(
5
6 − 5m

3

)
0 1




which is equivalent to




1 0 0 0 0
0 1 0 0 0

1− 2m 0 1 0 0
0 4− 8m 0 1 0

3
(
4m2 − 4m− 1

)
0 10− 20m 0 1



.

REMARK The numbers 2, 6, 12, 20, 30, ... located on the n+2, n diagonal cor-

respond to A002378.
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The production matrix of A in terms of m is given by

B =




0 1 0 0
1− 2m 0 1 0

0 3− 6m 0 1
−4m2 + 4m− 7 0 6− 12m 0


 .

The production matrices from B in terms of m = −1, 0, 1 are as follows:

D =








0 1 0 0
3 0 1 0
0 9 0 1

−15 0 18 0


 ,




0 1 0 0
1 0 1 0
0 3 0 1
−7 0 6 0


 ,




0 1 0 0
−1 0 1 0
0 −3 0 1
−7 0 −6 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) =
(
sn−1(z|m)2 + 1

)
cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)
×

dn
(

sc−1
(

sn−1(z|m)
∣∣m
)∣∣m

)

r(z, 1) =
(
1− z2

)√
tanh−1(z)2 + 1

r(z, 0) =
√

1− z2
(
sin−1(z)2 + 1

)

c(z,m) =

c(z, 1) =
−2z − 2z tanh−1(z)2 + tanh−1(z)√

tanh−1(z)2 + 1

c(z, 0) =
2
√

1− z2 sin−1(z)− z
(
sin−1(z)2 + 1

)
√

1− z2

2.4.5
[
d
dz

sd(z,m), sd(z,m)
] [

d
dz

sn(z,m), sn(z,m)
]

Consider the product

[
d

dz
sd(z,m), sd(z,m)

] [
d

dz
sn(z,m), sn(z,m)

]

= [cd(z,m)nd(z,m), sd(z,m)] [cn(z,m)dn(z,m), sn(z,m)]

= [cd(z,m)nd(z,m)cn(sd(z,m),m)dn(sd(z,m),m), sd(sd(z,m),m)] .
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The resulting coefficient array is given by :

A =




1 0 0 0 0
0 1 0 0 0

m− 2 0 1 0 0
0 4(m− 2) 0 1 0

−3
(
m2 + 4m− 4

)
0 10(m− 2) 0 1



.

The production matrix of A in terms of m is given by

B =




0 1 0 0
m− 2 0 1 0

0 3(m− 2) 0 1
−7m2 + 4m− 4 0 6(m− 2) 0


 .

.

The production matrices from B in terms of m = {−1, 0, 1} are as follows:

D =








0 1 0 0
−3 0 1 0
0 −9 0 1

−15 0 −18 0


 ,




0 1 0 0
−2 0 1 0
0 −6 0 1
−4 0 −12 0


 ,




0 1 0 0
−1 0 1 0
0 −3 0 1
−7 0 −6 0







.

The generating functions of the r and c sequences corresponding to the produc-

tion matrices of B and D are listed as follows:

r(z,m) = cn
(

sn−1(z|m)
∣∣m
)

dn
(

sn−1(z|m)
∣∣m
)

cd
(

sd−1
(

sn−1(z|m)
∣∣m
)∣∣m

)
×

nd
(

sd−1
(

sn−1(z|m)
∣∣m
)∣∣m

)

r(z, 1) =
(
1− z2

)√
tanh−1(z)2 + 1

r(z, 0) =
√

1− z2

√
1− sin−1(z)2

c(z, 1) =
−2z − 2z tanh−1(z)2 + tanh−1(z)√

tanh−1(z)2 + 1

c(z, 0) = −
√

1− z2 sin−1(z) + z − z sin−1(z)2

√
1− z2

√
1− sin−1(z)2
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2.4.6
[
d
dz

sc−1(z,m), sc−1(z,m)
] [

d
dz

sn(z,m), sn(z,m)
]

For the case of
[
d
dz sc−1(z,m), sc−1(z,m)

] [
d
dz sn(z,m), sn(z,m)

]
its coefficient

array is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−3 0 1 0 0 0 0
0 −3(m+ 3) 0 1 0 0 0
45 0 −6(2m+ 3) 0 1 0 0
0 45

(
m2 + 2m+ 5

)
0 −30(m+ 1) 0 1 0

−1575 0 45
(
8m2 + 12m+ 15

)
0 −15(4m+ 3) 0 1




.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
−3 0 1 0 0 0
0 −3(m+ 2) 0 1 0 0

−9(m− 2) 0 −9(m+ 1) 0 1 0
0 9

(
m2 − 4m+ 8

)
0 −6(3m+ 2) 0 1

−45
(
3m2 − 12m+ 8

)
0 45

(
m2 − 2m+ 4

)
0 −15(2m+ 1) 0



.

The production matrices of B interms of m = −1, 0, 1 are respectively given by








0 1 0 0 0 0
−3 0 1 0 0 0
0 −3 0 1 0 0
27 0 0 0 1 0
0 117 0 6 0 1

−1035 0 315 0 15 0



,




0 1 0 0 0 0
−3 0 1 0 0 0
0 −6 0 1 0 0
18 0 −9 0 1 0
0 72 0 −12 0 1

−360 0 180 0 −15 0



,




0 1 0 0 0 0
−3 0 1 0 0 0
0 −9 0 1 0 0
9 0 −18 0 1 0
0 45 0 −30 0 1
45 0 135 0 −45 0








.

2.5 Jacobi Riordan arrays of complex variables

with imaginary modulus k′

In this section we construct Riordan arrayus using Jacobi elliptic functions of a

complex variable u with an imaginary modulus k′.

2.5.1 The Riordan array from sn(iu, k′)

The imaginary transformation of the elliptic sinus is sn(iu, k′) = i sn(u,k)
cn(u,k) having

series expansion given by

i
sn(u, k)

cn(u, k)
= iu−1

6
i(k−2)u3+

1

120
i
(
k2 − 16k + 16

)
u5− i

(
k3 − 138k2 + 408k − 272

)
u7

5040
+

O
(
u9
)
. (2.3)
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2.5.1.1
[
1, i sn(u,k)

cn(u,k)

]

The exponential Riordan array of the Lagrange subgroup corresponding to (2.3)

is
[
1, i sn(u,k)

cn(u,k)

]
having coefficient matrix given by

A =




1 0 0 0 0 0 0
0 i 0 0 0 0 0
0 0 −1 0 0 0 0
0 −i(k − 2) 0 −i 0 0 0
0 0 4(k − 2) 0 1 0 0
0 i

(
k2 − 16k + 16

)
0 10i(k − 2) 0 i 0

0 0 8
(
−2k2 + 17k − 17

)
0 −20(k − 2) 0 −1




.

The production matrix of A in terms of k is given by

B =




0 i 0 0 0 0
0 0 i 0 0 0
0 i(k − 2) 0 i 0 0
0 0 3i(k − 2) 0 i 0
0 −3ik2 0 6i(k − 2) 0 i
0 0 −15ik2 0 10i(k − 2) 0



.

The production matrix of B for the cases k = −1, 0, 1 is given by








0 i 0 0 0 0
0 0 i 0 0 0
0 −3i 0 i 0 0
0 0 −9i 0 i 0
0 −3i 0 −18i 0 i
0 0 −15i 0 −30i 0



,




0 i 0 0 0 0
0 0 i 0 0 0
0 −2i 0 i 0 0
0 0 −6i 0 i 0
0 0 0 −12i 0 i
0 0 0 0 −20i 0



,




0 i 0 0 0 0
0 0 i 0 0 0
0 −i 0 i 0 0
0 0 −3i 0 i 0
0 −3i 0 −6i 0 i
0 0 −15i 0 −10i 0








.

2.5.1.2
[
d
du

(
i sn(u,m)
cn(u,m)

)
, i sn(u,m)

cn(u,m)

]

The exponential Riordan array of the derivative subgroup corresponding to

(2.3) is
[
d
du

(
i sn(u,m)

cn(u,m)

)
, i sn(u,m)

cn(u,m)

]
≡
[
d
du sn(iu, k′), sn(iu, k′)

]
having coefficient

matrix given by

A =




i 0 0 0 0
0 −1 0 0 0

−i(m− 2) 0 −i 0 0
0 4(m− 2) 0 1 0

i
(
m2 − 16m+ 16

)
0 10i(m− 2) 0 i



.

The production matrix of A in terms of m is given by

B =




0 i 0 0
i(m− 2) 0 i 0

0 3i(m− 2) 0 i
−3im2 0 6i(m− 2) 0


 .
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The production matrices from B in terms of m are as follows:

D =








0 i 0 0
−3i 0 i 0
0 −9i 0 i

−3i 0 −18i 0


 ,




0 i 0 0
−2i 0 i 0
0 −6i 0 i
0 0 −12i 0


 ,




0 i 0 0
−i 0 i 0
0 −3i 0 i

−3i 0 −6i 0







.

2.5.2 The Riordan array from cn(iu, k′)

The transformation of the imaginary cosine is given by

cn(iu, k′) =
1

cn(u, k)
≡ nc(u, k)

which has the series expansion given by

1

cn(u, k)
= 1 +

u2

2
+

(
5

24
− k

6

)
u4 +

1

720

(
16k2 − 76k + 61

)
u6+

(
−64k3 + 1104k2 − 2424k + 1385

)
u8

40320
+O

(
u9
)

(2.4)

The exponential Riordan array corresponding to (2.4) of the the Appell sub-

group defined by [
1

cn(u, k)
, u

]

is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 3 0 1 0 0 0

5− 4k 0 6 0 1 0 0
0 25− 20k 0 10 0 1 0

16k2 − 76k + 61 0 75− 60k 0 15 0 1




.

REMARK

• The row sums for case k = 0 is given by {1, 1, 2, 4, 12, 36, 152, ...} corre-

sponds to A003701 and having e.g.f eu

cos(u) .

• The row sums for the case k = 1 is given by {1, 1, 2, 4, 8, 16, 32, ...} corre-

sponds to A011782 and has the e.g.f cosh(u)eu = e2u+1
2 .
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The production matrix of A in terms of k is given by

B =




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0

2− 4k 0 3 0 1 0
0 8− 16k 0 4 0 1

16
(
k2 − k + 1

)
0 20− 40k 0 5 0



.

The production matrix B for the cases k = −1, 0, 1 is given by








0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
6 0 3 0 1 0
0 24 0 4 0 1
48 0 60 0 5 0



,




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
2 0 3 0 1 0
0 8 0 4 0 1
16 0 20 0 5 0



,




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
−2 0 3 0 1 0
0 −8 0 4 0 1
16 0 −20 0 5 0








.

2.5.3 The Riordan array from dn(iu, k′)

The imaginary transformation of elliptic dn is

dn(iu, k′) =
dn(u, k)

cn(u, k)
≡ dc(u, k)

and has the series expansion given by

1 +

(
1

2
− k

2

)
u2 +

1

24

(
k2 − 6k + 5

)
u4 +

1

720

(
−k3 + 47k2 − 107k + 61

)
u6+

(
k4 − 412k3 + 2142k2 − 3116k + 1385

)
u8

40320
+O

(
u9
)
. (2.5)

The exponential Riordan array corresponding to (2.5) is defined by

[
dn(u,m)

cn(u,m)
, u

]
≡ [dn(iu, k), iu]

and has the coefficient matrix given by

A =




1 0 0 0 0
0 1 0 0 0

2
(
1
2 − m

2

)
0 1 0 0

0 6
(
1
2 − m

2

)
0 1 0

m2 − 6m+ 5 0 12
(
1
2 − m

2

)
0 1



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which is equivalent to

A =




1 0 0 0 0
0 1 0 0 0

1−m 0 1 0 0
0 3− 3m 0 1 0

m2 − 6m+ 5 0 6− 6m 0 1



.

Remark:

• The sequence of numbers 2, 6, 12, ... which are located on the n + 2, n

diagonal of A correspond to A002378.

• The row sums of A form the sequence (1, 1, 2, 4, 12, 36, 152, ...) corresponds

to A003701 with e.g.f eu

cos(u) .

• The row sums of A forming the sequence (1, 1, 1, 1, 1, 1, 1, 1, ...) correspond

to A000012 with e.g.f eu.

The production matrix of A in terms of m is given by

B =




0 1 0 0
1−m 0 1 0

0 2− 2m 0 1
2− 2m2 0 3− 3m 0


 .

The production matrices from B in terms of m = −1, 0, 1 are as follows:








0 1 0 0
2 0 1 0
0 4 0 1
0 0 6 0


 ,




0 1 0 0
1 0 1 0
0 2 0 1
2 0 3 0


 ,




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







.

2.5.4 The Riordan array from cd(iu, k′)

The transformation of the imaginary elliptic Jacobi cd is given by cd(iu, k′) =
1

dn(u,k) ≡ nd(u, k) which has the series expansion such that

1

dn(u, k)
= 1 +

ku2

2
+

(
5k2

24
− k

6

)
u4 +

1

720

(
61k3 − 76k2 + 16k

)
u6+

(
1385k4 − 2424k3 + 1104k2 − 64k

)
u8

40320
+O

(
u9
)

(2.6)
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The exponential Riordan array corresponding to (2.6) is
[

1
dn(u,k) , u

]
having

coefficient matrix given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
k 0 1 0 0 0 0
0 3k 0 1 0 0 0

k(5k − 4) 0 6k 0 1 0 0
0 5k(5k − 4) 0 10k 0 1 0

k
(
61k2 − 76k + 16

)
0 15k(5k − 4) 0 15k 0 1




.

REMARK:

• The row sums of A for k = 0 are {1, 1, 1, 1, 1, 1, 1, ...} corresponding to

A000012

• The row sums for k = 1 given by {1, 1, 2, 4, 8, 16, 32} corresponds to

A011782.

The production matrix of A in terms of k is given by

B =




0 1 0 0 0 0
k 0 1 0 0 0
0 2k 0 1 0 0

2(k − 2)k 0 3k 0 1 0
0 8(k − 2)k 0 4k 0 1

16k
(
k2 − k + 1

)
0 20(k − 2)k 0 5k 0



.

The production matrix of B for k = −1, 0, 1 is given by








0 1 0 0 0 0
−1 0 1 0 0 0
0 −2 0 1 0 0
6 0 −3 0 1 0
0 24 0 −4 0 1

−48 0 60 0 −5 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



,




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
−2 0 3 0 1 0
0 −8 0 4 0 1
16 0 −20 0 5 0








.

2.6 Jacobi Riordan arrays from the A and Z

generating functions

In general an exponential Riordan array [g(x), f(x)] can be expressed in terms

of its A and Z generating functions such that

[g(x), f(x)] =

[
e
∫Rev(∫x0 dt

A(t) )
0

Z(t)
A(t)

dt, Rev

∫ x

0

dt

A(t)

]
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Example

Suppose that A(t) =
√

(1− t2)(1− k2t2).

Then Rev

(∫ x

0

dt√
(1− t2)(1− k2t2)

)

= sn(x)

So f(x) = sn(x)

g(x) = e
∫ sn(x)
0

Z(t)
A(t)

dt

For instance if Z(t) =
√

1− k2t2 then we have

g(x) = e

∫ sn(x)
0

1√
1−t2

dt

= esin−1(sn(x))

So [g(x), f(x)] =
[
esin−1(sn(x)), sn(x)

]

The coefficient array of
[
esin−1(sn(x)), sn(x)

]
is given by

A =




1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0

1−m 2−m 3 1 0 0 0
1− 4m −8m 2− 4m 4 1 0 0

m2 − 6m+ 1 m2 − 16m− 4 −10(3m+ 1) −10m 5 1 0
16m2 + 4m+ 1 8

(
4m2 + 6m− 1

)
16m2 − 16m− 29 −40(2m+ 1) −5(4m+ 1) 6 1




.

Remark The row sums of A at m = 0 corresponds to A009282 having e,g,f

e(z+sin(z)).

The production matrix of A is given by

B =




1 1 0 0 0 0
0 1 1 0 0 0

−m −m− 1 1 1 0 0
0 −3m −3(m+ 1) 1 1 0

−3m2 −3(m− 1)2 −6m −6(m+ 1) 1 1
0 −15m2 −15(m− 1)2 −10m −10(m+ 1) 1



.
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The production matrix B at m = −1, 0, 1 is given by








1 1 0 0 0 0
0 1 1 0 0 0
1 0 1 1 0 0
0 3 0 1 1 0
−3 −12 6 0 1 1
0 −15 −60 10 0 1



,




1 1 0 0 0 0
0 1 1 0 0 0
0 −1 1 1 0 0
0 0 −3 1 1 0
0 −3 0 −6 1 1
0 0 −15 0 −10 1



,




1 1 0 0 0 0
0 1 1 0 0 0
−1 −2 1 1 0 0
0 −3 −6 1 1 0
−3 0 −6 −12 1 1
0 −15 0 −10 −20 1








Similarly if,

Z(t) =
√

1− t2

then we get,

g(x) = e
1
k sin−1(ksn(x))

So

[g(x), f(x)] =
[
e

1
k sin−1(ksn(x)), sn(x)

]

The coefficient matrix of
[
e

1
k sin−1(ksn(x)), sn(x)

]
is given by

A =




1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0
0 2−m 3 1 0 0 0
−3 −4(m+ 1) 2− 4m 4 1 0 0

4(m− 2) m2 + 4m− 24 −20(m+ 1) −10m 5 1 0
24m− 3 6

(
m2 + 18m− 7

)
16m2 + 44m− 89 −60(m+ 1) −5(4m+ 1) 6 1




.

The production matrix of A in terms of m is given by

B =




1 1 0 0 0 0
0 1 1 0 0 0
−1 −m− 1 1 1 0 0
0 −3 −3(m+ 1) 1 1 0
−3 −3(m− 1)2 −6 −6(m+ 1) 1 1
0 −15 −15(m− 1)2 −10 −10(m+ 1) 1



.

The production matrix B if m = −1, 0, 1 is given by








1 1 0 0 0 0
0 1 1 0 0 0
−1 0 1 1 0 0
0 −3 0 1 1 0
−3 −12 −6 0 1 1
0 −15 −60 −10 0 1



,




1 1 0 0 0 0
0 1 1 0 0 0
−1 −1 1 1 0 0
0 −3 −3 1 1 0
−3 −3 −6 −6 1 1
0 −15 −15 −10 −10 1



,




1 1 0 0 0 0
0 1 1 0 0 0
−1 −2 1 1 0 0
0 −3 −6 1 1 0
−3 0 −6 −12 1 1
0 −15 0 −10 −20 1








.

Example Let us consider the exponential Riordan array M = [cn(x), sn(x)]
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where we suppress the parameter k. We then have

f̄(x) = sn−1(x).

We also have g′(x) = cn′(x) = −sn(x)dn(x), so that we obtain

Z(x) = ZM (x) =
g′(f̄(x))

g(f̄(x)

=
−sn

(
sn−1(x)

)
dn
(
sn−1(x)

)

cn (sn−1(x))

=
−x
√

1− k2x2

√
1− x2

.

Thus for the exponential Riordan array [cn(x, k), sn(x, k)] we have

A(x) =
√

(1− x2)(1− k2x2), Z(x) =
−x
√

1− k2x2

√
1− x2

.

This means in particular that the bivariate generating function of the production

matrix of [cn(x), sn(x)] is given by

exy

(
−x
√

1− k2x2

√
1− x2

+ y
√

(1− x2)(1− k2x2)

)
.

In this case, we have

Z(t)

A(t)
=
−t
√

1− k2t2√
1− t2

1√
(1− t2)(1− k2t2)

or
Z(t)

A(t)
=
−t

1− t2 .

Thus

e
∫ Rev(

∫x
0

dt
A(t) )

0
Z(t)
A(t)

dt = e
∫ sn(x,k)
0

−t
1−t2 dt

=
√

1− sn(x, k)2

= cn(x, k),

as expected.

To calculate the inverse array [cn(x), sn(x)] we have
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1

g(f̄(x))
=

1

cn(sn−1(x))
=

1√
1− x2

,

and so

[cn, sn(x)]−1 =

[
1√

1− x2
,

∫ x

0

dt√
(1− k2t2)(1− t2)

]
.

Example We next look at the exponential Riordan array

[
cn(x)

1 + sn(x)
, sn(x)

]
.

We once again have

A(x) =
√

(1− x2)(1− k2x2).

Now g(x) = cn(x)
1+sn(x) , and we find that

g′(x) =
−(1 + sn(x))sn(x)dn(x)− cn(x)2dn(x)

(1 + sn(x))2
.

We then get

g′(sn−1(x)

g(sn−1)
=
−(1 + x)x

√
1− k2x2 − (1− x2)

√
1− k2x2

(1 + x)2

1 + x√
1− x2

= −
√

1− k2x2

√
1− x2

.

Thus the bivariate generating function for the production matrix of
[

cn(x)
1+sn(x) , sn(x)

]

is given by

exy

(
−
√

1− k2x2

1− x2
+ y
√

(1− x2)(1− k2x2)

)
.

We note that for k2 = 1, we get the exponential Riordan array

[
sech(x)

1 + tanh(x)
, tanh(x)

]
.

103



The inverse matrix is calculated as follows.

[
cn(x)

1 + sn(x)
, sn(x)

]−1

=


 1

cn(sn−1(x)
1+sn(sn−1(x))

, sn−1(x)




=

[
1 + x√
1− x2

,

∫ x

0

dt√
(1− k2t2)(1− t2)

]
.

Example Our next example is the exponential Riordan array

[
cn(x)

1 + sn(x)
,

sn(x)

1 + sn(x)

]
.

We do not immediately know what the inverse function of sn(x)
1+sn(x) is, so we

use the theory of Riordan arrays to continue the analysis.

Thus we note that

[
cn(x)

1 + sn(x)
,

sn(x)

1 + sn(x)

]
= [cn(x), sn(x)]

[
1

1 + x
,

x

1 + x

]
,

where the second Riordan array in the product is related to the Laguerre poly-

nomials.

Taking inverses, we obtain

[
cn(x)

1 + sn(x)
,

sn(x)

1 + sn(x)

]−1

=

[
1

1 + x
,

x

1 + x

]−1

[cn(x), sn(x)]−1,

or

[
cn(x)

1 + sn(x)
,

sn(x)

1 + sn(x)

]−1

=

[
1

1− x,
x

1− x

] [
1√

1− x2
,

∫ x

0

dt

(1− t2)(1− k2t2)

]
.

This gives us

[
cn(x)

1 + sn(x)
,

sn(x)

1 + sn(x)

]−1

=

[
1√

1− 2x
,

∫ x
1−x

0

dt

(1− t2)(1− k2t2)

]
.

Thus in particular, we have that

sn(x)

1 + sn(x)
= Rev

∫ x
1−x

0

dt

(1− t2)(1− k2t2)
,
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or by the change of variable y = t
1+t , we get

sn(x)

1 + sn(x)
= Rev

∫ x

0

dy√
(1− 2y)(1− 2y − (k2 − 1)y2)

.

We can generalize this to the following.

We assume given two exponential Riordan arrays, M = [g, f ], andN = [u, v].

We assume that M is an elliptic Riordan array, with

AM (t) = R(t,
√
P (t)).

We consider the product

M ·N = [g, f ] · [u, v] = [gu(f), v(f)].

Knowing that

f(x) = Rev

∫ x

0

dt

A(t)
,

we wish to find an “elliptic” characterisation of v(f).

For this, we look at the inverse

(M ·N)−1 = N−1 ·M−1 =

[
1

u(v̄)
, v̄

]
·
[

1

g(f̄)
, f̄

]
.

Now

f̄(x) =

∫ x

0

dt

A(t)
,

so we obtain

(M ·N)−1 =

[
1

u(v̄)

1

g(f̄(v̄))
,

∫ v̄(x)

0

dt

A(t)

]
.

Thus we have that

v(f) = Rev

∫ v̄(x)

0

dt

A(t)
.

To put this in an “elliptic“ form, we use the change of variable

y = v(t) =⇒ t = v̄(y).

in the integral.

This gives us
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dy

dt
= v′(t) =⇒ dt =

dy

v′(t)
=

dy

v′(v̄(y))
= v̄′(y)dy.

When t = v̄(x), we have y = v(t) = v(v̄(x)) = x, and so we have

∫ v̄(x)

0

dt

A(t)
=

∫ x

0

v̄′(y)dy

A(v̄(y))
.

Thus we have

v(f) = Rev

∫ x

0

v̄′(y)dy

A(v̄(y))
= Rev

∫ x

0

dy

v′(v̄(y))A(v̄(y))
.

Example In this example, we seek to write the elliptic function

sn(x)(1 + sn(x))

1− sn(x)

as the reversion of an integral whose limits are 0 to x. For this, we consider

the elliptic Riordan array [cn(x), sn(x)] and the transformation given by the

exponential Riordan array
[

1
1−x ,

x(1+x)
1−x

]
.

Thus we have the product

[cn(x), sn(x)] ·
[

1

1− x,
x(1 + x)

1− x

]
=

[
cn(x)

1− sn(x)
,

sn(x)(1 + sn(x))

1− sn(x)

]
.

Here,

[
1

1− x,
x(1 + x)

1− x

]−1

=

[
1−
√

1 + 6x+ x2 − x− 1

2
,

√
1 + 6x+ x2 − x− 1

2

]
.

In particular,

v̄(x) =

√
1 + 6x+ x2 − x− 1

2
,

and

v̄′(x) =
3 + x−

√
1 + 6x+ x2

2
√

1 + 6x+ x2
.

Also,

sn(x) = Rev

∫ x

0

dt

(1− k2t2)(1− t2)
.
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Thus we have

sn(x)(1 + sn(x))

1− sn(x)
= Rev

∫ x

0

3+y−
√

1+6y+y2

2
√

1+6y+y2
dy

√√√√
(

1− k2

(√
1+6y+y2−y−1

2

)2
)(

1−
(√

1+6y+y2−y−1

2

)2
) .
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Chapter 3

Weierstrass Elliptic

Functions and Riordan

Arrays

3.1 Introduction

The previous chapter treated the Jacobi elliptic functions and the construction

of Riordan arrays from these functions to form the Jacobi Riordan arrays. The

Jacobi elliptic functions have a simple analytical relation to the Weierstrass ℘

function. The link between the Weierstrass ℘ function and the Jacobi elliptic

function is given explicitly by

℘(z) =
1

sn(z,m)2
− m+ 1

3

where m is the elliptic modulus.

The main purpose of this chapter is to establish the relationship between the

Weierstrass elliptic ℘ functions and Riordan arrays forming new lower triangu-

lar matrices known as Weierstrass Riordan arrays. The relationship between

the Weierstrass ℘ functions and Riordan arrays can be examined based on the

Taylor series expansion of these functions in both the cases of the elliptic mod-

ulus m and their invariants {g2, g3}.

The origins of the Weierstrass ℘ functions as earlier discussed in section (1.8)

108



can be traced back to the 19th century pioneering work of two famous math-

ematicians N.H Abel(1827) and K. Weierstrass(1855,1862). The first known

Weierstrass function was referred to as the ”Weierstrass P”. Further develop-

ments of the subject from G. Eisentein (1847) and K. Weierstrass (1855,1862,1895)

led to the formulation of the sigma and zeta Weierstrass functions [118].

The Weierstrass elliptic function ℘(z) [45] can be defined by an infinite sum

on the complex plane over a period lattice such that

℘(z) =
1

z2
+
∑

m,n∈Z

{
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

}
,

where ω1 and ω2 are called the half periods and m,n 6= 0. The periods of ℘ are

2K and 2iK ′ where K ′ is defined as K but using k′ =
√

1− k2 instead of k. Let

ω = K and ω′ = iK ′, be the half periods of ℘ and set

e1 = ℘(ω),

e2 = ℘(ω′),

e3 = ℘(ω′′),

where

ω + ω′ = ω′′.

The Weierstrass elliptic function ℘(z) satisfies the differential equation

℘′(z, k)2 = 4(℘(z, k)− e1)(℘(z, k)− e2)(℘(z, k)− e3).

The Weierstrass ℘ elliptic function denoted ℘(z; g2, g3) depends on the argument

z and the two parameters {g2, g3}. A meromorphic function is considered to be

a Weierstrass elliptic function ℘ if it is doubly periodic with two periods usually

denoted by 2ω and 2ω′ such that ℘(z+ 2ω) = ℘(z+ 2ω′) = ℘(z) and it satisfies

the differential equation

℘′2(z) = 4℘3(z)− g2℘(z)− g3

and

z =

∫ ∞

t=w

dt√
4t3 − g2t− g3

s.t w = ℘(z)
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where g2 = 60
∑′ 1

(2mω1+2nω2)4 & g3 = 140
∑′ 1

(2mω1+2nω2)6

with the prime (′) indicating summation over Z2 excluding (m,n) = (0, 0) [45].

Furthermore, the Weierstrass elliptic function ℘ and its derivative ℘′ param-

eterizes the elliptic curve over complex numbers.

Figure 3.1: Plot depicting a Weierstrass ℘ over a complex plane with g3 = 1 + i

-4 -2 2 4

10

20

30

40

Figure 3.2: The plot of Weierstrass ℘ elliptic function having {g2, g3} = {1, 2}

The Weierstrass elliptic function ℘ is the most basic Weierstrass elliptic function

from which the other types of Weierstrass pseudo- elliptic functions can be

constructed. The other two most important types of Weierstrass pseudo-elliptic

functions are the Weierstrass zeta function (ζ) and Weierstrass sigma function

(σ). The Weierstrass zeta ζ function is an odd function such that

ζ(−z) = ζ(z) & ζ ′(z) = −℘(z).

110



The Weierstrass zeta ζ function is quasi-periodic such that [125]

ζ(z + 2ωk) = ζ(z) + 2ηk, k = 1, 2, 3

.

The Weierstrass sigma function is also an odd function such that

σ(−z) = −σ(z) &
σ′(z)
σ(z)

= ζ(z).

The Weierstrass σ is quasi-periodic such that

σ(z + 2ωk) = −e(2ηk(z+ωk))σ(z).

The Weierstrass σ function is connected to the Weierstrass ℘ function by the

formula
σ(x+ y)σ(x− y)

σ2(x)σ2(y)
= ℘(y)− ℘(x).

The Taylor series expansion around z = 0 of the Weierstrass elliptic functions

in terms of g2, g3 are listed below.

℘(z) =
1

z2
+

g2

20
z2 +

g3

28
z4 +

g2
2

1200
z6 +

3g2g3

6160
z8 +

(
g3

2

156000
+

g2
3

10192

)
z10+

g2
2g3

184800
z12 +O

(
z13
)
.

℘′(z) = − 2

z3
+

g2

10
z+

g3

7
z3+

g2
2

200
z5+

3g2g3

770
z7+

(
g3

2

15600
+

5g2
3

5096

)
z9+

g2
2g3

15400
z11+

O
(
z13
)
.

ζ(z) =
1

z
− g2

60
z3− g3

140
z5− g2

2

8400
z7− g2g3

18480
z9 +

(
− g3

2

1716000
− g 2

3

112112

)
z11+

O
(
z13
)
.
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σ(z) = z − g2

240
z5 − g3

840
z7 − g2

2

161280
z9 − g2g3

2217600
z11 +O

(
z13
)
.

The invariants g2 and g3 can be expressed in terms of m such that we have:

g2 =
4

3

(
m2 −m+ 1

)

g3 =
4

27

(
2m3 − 3m2 − 3m+ 2

)
.

The corresponding Taylor series expansions of the Weierstrass elliptic functions

around z = 0 in terms of the modulus m are listed below.

℘(z) =
1

z2
+

1

15

(
m2 −m+ 1

)
z2 +

1

189

(
2m3 − 3m2 − 3 + 2

)
z4+

1

675

(
m4 − 2m3 + 3m2 − 2m+ 1

)
z6 +O

(
z8
)
.

ζ(z) = −
(
m2 −m+ 1

)2
z7

4725
− 1

45

(
m2 −m+ 1

)
z3−

1

945

(
2m3 − 3m2 − 3m+ 2

)
z5 +

1

z
.

σ(z) = 1−z+
z2

2
− z

3

6
+
z4

24
+

(
8m2 − 8m− 7

)
z5

1800
+

(
−16m2 + 16m− 11

)
z6

3600
+

O
(
z7
)
.

3.2 Examples of Weierstrass Riordan arrays

We provide several coefficient matrices which define Riordan arrays based on the

generating functions of Weierstrass functions together with their corresponding

production matrices. The Riordan arrays are computed seperately in terms of

either the invariants {g2, g3} and the elliptic modulus m.

The first set of examples below give the Riordan arrays expressed in terms of

the invariants.

3.2.1 Weierstrass Riordan arrays in terms of the Invari-

ants {g2, g3}
The examples below are Weierstrass Riordan arrays in terms of the invariants.
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3.2.1.1 The Riordan array [1, σ(z; g2,g3)]

The coefficient array of [1, σ(z; g2, g3)] is given by

A =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 − g2

2 0 0 0 1 0 0 0
0 0 −3g2 0 0 0 1 0 0

0 −6g3 0 − 21g2
2 0 0 0 1 0

0 0 −48g3 0 −28g2 0 0 0 1




.

The production matrix of A is given by

B =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 − g2

2 0 0 0 1 0 0

0 0 − 5g2
2 0 0 0 1 0

0 −6g3 0 − 15g2
2 0 0 0 1

0 0 −42g3 0 − 35g2
2 0 0 0




.

3.2.1.2 The Riordan array
[
d
dz z

3℘(z; g2,g3), z3℘(z; g2,g3)
]

The coefficient array of
[
d
dz z

3℘(z; g2, g3), z3℘(z; g2, g3)
]

where d
dz z

3℘(z; g2, g3) =

3z2℘(z; g2, g3) + z3℘′(z; g2, g3) is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
6g2 0 0 0 1 0 0
0 36g2 0 0 0 1 0

180g3 0 126g2 0 0 0 1




.

The production matrix of A is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
6g2 0 0 0 1 0
0 30g2 0 0 0 1

180g3 0 90g2 0 0 0



.
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3.2.1.3 The Riordan array
[
d
dz z

2ζ(z; g2,g3), z2ζ(z; g2,g3)
]

The coefficient array of
[
d
dz z

2ζ(z; g2, g3), z2ζ(z; g2, g3)
]

where d
dz z

2ζ(z; g2, g3) =

2zζ(z; g2, g3)− z2℘(z; g2, g3) results to

A =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

−2g2 0 0 0 1 0 0 0 0
0 −12g2 0 0 0 1 0 0 0

−36g3 0 −42g2 0 0 0 1 0 0
0 −288g3 0 −112g2 0 0 0 1 0

− 216g2
2

5 0 −1296g3 0 −252g2 0 0 0 1




.

The production matrix of A is given by

B =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−2g2 0 0 0 1 0 0 0
0 −10g2 0 0 0 1 0 0

−36g3 0 −30g2 0 0 0 1 0
0 −252g3 0 −70g2 0 0 0 1

− 1336g2
2

5 0 −1008g3 0 −140g2 0 0 0




.

3.2.1.4 The Riordan array
[
1, z2ζ(z; g2,g3)

]

The coefficient array of
[
1, z2ζ(z; g2, g3)

]
is given by

A =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 −2g2 0 0 0 1 0 0 0
0 0 −12g2 0 0 0 1 0 0
0 −36g3 0 −42g2 0 0 0 1 0
0 0 −288g3 0 −112g2 0 0 0 1




.

The production matrix of A is given by

B =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 −2g2 0 0 0 1 0 0
0 0 −10g2 0 0 0 1 0
0 −36g3 0 −30g2 0 0 0 1
0 0 −252g3 0 −70g2 0 0 0




.

Remark: The diagonal sequence of elements 0, 2, 10, 30, 70, ... in B correspond

to A034827.
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3.2.1.5 The Riordan array
[
d
dzσ(z; g2,g3), σ(z; g2,g3)

]

The coefficient array of
[
d
dzσ(z; g2, g3), σ(z; g2, g3)

]
where σ(z; g2, g3)ζ(z; g2, g3)

is given by

A =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

− g2
2 0 0 0 1 0 0 0 0
0 −3g2 0 0 0 1 0 0 0

−6g3 0 − 21g2
2 0 0 0 1 0 0

0 −48g3 0 −28g2 0 0 0 1 0

− 9g2
2

4 0 −216g3 0 −63g2 0 0 0 1




The production matrix of A is given by

B =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

− g2
2 0 0 0 1 0 0 0

0 − 5g2
2 0 0 0 1 0 0

−6g3 0 − 15g2
2 0 0 0 1 0

0 −42g3 0 − 35g2
2 0 0 0 1

− 65g2
2

4 0 −168g3 0 −35g2 0 0 0




.

3.2.2 Weierstrass Riordan arrays in terms of the Modulus

m

In this section the power series expansion of the the 3 main types of Weierstrass

functions in terms of m listed in section (3.1) will be used to define Riordan

arrays according to their subgroups.

3.2.2.1 Appell Subgroup of Weierstrass Riordan arrays

3.2.2.2
[
z2℘(z,m), z

]

The coefficient array in terms of m of
[
z2℘(z,m), z

]
is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

8
5

(
m2 −m+ 1

)
0 0 0 1 0 0

0 8
(
m2 −m+ 1

)
0 0 0 1 0

80
21

(
2m3 − 3m2 − 3m+ 2

)
0 24

(
m2 −m+ 1

)
0 0 0 1




.

Remark: The columns of the matrix A are palindromic.
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The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

8
5 ((m− 1)m+ 1) 0 0 0 1 0

0 32
5 ((m− 1)m+ 1) 0 0 0 1

80
21 (m− 2)(m+ 1)(2m− 1) 0 16((m− 1)m+ 1) 0 0 0



.

The production of B in terms of m = {−1, 0, 1} is given by

C =








0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
24
5 0 0 0 1 0
0 96

5 0 0 0 1
0 0 48 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
8
5 0 0 0 1 0
0 32

5 0 0 0 1
160
21 0 16 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
8
5 0 0 0 1 0
0 32

5 0 0 0 1
− 160

21 0 16 0 0 0








.

3.2.2.3 [zζ(z,m), z]

The coefficient array in terms of m of [zζ(z,m), z] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

− 8
15

(
m2 −m+ 1

)
0 0 0 1 0 0

0 − 8
3

(
m2 −m+ 1

)
0 0 0 1 0

16
21

(
−2m3 + 3m2 + 3m− 2

)
0 −8

(
m2 −m+ 1

)
0 0 0 1




.

Remark: The columns of the matrix A are palindromic.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

− 8
15 ((m− 1)m+ 1) 0 0 0 1 0

0 − 32
15 ((m− 1)m+ 1) 0 0 0 1

− 16
21 (m− 2)(m+ 1)(2m− 1) 0 − 16

3 ((m− 1)m+ 1) 0 0 0



.

The production matrix of B in terms of m = −1, 0, 1 is given by

C =








0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
− 8

5 0 0 0 1 0
0 − 32

5 0 0 0 1
0 0 −16 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

− 8
15 0 0 0 1 0
0 − 32

15 0 0 0 1
− 32

21 0 − 16
3 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

− 8
15 0 0 0 1 0
0 − 32

15 0 0 0 1
32
21 0 − 16

3 0 0 0








.
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3.2.2.4 Lagrange Subgroup of Weierstrass Riordan arrays

3.2.2.5 [1, zσ(z,m)]

The coefficient array in terms of m for [1, zσ(z,m)] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 −2 1 0 0 0 0
0 3 −6 1 0 0 0
0 −4 24 −12 1 0 0
0 5 −80 90 −20 1 0
0 2

5

(
8m2 − 8m− 7

)
240 −540 240 −30 1




.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 −2 1 0 0 0
0 −1 −4 1 0 0
0 −4 −3 −6 1 0
0 −27 −16 −6 −8 1
0 16

5 ((m− 1)m− 79) −135 −40 −10 −10



.

The production matrix of B in terms of m = 0, 1 is given by

C =








0 1 0 0 0 0
0 −2 1 0 0 0
0 −1 −4 1 0 0
0 −4 −3 −6 1 0
0 −27 −16 −6 −8 1
0 − 1264

5 −135 −40 −10 −10



,




0 1 0 0 0 0
0 −2 1 0 0 0
0 −1 −4 1 0 0
0 −4 −3 −6 1 0
0 −27 −16 −6 −8 1
0 − 1264

5 −135 −40 −10 −10








.

3.2.2.6 [1, zζ(z,m)]

The coefficient array in terms of m for [1, zζ(z,m)] is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 − 8

3

(
m2 −m+ 1

)
0 0 0 1 0

0 0 −16
(
m2 −m+ 1

)
0 0 0 1




.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 − 8

3 ((m− 1)m+ 1) 0 0 0 1
0 0 − 40

3 ((m− 1)m+ 1) 0 0 0



.
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The production matrix of B in terms of m = −1, 0, 1 is given by

C =








0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 −8 0 0 0 1
0 0 −40 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 − 8

3 0 0 0 1
0 0 − 40

3 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 − 8

3 0 0 0 1
0 0 − 40

3 0 0 0








.

3.2.2.7 Derivative subgroup of Weierstrass Riordan arrays

3.2.2.8
[
d
dz z

3℘(z,m), z3℘(z,m)
]

The coefficient array in terms of m of
[
d
dz z

3℘(z,m), z3℘(z,m)
]

where

d

dz
z3℘(z,m) = 3z2

(
1

sn(z|m)2
+

1

3
(−m− 1)

)
− 2z3cn(z|m)dn(z|m)

sn(z|m)3

is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

8
(
m2 −m+ 1

)
0 0 0 1 0 0

0 48
(
m2 −m+ 1

)
0 0 0 1 0

80
3

(
2m3 − 3m2 − 3m+ 2

)
0 168

(
m2 −m+ 1

)
0 0 0 1




.

It can be noted that the Riordan array
[
d
dz z

3℘(z,m), z3℘(z,m)
]

produces the

following generating functions for the case m = 1 and m = 0 below. If m = 1

then d
dz z

3℘(z,m) becomes

3z2

(
coth2(z)− 2

3

)
− 2z3 coth(z)csch2(z).

If m = 1 then z3℘(z,m) becomes

z3

(
coth2(z)− 2

3

)
.

If m = 0 then d
dz z

3℘(z,m) becomes

3z2

(
csc2(z)− 1

3

)
− 2z3 cot(z) csc2(z).
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If m = 0 then z3℘(z,m) becomes

z3

(
csc2(z)− 1

3

)
.

Remark: The columns of the matrix A are palindromic.

The production matrix in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

8((m− 1)m+ 1) 0 0 0 1 0
0 40((m− 1)m+ 1) 0 0 0 1

80
3 (m− 2)(m+ 1)(2m− 1) 0 120((m− 1)m+ 1) 0 0 0



.

The production matrix of B in terms of m = −1, 0, 1

C =








0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
24 0 0 0 1 0
0 120 0 0 0 1
0 0 360 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
8 0 0 0 1 0
0 40 0 0 0 1
160
3 0 120 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
8 0 0 0 1 0
0 40 0 0 0 1

− 160
3 0 120 0 0 0








.

3.2.2.9
[
d
dz zσ(z,m), zσ(z,m)

]

The coefficient array in terms of m for
[
d
dz zσ(z,m), zσ(z,m)

]
is given by

A =




1 0 0 0 0 0 0
−2 1 0 0 0 0 0
3 −6 1 0 0 0 0
−4 24 −12 1 0 0 0
5 −80 90 −20 1 0 0

2
5

(
8m2 − 8m− 7

)
240 −540 240 −30 1 0

− 7
5

(
16m2 − 16m+ 11

)
112
5

(
m2 −m− 29

)
2835 −2240 525 −42 1




.

The production matrix of A in terms of m is given by

B =




−2 1 0 0 0 0
−1 −4 1 0 0 0
−4 −3 −6 1 0 0
−27 −16 −6 −8 1 0

16
5 ((m− 1)m− 79) −135 −40 −10 −10 1
80(m− 1)m− 3045 96

5 ((m− 1)m− 79) −405 −80 −15 −12



.
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The production matrix of B in terms of m = 0, 1 is given by

C =








−2 1 0 0 0 0
−1 −4 1 0 0 0
−4 −3 −6 1 0 0
−27 −16 −6 −8 1 0
− 1264

5 −135 −40 −10 −10 1
−3045 − 7584

5 −405 −80 −15 −12



,




−2 1 0 0 0 0
−1 −4 1 0 0 0
−4 −3 −6 1 0 0
−27 −16 −6 −8 1 0
− 1264

5 −135 −40 −10 −10 1
−3045 − 7584

5 −405 −80 −15 −12








.

3.2.2.10
[
d
dz zζ(z,m), zζ(z,m)

]

The coefficient array in terms of m for
[
d
dz zζ(z,m), zζ(z,m)

]
is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

− 8
3

(
m2 −m+ 1

)
0 0 0 1 0 0

0 −16
(
m2 −m+ 1

)
0 0 0 1 0

16
3

(
−2m3 + 3m2 + 3m− 2

)
0 −56

(
m2 −m+ 1

)
0 0 0 1




.

Remark: The columns of the matrix A are palindromic.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

− 8
3 ((m− 1)m+ 1) 0 0 0 1 0

0 − 40
3 ((m− 1)m+ 1) 0 0 0 1

− 16
3 (m− 2)(m+ 1)(2m− 1) 0 −40((m− 1)m+ 1) 0 0 0



.

The production matrices from B for m = {−1, 0, 1} is given by

C =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−8 0 0 0 1 0
0 −40 0 0 0 1
0 0 −120 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
− 8

3 0 0 0 1 0
0 − 40

3 0 0 0 1
− 32

3 0 −40 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
− 8

3 0 0 0 1 0
0 − 40

3 0 0 0 1
32
3 0 −40 0 0 0



.
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3.2.2.11 Bell Subgroup of Weierstrass Riordan arrays

3.2.2.12 [σ(z,m), zσ(z,m)]

The coefficient array in terms of m of [σ(z,m), zσ(z,m)] is given by

A =




1 0 0 0 0 0 0
−1 1 0 0 0 0 0
1 −4 1 0 0 0 0
−1 12 −9 1 0 0 0
1 −32 54 −16 1 0 0

1
15

(
8m2 − 8m− 7

)
80 −270 160 −25 1 0

1
5

(
−16m2 + 16m− 11

)
32
5

(
m2 −m− 29

)
1215 −1280 375 −36 1




.

The production matrix of A in terms of m is

B =




−1 1 0 0 0 0
0 −3 1 0 0 0
0 −1 −5 1 0 0
0 −4 −3 −7 1 0

8
15 ((m− 1)m+ 1) −27 −16 −6 −9 1
32
3 ((m− 1)m+ 1) 8

15 (11(m− 1)m− 469) −135 −40 −10 −11



.

The production matrix of B inn terms of m = 0, 1 is

C =








−1 1 0 0 0 0
0 −3 1 0 0 0
0 −1 −5 1 0 0
0 −4 −3 −7 1 0
8
15 −27 −16 −6 −9 1
32
3 − 3752

15 −135 −40 −10 −11



,




−1 1 0 0 0 0
0 −3 1 0 0 0
0 −1 −5 1 0 0
0 −4 −3 −7 1 0
8
15 −27 −16 −6 −9 1
32
3 − 3752

15 −135 −40 −10 −11








.

3.2.2.13
[
z2℘(z,m), z3℘(z,m)

]

The coefficient array in terms of m of
[
z2℘(z,m), z3℘(z,m)

]
is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

8
5

(
m2 −m+ 1

)
0 0 0 1 0 0

0 16
(
m2 −m+ 1

)
0 0 0 1 0

80
21

(
2m3 − 3m2 − 3m+ 2

)
0 72

(
m2 −m+ 1

)
0 0 0 1




.

Remark: The columns of the matrix A are palindromic.
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The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

8
5 ((m− 1)m+ 1) 0 0 0 1 0

0 72
5 ((m− 1)m+ 1) 0 0 0 1

80
21 (m− 2)(m+ 1)(2m− 1) 0 56((m− 1)m+ 1) 0 0 0



.

The production matrix of B in terms of m = −1, 0, 1 is given by

C =








0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
24
5 0 0 0 1 0
0 216

5 0 0 0 1
0 0 168 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
8
5 0 0 0 1 0
0 72

5 0 0 0 1
160
21 0 56 0 0 0



,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
8
5 0 0 0 1 0
0 72

5 0 0 0 1
− 160

21 0 56 0 0 0








.
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Chapter 4

Dixonian Elliptic Functions

and Riordan arrays

4.1 Introduction

The Dixonian elliptic functions (A104134, A104133) were first introduced in

the seminal work of the English mathematician Alfred Cardew Dixon (1890)[32].

The first significant contribution of the Dixonian elliptic functions in mathemat-

ics, was that they parameterized the Fermat cubic curve

x3 + y3 − 3axy = 1,

for the case a = 0, for which the functions display a special hexagonal symmetry.

In particular, this property corresponds to the case for which g2 = 0 in the

Weierstrass theory or the case g3 = 0 for the lemniscate.

The two main types of Dixonian elliptic functions are the Dixonian sine sm and

the Dixonian cosine cm. The Trigonometric Dixonian functions are defined in

terms of the ℘ and ℘′ functions such that

cm(z) =
3℘′

(
z; 0, 1

27

)
+ 1

3℘′
(
z; 0, 1

27

)
− 1

and

sm(z) =
6℘
(
z; 0, 1

27

)

1− 3℘′
(
z; 0, 1

27

) .
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These functions satisfy the non-linear differential system

sm′(z) = cm(z)2 & cm′(z) = −sm(z)2

such that

sm(0) = 0 cm(0) = 1

and

sm3(z) + cm3(z) = 1.

The Dixonian elliptic functions sm and cm have periods 3K and 3ωK where

ω =
−1 + i

√
3

2

is a cube root of unity, such that for j = 0, 1, 2, ...

sm(z + 3ωjK) = sm z cm(z + 3ωjK) = cm z.

The Dixonian functions sm and cm as expressed in [26, 65] can explicitly be

defined as

sm(z) = Rev

∫ z

0

dt

(1− t3)2/3
and cm(z) =

(∫ 1

z

dt

(1− t3)2/3

)−1

. (4.1)

Furthermore, Conrad & Flajolet [26] also established the combinatorial and

probabilistic significance of sm and cm. This connection from these two impor-

tant areas of mathematics is based on the unusual continued fraction expansions

derived from their corresponding Laplace transforms.

4.2 Dixonian Riordan arrays

In this section we establish the relationship between Dixon elliptic functions

and Riordan arrays by constructing proper exponential Riordan arrays based

on the Dixon elliptic functions. The Taylor series expansion around z = 0 for

these functions is given by

cm(z) = 1−z
3

3
+
z6

18
−23z9

2268
+

25z12

13608
+O

(
z13
)
≡ 1− 2

z3

3!
+40

z6

6!
−3680

z9

9!
+O

(
z13
)
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and

sm(z) = z−z
4

6
+

2z7

63
−13z10

2268
+O

(
z13
)
≡ z − 4

z4

4!
+ 160

z7

7!
− 20800

z10

10!
+O

(
z13
)
.

sm(z) defined in (4.1) is suited exponential Riordan arrays with A(z) =
(
1− z3

)2/3

of the form

[
g(z), Rev

∫ z

0

dt

A(t)

]
where g(z) =

∫ sm(z)

0

Z(t)

A(t)
dt

for suitable Z(t).

4.2.1 The Riordan array
[
d
dz

sm(z), sm(z)
]
≡ [cm(z)2, sm(z)]

The coefficient array of
[
d
dz sm(z), sm(z)

]
is given by

M =




1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
−4 0 0 1 0 0 0 0 0 0 0
0 −20 0 0 1 0 0 0 0 0 0
0 0 −60 0 0 1 0 0 0 0 0

160 0 0 −140 0 0 1 0 0 0 0
0 1840 0 0 −280 0 0 1 0 0 0
0 0 10800 0 0 −504 0 0 1 0 0

−20800 0 0 44400 0 0 −840 0 0 1 0
0 −440000 0 0 145200 0 0 −1320 0 0 1




.

The production matrix of M is given by

P =




0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−4 0 0 1 0 0 0 0 0
0 −16 0 0 1 0 0 0 0
0 0 −40 0 0 1 0 0 0

−80 0 0 −80 0 0 1 0 0
0 −560 0 0 −140 0 0 1 0
0 0 −2240 0 0 −224 0 0 1

−17920 0 0 −6720 0 0 −336 0 0




.

The A and Z generating functions of P are determined below.

We know that for an exponential Riordan array [g, f ]

A(z) =
(
1− z3

)2/3
and f̄(z) = sm−1(z)
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Now,

Z(z) =
g′(f̄)

g(f̄)

where

g(z) = sm′(z) = cm2(z)

So

g(f̄) = cm2(sm−1(z))

But

cm3 + sm3 = 1 =⇒ cm =
(
1− sm3

)1/3

So

cm2(sm−1(z)) =
[
(1− sm3(sm−1(z))1/3

]2

=
(
1− z3

)2/3

= g(f̄)

Also

g′(f̄) = (cm2)′(sm−1(z))

= 2(cm · cm′)(sm−1(z))

= 2cm(sm−1(z))(−sm2(sm−1(z)))

= 2(1− sm3(sm−1(z))1/3(−z2)

= 2(1− z3)1/3(−z2)

=⇒ g′(f̄)

g(f̄)
=
−2z2(1− z3)1/3

(1− z3)2/3
=

−2z2

(1− z3)1/3
.

That is Z(z) =
−2z2

(1− z3)1/3
and A(z) = (1− z3)2/3.

4.2.2 The Riordan array
[
d
dz
zcm(z), zcm(z)

]

Consider the coefficient array of
[
d
dz zcm(z), zcm(z)

]
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M =




1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
−8 0 0 1 0 0 0 0 0 0 0
0 −40 0 0 1 0 0 0 0 0 0
0 0 −120 0 0 1 0 0 0 0 0

280 0 0 −280 0 0 1 0 0 0 0
0 4480 0 0 −560 0 0 1 0 0 0
0 0 30240 0 0 −1008 0 0 1 0 0

−36800 0 0 134400 0 0 −1680 0 0 1 0
0 −1144000 0 0 462000 0 0 −2640 0 0 1




.

The production matrix M is given by:

P =




0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−8 0 0 1 0 0 0 0 0
0 −32 0 0 1 0 0 0 0
0 0 −80 0 0 1 0 0 0

−680 0 0 −160 0 0 1 0 0
0 −4760 0 0 −280 0 0 1 0
0 0 −19040 0 0 −448 0 0 1

−480320 0 0 −57120 0 0 −672 0 0




.

4.2.3 The Riordan array [1, sm(z)]

The proper exponential Riordan array [1, sm(z)] of the Lagrange subgroup has

the coefficient matrix given by

M =




1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 −4 0 0 1 0 0 0 0 0 0 0 0
0 0 −20 0 0 1 0 0 0 0 0 0 0
0 0 0 −60 0 0 1 0 0 0 0 0 0
0 160 0 0 −140 0 0 1 0 0 0 0 0
0 0 1840 0 0 −280 0 0 1 0 0 0 0
0 0 0 10800 0 0 −504 0 0 1 0 0 0
0 −20800 0 0 44400 0 0 −840 0 0 1 0 0
0 0 −440000 0 0 145200 0 0 −1320 0 0 1 0
0 0 0 −4276800 0 0 403920 0 0 −1980 0 0 1




.
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The production matrix corresponding to the coefficient matrix of M is given by

P =




0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 −4 0 0 1 0 0 0 0 0
0 0 −16 0 0 1 0 0 0 0
0 0 0 −40 0 0 1 0 0 0
0 −80 0 0 −80 0 0 1 0 0
0 0 −560 0 0 −140 0 0 1 0
0 0 0 −2240 0 0 −224 0 0 1
0 −17920 0 0 −6720 0 0 −336 0 0




.

The A generating function corresponding to the production matrix P is given

by A(z) = (1− z3)2/3.

4.2.4 The Riordan array [cm(z), z]

The proper exponential Riordan array [cm(z), z] of the Appell subgroup has the

coefficient matrix given by:

M =




1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
−2 0 0 1 0 0 0 0 0 0 0 0 0
0 −8 0 0 1 0 0 0 0 0 0 0 0
0 0 −20 0 0 1 0 0 0 0 0 0 0
40 0 0 −40 0 0 1 0 0 0 0 0 0
0 280 0 0 −70 0 0 1 0 0 0 0 0
0 0 1120 0 0 −112 0 0 1 0 0 0 0

−3680 0 0 3360 0 0 −168 0 0 1 0 0 0
0 −36800 0 0 8400 0 0 −240 0 0 1 0 0
0 0 −202400 0 0 18480 0 0 −330 0 0 1 0

880000 0 0 −809600 0 0 36960 0 0 −440 0 0 1




.

The production matrix corresponding to the coefficient matrix of M is given by

P =




0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
−2 0 0 1 0 0 0 0 0 0
0 −6 0 0 1 0 0 0 0 0
0 0 −12 0 0 1 0 0 0 0
0 0 0 −20 0 0 1 0 0 0
0 0 0 0 −30 0 0 1 0 0
0 0 0 0 0 −42 0 0 1 0

−1440 0 0 0 0 0 −56 0 0 1
0 −12960 0 0 0 0 0 −72 0 0




.

Let [g(z), f(z)] = [cm(z), z] .Then the A generating function of P is given by
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by A(z) = 1 since f ′(z) = 1. The Z generating function is

g′(f̄)

g(f̄)
=

cm′(z)
cm(z)

=
d

dz
ln(cm(z)).
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Chapter 5

Embedded Sub-Matrices

from a Riordan array

5.1 Introduction

Embedded sub-structures forming new Riordan arrays from existing Riordan

arrays have been investigated from different contexts. The various research to

date on embedded Riordan arrays are briefly presented below.

• Barry [12] investigates the concept of embedded Riordan arrays. In the

case of embedded Riordan arrays, the process of obtaining the embedded

Riordan array from an existing Riordan array (d(t), h(t)) involves tak-

ing every second column after the first column resulting in another lower

triangular matrix A that can be represented as A =
(
d, h

2

z

)
.

• The m complementary Riordan arrays is presented in the publication by

Luzón et al. [69]. The concept of complementary Riordan arrays states

that if D = R (d(t), h(t)) then its [m] complementary array is the Riordan

array.

D[m] =

(
d(h̄(t))h̄′(t)

(
t

h̄(t)

)m+1

, h̄(t)

)
.

• In the r-shifted central coefficients [126], by setting D = (d(z), h(z)) =

(di,j)i,j≥0 to represent a Riordan array then the r-shifted central coeffi-

cients results to the new Riordan array D2n+r,n+r, where n, r ∈ N0.
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• The row elimination procedure by Brietzke[19], is a type of embedded

Riordan array constructed from a given Riordan array uses a process of

eliminating entire rows and some parts of the remaining rows. That is if

given a proper Riordan array {dn,k}n,k≥0, then for any integers p ≥ 2 and

r ≥ 0, d̃n,k = dpn+r,(p−1)n+r+k(n, k ≥ 0) defines a new Riordan array.

All these mentioned methods have relied on manipulating the existing generat-

ing functions or by shifting the position of the elements that make up the original

ordinary Riordan array. In this chapter we extend the existing examples of em-

bedded Riordan arrays by identifying some sub-matrices forming new Riordan

arrays from an existing exponential Riordan array generated from elliptic Jacobi

functions. Based on the structure of the elements of Jacobi Riordan arrays and

inspired by the existing knowledge on embedded Riordan arrays, some interest-

ing sub-matrices corresponding to the monic polynomials from elliptic Jacobi

dc function are examined. In addition, to using the already known methods of

determining embedded Riordan arrays, two new recent techniques to form new

Riordan arrays from existing ones are presented using examples of some elliptic

Jacobi functions. These are the r-shifted central triangles of a Riordan array

connected to the r-shifted central coefficients and the one-parameter family of

Riordan arrays derived from a given Riordan array connected to the comple-

mentary Riordan arrays. The examples presented below using Jacobi elliptic

functions illustrate the application of some of these techniques.

5.2 The submatrices of Riordan arrays gener-

ated by Elliptic Functions

In this section we investigate the submatrices derived from the first or second

column of some Riordan arrays generated from elliptic functions. The case of

the sub-matrices from the first column are associated to their original Riordan

matrices belonging to the Appell subgroup. On the other hand the submatrices

arising from the second column are associated to their original Riordan matrices

belonging to the Lagrange subgroup.
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5.2.1 The submatrix of
[
dn(z,m)
cn(z,m)

, z
]

The proper exponential Riordan array
[

dn(z,m)
cn(z,m) , z

]
has coefficient matrix given

by

C =




1 0 0 0 0 0
0 1 0 0 0 0

1−m 0 1 0 0 0
0 3− 3m 0 1 0 0

m2 − 6m+ 5 0 6− 6m 0 1 0
0 5

(
m2 − 6m+ 5

)
0 −10(m− 1) 0 1



.

The non-zero elements of the first column of matrix C are associated to the

matrix:

D =




1 0 0 0 0 0
1 −1 0 0 0 0
5 −6 1 0 0 0
61 −107 47 −1 0 0
1385 −3116 2142 −412 1 0
50521 −138933 130250 −45530 3693 −1



.

The first column of D forms the sequence (1, 1, 5, 61, 1385, ...) which are referred

to as the Euler numbers having e.g.f sec(z) corresponding to A000364. The

row sums of D are {1, 0, 0, 0, 0, 0} having the simple generating function z cor-

responding to A010054 .

Alternatively, the matrix D can be transformed by multiplying with (−1)n

where n is the column number resulting to

E =




1 0 0 0 0 0
1 1 0 0 0 0
5 6 1 0 0 0
61 107 47 1 0 0

1385 3116 2142 412 1 0
50521 138933 130250 45530 3693 1



.

In particular, the row sums of E form the sequence (1, 2, 12, 216, 7056, 368928, ...)

corresponding to A153302 with g.f A(z) = cm4(z)2 + sm4(z)2 where cm4(z)

and sm4(z) are the g.f.s of A153300 and A153301, respectively, that satisfy

cm4(z)4 − sm4(z)4 = 1.
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5.2.2 The submatrix of
[

dn(z,m)
cn(z,m)2

, z
]

The coefficient matrix of the proper exponential Riordan array
[

dn(z,m)
cn(z,m)2 , z

]
is

given by

A =




1 0 0 0 0 0
0 1 0 0 0 0

2−m 0 1 0 0 0
0 6− 3m 0 1 0 0

m2 − 16m+ 16 0 12− 6m 0 1 0
0 5m2 − 80m+ 80 0 20− 10m 0 1




The non-zero elements of the first column of the matrix A are associated to the

matrix:

B =




1 0 0 0 0 0 0
2 −1 0 0 0 0 0
16 −16 1 0 0 0 0
272 −408 138 −1 0 0 0
7936 −15872 9168 −1232 1 0 0
353792 −884480 729728 −210112 11074 −1 0
22368256 −67104768 71997696 −32154112 4992576 −99648 1




.

The elements of the first column of B forms the sequence (1, 2, 16, 272, ..) having

E.g.f tan(z) corresponding to A000182. Furthermore, the row sums of B are

given by (1, 1, 1, 1, 1, 1, 1) having e.g.f ez which corresponds to A000012.

Using the generating function for the row sums of B given by ez and the gen-

erating function of the first column of B given by tan(z) we determine a new

Riordan array from these results below. Recall that for an exponential Riordan

array [g(z), f(z)], the row sums are given by

g(z)ef(z)

where g(z) ∈ F0 and f(z) ∈ F1.

But tan(z) ∈ F1 since

tan(z) = z +
z3

3
+

2z5

15
+

17z7

315
+O

(
z9
)
.
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Therefore solving to determine the first generating function of the Riordam

array we get

ez = g(z)etan(z)

g(z) =
ez

etan(z)

= ez−tan(z).

That is g(z) = ez−tan(z) ∈ F0 since

ez−tan(z) = 1− z3

3
− 2z5

15
+
z6

18
− 17z7

315
+

2z8

45
+O

(
z9
)
.

The coefficient matrix of the exponential Riordan array

[
ez−tan(z), tan(z)

]

is given by

C =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
−2 2 0 1 0 0 0
0 −8 8 0 1 0 0

−16 16 −20 20 0 1 0
40 −176 136 −40 40 0 1




.

The production matrix of C is given by




0 1 0 0 0 0
0 0 1 0 0 0
−2 2 0 1 0 0
0 −6 6 0 1 0
0 0 −12 12 0 1
0 0 0 −20 20 0



.

5.2.3 The submatrix of
[

dn(z,m)
cn(z,m)3

, z
]

The coefficient matrix of the proper exponential Riordan array
[

dn(z,m)
cn(z,m)3 , z

]
is

given by

F =




1 0 0 0 0 0
0 1 0 0 0 0

3−m 0 1 0 0 0
0 9− 3m 0 1 0 0

m2 − 26m+ 33 0 −6(m− 3) 0 1 0
0 5

(
m2 − 26m+ 33

)
0 −10(m− 3) 0 1



.

The non-zero elements of the first column of matrix F are associated to the
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matrix:

G =




1 0 0 0 0 0
3 −1 0 0 0 0
33 −26 1 0 0 0
723 −919 229 −1 0 0
25953 −45764 21990 −2052 1 0

1376643 −3110077 2240006 −524514 18455 −1



.

The row sums of G form the sequence (1, 2, 8, 32, 128, 512, ...) which corresponds

to A081294 having e.g.f e2z cosh (2z).

5.2.4 The submatrix of
[

dn(z,m)
cn(z,m)4

, z
]

The coefficient matrix of the proper exponential Riordan array
[

dn(z,m)
cn(z,m)4 , z

]
is

given by

H =




1 0 0 0 0 0
0 1 0 0 0 0

4−m 0 1 0 0 0
0 −3(m− 4) 0 1 0 0

m2 − 36m+ 56 0 −6(m− 4) 0 1 0
0 5

(
m2 − 36m+ 56

)
0 −10(m− 4) 0 1



.

The non-zero elements of the first column of matrix H are associated to the

matrix:

I =




1 0 0 0 0 0
4 −1 0 0 0 0
56 −36 1 0 0 0

1504 −1640 320 −1 0 0
64256 −100352 40608 −2872 1 0

3963904 −8104704 5118464 −988736 25836 −1



.

The row sums of I form the sequence (1, 3, 21, 183, 1641, 14763, ...) which corre-

sponds to A054879 having the e.g.f cosh3(z).

5.2.5 The submatrix of
[

dn(z,m)
cn(z,m)5

, z
]

The coefficient matrix of the proper exponential Riordan array
[

dn(z,m)
cn(z,m)5 , z

]
is

given by

J =




1 0 0 0 0 0
0 1 0 0 0 0

5−m 0 1 0 0 0
0 −3(m− 5) 0 1 0 0

m2 − 46m+ 85 0 −6(m− 5) 0 1 0
0 5

(
m2 − 46m+ 85

)
0 −10(m− 5) 0 1



.
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The non-zero elements of the first column of matrix J is associated to the matrix

K =




1 0 0 0 0 0
5 −1 0 0 0 0
85 −46 1 0 0 0
2705 −2571 411 −1 0 0
134185 −187196 65022 −3692 1 0
9451805 −17573141 9822482 −1602778 33217 −1



.

The row sums of K form the sequence (1, 4, 40, 544, 8320, 131584, ...) which cor-

responds to A092812 having the e.g.f cosh4 (z).

5.2.6 The submatrix of
[

dn(z,m)
cn(z,m)6

, z
]

The coefficient matrix of the proper exponential Riordan array
[

dn(z,m)
cn(z,m)6 , z

]
is

given by

L =




1 0 0 0 0 0
0 1 0 0 0 0

6−m 0 1 0 0 0
0 −3(m− 6) 0 1 0 0

m2 − 56m+ 120 0 −6(m− 6) 0 1 0
0 5

(
m2 − 56m+ 120

)
0 −10(m− 6) 0 1



.

The non-zero elements of the first column of the matrix M is associated to the

matrix:

M =




1 0 0 0 0 0 0
6 −1 0 0 0 0 0
120 −56 1 0 0 0 0
4416 −3712 502 −1 0 0 0


 .

The row sums of M form the sequence (1, 5, 65, 1205, 26465, 628805, ...) which

corresponds to A121822 having the e.g.f cosh5 (z).

5.2.7 The submatrix of [cn(z,m)2, sn(z,m)]

The coefficient matrix of
[
cn(z,m)2, sn(z,m)

]
is given by

L =




1 0 0 0 0 0
0 1 0 0 0 0
−2 0 1 0 0 0
0 −m− 7 0 1 0 0

8(m+ 1) 0 −4(m+ 4) 0 1 0
0 m2 + 74m+ 61 0 −10(m+ 3) 0 1



.
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The non-zero elements of the second column of L are associated to the matrix

M =




1 0 0 0 0 0 0
−7 −1 0 0 0 0 0
61 74 1 0 0 0 0

−547 −2739 −681 −1 0 0 0
4921 80788 85038 6148 1 0 0

−44287 −2169797 −6590134 −2324554 −55355 −1 0
398581 55949982 413000631 421686548 60344691 498222 1




.

The matrix M can be transformed by multiplying with (−1)n+1 where n is the

row number s.t. n = 1, 2, 3, ... to obtain the matrix

N =




1 0 0 0 0 0 0
7 1 0 0 0 0 0
61 74 1 0 0 0 0
547 2739 681 1 0 0 0
4921 80788 85038 6148 1 0 0
44287 2169797 6590134 2324554 55355 1 0
398581 55949982 413000631 421686548 60344691 498222 1




.

The elements of the first column ofN forms the sequence (1, 7, 61, 547, 4921, 44287, ....)

which corresponds to A066443 having e.g.f 3e9z + ez

4 . The row sums of N form

the sequence (1, 8, 136, 3968, 176896, 11184128, 951878656, ...) corresponding to

the non zero elements of A024283 having e.g.f 1
2 tan(z)2.

5.2.8 The submatrix of
[
1, sn(z,m)

1+sn(z,m)2

]

The coefficient matrix of
[
1, sn(z,m)

1+sn(z,m)2

]
is given by

P =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −m− 7 0 1 0 0
0 0 −4(m+ 7) 0 1 0
0 m2 + 74m+ 181 0 −10(m+ 7) 0 1



.

The second column of P is generated from the expansion of sn(z,m)
1+sn(z,m)2 The

non-zero elements of the second column of P are associated with the matrix

Q =




1 0 0 0 0 0 0
−7 −1 0 0 0 0 0
181 74 1 0 0 0 0

−9787 −6939 −681 −1 0 0 0
907081 917428 200958 6148 1 0 0

−128445967 −168735317 −59725414 −5320954 −55355 −1 0
25794366781 41682334782 20629917351 3377119028 136140411 498222 1




.

The matrix Q can be transformed by multiplying with (−1)n+1 where n is the
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row number s.t. n = 1, 2, 3, ... to obtain the matrix

R =




1 0 0 0 0 0 0
7 1 0 0 0 0 0
181 74 1 0 0 0 0
9787 6939 681 1 0 0 0
907081 917428 200958 6148 1 0 0

128445967 168735317 59725414 5320954 55355 1 0
25794366781 41682334782 20629917351 3377119028 136140411 498222 1




.

The row sums ofR form the sequence (1, 8, 256, 17408, 2031616, 362283008, 91620376576, ...)

which corresponds to A253165 known as the generalized Riemann zeta

function (−1)n26n+3
((

2−2n−1 − 1
)
ζ(−2n− 1)− ζ(−2n− 1)

)
. The sequence

A253165 can alternatively be generated from (2n!)[z2n] sec(2z)2, or in other

words, sech(2z)2 is the g.f of the aerated sequence.

5.3 Embedded Riordan arrays from Riordan ar-

rays generated by Elliptic Functions

In this section we apply the technique of forming a new Riordan array using

the formula
[
d(z), h

2(z)
z

]
from the original Riordan array [d(z), h(z)] , briefly

introduced in (5.1).

5.3.1 The embedded Riordan array of [cn(z,m), sn(z,m)]

The Riordan array [cn(z,m), sn(z,m)] produces the embedded Riordan array

A =
[
cn(z,m), sn(z,m)2

z

]
. The coefficient matrix corresponding to A is given by

B =




1 0 0 0 0
0 1 0 0 0
−1 0 1 0 0
0 −2m− 5 0 1 0

4m+ 1 0 −2(4m+ 7) 0 1



.

The matrix B is associated to the production matrix

C =




0 1 0 0
−1 0 1 0
0 −2(m+ 2) 0 1

2(m− 2) 0 −6m− 9 0


 .
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5.3.2 The embedded Riordan array of [dn(z,m), sn(z,m)]

The Riordan array [dn(z,m), sn(z,m)] produces the embedded Riordan array

A =
[
dn(z,m), sn(z,m)2

z

]
. The coefficient matrix corresponding to A is given by

B =




1 0 0 0 0
0 1 0 0 0

−m 0 1 0 0
0 −5m− 2 0 1 0

m(m+ 4) 0 −2(7m+ 4) 0 1



.

The matrix B is associated to the production matrix

C =




0 1 0 0
−m 0 1 0
0 −4m− 2 0 1

2(1− 2m)m 0 −9m− 6 0


 .

5.3.3 The embedded Riordan array of [cn(z,m), zcn(z,m)]

The Riordan array [cn(z,m), zcn(z,m)] produces the embedded Riordan array

A =
[
cn(z,m), (zcn(z,m))2

z

]
≡
[
cn(z,m), zcn(z,m)2

]
. The coefficient matrix cor-

responding to A is given by

B =




1 0 0 0 0
0 1 0 0 0
−1 0 1 0 0
0 −9 0 1 0

4m+ 1 0 −30 0 1



.

The matrix B is associated to the production matrix

C =




0 1 0 0
−1 0 1 0
0 −8 0 1

4m− 8 0 −21 0


 .

5.3.4 The embedded Riordan array of [dn(z,m), zdn(z,m)]

The Riordan array A = [dn(z,m), zdn(z,m)] produces the embedded Riordan

array B =
[
dn(z,m), (zdn(z,m))2

z

]
≡
[
dn(z,m), zdn(z,m)2

]
. The coefficient ma-

trix corresponding to A is given by

B =




1 0 0 0 0
0 1 0 0 0

−m 0 1 0 0
0 −9m 0 1 0

m2 + 4m 0 −30m 0 1



.
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The matrix B is associated to the production matrix

C =




0 1 0 0
−m 0 1 0
0 −8m 0 1

4(1− 2m)m 0 −21m 0


 .

5.4 Riordan arrays derived from the r-shifted

central triangles of a given Riordan array

The family of r-shifted central coefficients a2n+r,n+r of a Riordan array were

originally introduced by the authors Zheng and Yang [126]. A family of matrices

c(A; r) known as the r-shifted central triangles of the Riordan array A having

general term a2n+r,n+k+r can be constructed from the original Riordan array

A. These new matrices arising from A have the r-shifted central coefficients as

their leftmost column with all 1′s on their principal diagonal. The outcome of

trying to characterize the family of matrices c(A; r) results in a one parameter

family of Riordan arrays. These results for c(A; r) when r = 1 are summarized

below.

Theorem 5.4.1 The shifted central triangle c(A; 1) of the Riordan array A =

[g(z), zf(z)] is a Riordan array which admits the following factorization.

c(A; 1) =

[
φ′

f(φ)
, φ

]
·A,

where

φ(z) = Rev

(
z

f(z)

)
and φ′(z) =

d

dz
φ(z).

Corollary 5.4.2 We have

c(A; 1) =

[
φ′
g(φ)

f(φ)
, φf(φ)

]
.

Corollary 5.4.3 We have

c(A; 1) =

[
f(z)

φ′( z
f(z) )

,
z

f(z)

]−1

· [g(z), zf(z)].
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Corollary 5.4.4

c(A; 1)−1 =


 1

g(v̄)

f(v̄)

φ′
(

v̄
f(v̄)

) , v̄

f(v̄)


 ,

where v(z) = zf(z).

Corollary 5.4.5 Let A = [f(z), zf(z)] be a member of the Bell subgroup of the

Riordan group. Then

c(A; 1) = [φ′, φf(φ)] ,

and

c(A; 1)−1 =


 1

φ′
(

v̄
f(v̄)

) , v̄

f(v̄)


 .

We investigate some examples corresponding to each of these results below.

5.4.1
[
cn(z,m), z2

sn(z,m)

]

We verify the results of Corollary (5.4.3) for the case of the the Riordan array

A =

[
cn(z,m),

z2

sn(z,m)

]
≡
[
cn(z,m), z2ns(z,m)

]
.

The Riordan array A produces the Riordan array

B =

[
−z
(
msn(z|m)2 − 1

)
cd
(

sn−1(sn(z|m)|m)
∣∣m
)

sn(z|m)
, sn(z|m)

]

by applying the formula
[

f(z)
φ′( z

f(z)
) ,

z
f(z)

]
where

f(z) =
z

sn(z,m)
and φ(z) = sn−1(z,m).

The coefficient matrix of B is given by




1 0 0 0 0 0
0 1 0 0 0 0

− 2
3 (m+ 1) 0 1 0 0 0

0 −3(m+ 1) 0 1 0 0
− 8

15 ((m− 16)m+ 1) 0 −8(m+ 1) 0 1 0
0 5(m(m+ 14) + 1) 0 − 50

3 (m+ 1) 0 1



.
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5.5 A one-parameter family of Riordan arrays

derived from a given Riordan array

For every integer s a transformation of a Riordan array can be defined which

yields another Riordan array. By setting a value for the integer s the effects

of these transformations on some Jacobi Riordan arrays are evaluated for new

combinatorial results arising from the new Riordan matrices.

5.5.1 Examples using the inverse transformation T (s)−1

5.5.1.1 The case of [g, f ] = [cd(z,m), z]

We apply the formula T (s)−1

= [g, f ]
−1·
[
ψ′(z)

(
ψ
z

)s−1

, ψ

]
where ψ(z) = z

1+f(z) ,

to the original Riordan array [g, f ] = [cd(z,m), z] . In particular, if s = 2 we

have that

ψ =
z

1 + z
=⇒

[
ψ′(z)

(
ψ

z

)s−1

, ψ

]
=

[
1

(1 + z)3
,

z

1 + z

]
.

T (2)−1

=

[
1

(1 + z)3cd(z,m)
,

z

1 + z

]
.

The matrix representing T (2)−1

is given by

T =




1 0 0 0 0 0
−3 1 0 0 0 0

13−m −8 1 0 0 0
9m− 69 63− 3m −15 1 0 0

(m− 78)m+ 437 48(m− 11) −6(m− 31) −24 1 0
−15((m− 46)m+ 213) 5((m− 126)m+ 965) 150(m− 15) −10(m− 43) −35 1



.

The production matrix of T is given by

Tp =




−3 1 0 0
4−m −5 1 0
2− 2m −2(m− 5) −7 1

−2(m− 1)(m+ 4) 6− 6m −3(m− 6) −9


 .
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Remark 1: If m = 1 The coefficient matrix of T becomes

T1 =




1 0 0 0 0 0 0
−3 1 0 0 0 0 0
12 −8 1 0 0 0 0
−60 60 −15 1 0 0 0
360 −480 180 −24 1 0 0

−2520 4200 −2100 420 −35 1 0
20160 −40320 25200 −6720 840 −48 1




.

The coefficient matrix T1 =
[

1
(1+z)3 ,

z
1+z

]
≡
[
ψ′(z)

(
ψ
z

)s−1

, ψ

]
.

If we multiply T1 by (−1)n+1 where n represents the row number of T1 starting

from 1, we get the matrix

T2 =




1 0 0 0 0 0 0
3 −1 0 0 0 0 0
12 −8 1 0 0 0 0
60 −60 15 −1 0 0 0
360 −480 180 −24 1 0 0
2520 −4200 2100 −420 35 −1 0
20160 −40320 25200 −6720 840 −48 1




.

The matrix T2 corresponds to A062139 which is the coefficient triangle of the

generalized Laguerre polynomials n! ∗ L(n, 2, z) for rising powers of z. The row

sums of the signed triangle T2 are (1, 2, 5, 14, 37, 34,−887, ....) corresponding to

A062197 with e.g.f e
−z
1−z

(1−z)3 .

Remark 2: The exponential Riordan array
[

1
(1+z)3 ,

z
1+z

]
arising from the

transformation T (s)−1

has a tri-diagonal production matrix for m = 1 given

by

B =




−3 1 0 0 0
3 −5 1 0 0
0 8 −7 1 0
0 0 15 −9 1
0 0 0 24 −11



.

This indicates that the inverse matrix of
[

1
(1+z)3 ,

z
1+z

]
is associated to the co-

efficients of a family of orthogonal polynomial sequences.

Remark 3: The r and c generating function of T1 are respectively

r(z) = 1− z2 c(z) = 3− 3z.
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5.5.1.2 The case of [g, f ] = [cd(z,m), sn(z,m)]

We apply the formula T (s)−1

= [g, f ]
−1·
[
ψ′(z)

(
ψ
z

)s−1

, ψ

]
where ψ(z) = z

1+f(z) ,

to the original Riordan array [g, f ] = [cd(z,m), sn(z,m)] . In particular, if s = 2

we have that

ψ =
z

1 + sn(z,m)
=⇒

[
ψ′(z)

(
ψ

z

)s−1

, ψ

]
=

[−zcn(z|m)dn(z|m) + sn(z|m) + 1

(sn(z|m) + 1)3
,

z

1 + sn(z,m)

]
.

[g, f ]
−1

=

[(
mz2 − 1

)
cd
(

sn−1(z|m)
∣∣m
)

z2 − 1
, sn−1(z,m)

]

T (2)−1

equals to
[

cd
(

sn−1
(

sn−1(z|m)
∣∣m
)∣∣m

(
z(−cn

(
sn−1(z|m)

∣∣m
)
)dn

(
sn−1(z|m)

∣∣m
)

+ z + 1)

(z + 1)3

,
z

1 + sn(z,m)

]
.
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Chapter 6

Riordan arrays and

Solutions to Differential

Equations

6.1 The Sturm-Liouville equation

The Sturm-Liouville equation [28] is a real second order differential equation

of the form
d

dx

[
p(x)

dy

dx

]
+ q(x)y = −λw(x)y. (6.1)

The equation (6.1) is derived under general conditions by rewriting a given

second order homogenous differential equation in one dimension of the form

a(x)
d2

dx2
y(x) + b(x)

d

dx
y(x) + c(x)y(x) = 0,

in another form of differential equation involving a self-adjoint under suitable

boundary conditions [86]. In this sense, the Sturm-Liouville operator can be

defined by

Ly = 0

where

L =
d

dx
p(x)

d

dx
− q(x).
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The eigen-value equation associated with L can be written as

Ly + λwy = 0 ≡ d

dx

[
p(x)

dy(x)

dx

]
− q(x)y(x) + λw(x)y(x) = 0,

where λ is the eigen value corresponding to the eigen function y(x) satisfying the

boundary conditions, the real valued function ω(x) > 0 is the weight function.

A catalogue providing details of over 50 examples of Sturm-Liouville differential

equations has been presented by Everitt [38]. Most of these differential equa-

tions are directly related to problems in mathematical physics. Riordan arrays

can represent the solution to systems of differential equations. The commonest

examples come from Sturm Liouville systems with parameter λ that depends

on n. In the account that follows a connection between the solutions to some

Sturm-Liouville differential equations with ordinary and exponential Riordan

arrays will be outlined. For the purpose of this investigation the case of the

Laguerre equation, Bessel equation, Hermite equation, Morgan-Voyce equation

and Chebyshev equation are considered. Each of these equations will be treated

in such a way as to show that the coefficient arrays corresponding to the poly-

nomial sequences that make up their solutions are Riordan arrays.

6.1.1 Laguerre Polynomials

The general form of the Laguerre differential equation [121] is

xy′′ + (1− x)y′ + λy = 0. (6.2)

In addition, (6.2) is considered a special case of the general associated or

generalized Laguerre differential equation defined by

xy′′ + (v + 1− x)y′ + λy = 0 (6.3)

where λ and v are real numbers. The solutions to the Laguerre differential

equation (6.2) are given by a polynomial sequence known as Laguerre poly-

nomials which are most often denoted as L0, L1, L2, ... and can be expressed
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explicitly by the formula

Ln(x) = n!

n∑

k=0

(−1)k

k!

(
n

k

)
xk.

The generating function of the Laguerre polynomials is given by

e−( xt
1−t )

1− t =

∞∑

n=0

Ln(x)

n!
.

The Laguerre polynomials satisfy the 3-term recurrence relation

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x). (6.4)

It can be verified that Ln(x) =
[
−1
t−1 ,

t
t−1

]
.ext ≡

[
1

1−t ,
−t
1−t

]
.ext. The general

formula for the polynomial sequence Ln(x) is computed using the FTRA (1.5.1)

and the method of coefficients as follows:

[tn]

[
1

1− t ,
−t

1− t

]
.ext = n! [tn]

1

1− te
− xt

1−t

= n! [tn]
1

1− t
∞∑

k=0

(−1)kxktk

k!(1− t)k

= n! [tn]

∞∑

k=0

(−1)kxktk

k!
(1− t)−(k+1)

= n! [tn]

∞∑

k=0

(−1)kxktk

k!

∞∑

j=0

(−(k + 1)

j

)
(−t)j

= n! [tn]

∞∑

k=0

(−1)kxktk

k!

∞∑

j=0

(
k + 1− 1

j

)
(−1)jtj

= n! [tn]

∞∑

k=0

(−1)kxktk

k!

∞∑

j=0

(
k

j

)
(−1)j(−1)jtj

=
[
tn−k

] n∑

k=0

n!(−1)kxk

k!

(
k

n− k

)
tn−k

=

n∑

k=0

n!(−1)k

k!

(
n

k

)
xk

= (Ln(x))n∈N.
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The coefficient matrix of the Laguerre polynomials Ln(x) is given by

A =




1 0 0 0 0 0
1 −1 0 0 0 0
2 −4 1 0 0 0
6 −18 9 −1 0 0
24 −96 72 −16 1 0
120 −600 600 −200 25 −1



.

The production matrix associated to A is given by

PA =




1 −1 0 0 0
−1 3 −1 0 0
0 −4 5 −1 0
0 0 −9 7 −1
0 0 0 −16 9



.

Remark: The production matrix PA is tridiagonal which indicates that A−1

forms a family of orthogonal polynomial sequences.

We verify that the polynomial sequence Ln(x) forms an orthogonal polyno-

mial sequence satisfying the 3-term recurrence relation (6.4). We proceed by

calculating the inverse of the matrix A corresponding to the coefficient matrix

Ln(x) and the production matrix of A−1 to determine its recurrence coefficients.

The coefficient matrix A−1 is given by

A−1 =




1 0 0 0 0 0
1 −1 0 0 0 0
2 −4 1 0 0 0
6 −18 9 −1 0 0
24 −96 72 −16 1 0
120 −600 600 −200 25 −1



.

The production matrix of A−1 is given by

PA−1 =




1 −1 0 0 0
−1 3 −1 0 0
0 −4 5 −1 0
0 0 −9 7 −1
0 0 0 −16 9



.

Remark: The tri-diagonal nature of the production matrix PA−1 of A−1 shows

that the matrix A is the coefficient matrix of a family of orthogonal polynomial

sequences.

Recall from section (1.7) that for a polynomial sequence (pn(x))n∈N satisfies
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the 3-term recurrence relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x) for n ≥ 1.

From the production matrix PA−1 we get αn = 2n+ 1 and βn = −n2 with the

initial conditions L0(x) = 1 and L1(x) = 1− x. Thus,

Ln+1(x) = (2n+ 1− x)Ln(x)− n2Ln−1(x)

for n ≥ 1.

6.1.2 Hermite Polynomials

The Hermite differential equation is a second order differential equation given

by
d2y

dx2
− 2x

dy

dx
+ λy = 0. (6.5)

The solutions to the Hermite equation (6.5) are called the Hermite poly-

nomials. There are two forms of the Hermite polynomials. These are the

probabilist Hermite polynomials and the physicist Hermite polynomi-

als denoted Hen annd Hn respectively. The relationship between the two types

of Hermite polynomials is such that

Hen(x) = 2−
n
2Hn(

√
2x).

6.1.2.1 The Probabilist Hermite polynomials Hen

The generating function of the probabilist Hermite polynomials is given by

ext−
t2

2 =

∞∑

n=0

Hen(x)
tn

n!
.

The probabilists Hermite polynomial Hen(x) can be defined as

Hen(x) = n!

bn2 c∑

k=0

(−1)kxn−2k

k!(n− 2k)!2k
≡

n∑

k=0

n!

(−2)
n−k

2 k!(n−k2 )!

1 + (−1)n−k

2
xk.

The recursion relation of the Hermite polynnomials Hen(x) is given by

Hen+1(x) = xHen(x)− nHen−1(x). (6.6)
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The coefficients of the Hermite polynomials Hen can be represented by the

Riordan array
[
e
−t2
2 , t

]
. such that

[
e
−t2
2 , t

]
.ext = (Hen(x))n∈N .

The general formula for the polynomial sequence Hen(x) is computed using the

FTRA (1.5.1) and the method of coefficients as follows.

[tn]
[
e
−t2
2 , t

]
.ext = n![tn]e−

t2

2 +xt

= n![tn]

∞∑

k=0

(− t22 + xt)k

k!

=
n!

k!
[tn]

∞∑

k=0

tk
(−t

2
+ x

)k

=
n!

k!
[tn]

∞∑

k=0

tk
(
t

(
−1

2
+
x

t

))k

=
n!

k!
[tn]

∞∑

k=0

t2k
(
−1

2
+
x

t

)k

=
n!

k!
[tn]

∞∑

k=0

t2k
(
−1

2

(
1− 2x

t

))k

=
n!

2kk!
[tn]

∞∑

k=0

t2k(−1)k
(

1− 2x

t

)k

=
n!

2kk!
[tn]

∑

k

t2k(−1)k
k∑

j=0

(
k

j

)(−2x

t

)j

=
n!

2kk!
[tn]

∑

k

t2k(−1)k
k∑

j=0

(
k

j

)
(−1)j

(
2x

t

)j

=
n!

2kk!
[tn]

∑

k

(−1)kt2k−j
∑

j

(
k

j

)
(−1)j(2x)j

=
n!

2kk!

∑

k=0

(−1)k
(

k

2k − n

)
(−1)2k−n(2x)2k−n.
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The coefficient matrix of the Hermite polynomials Hen(x) is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −3 0 1 0 0 0
3 0 −6 0 1 0 0
0 15 0 −10 0 1 0

−15 0 45 0 −15 0 1




.

The production matrix associated to A is given by

PA =




0 1 0 0 0 0
−1 0 1 0 0 0
0 −2 0 1 0 0
0 0 −3 0 1 0
0 0 0 −4 0 1
0 0 0 0 −5 0



.

Remark:The production matrix PA is tridiagonal which indicates that A−1

forms a family of orthogonal polynomial sequences.

We verify that the polynomial sequence Hen(x) forms an orthogonal polyno-

mial sequence satisfying the 3-term recurrence relation (6.6). We proceed by

calculating the inverse of the matrix A corresponding to the coefficient matrix

Hen(x) and the production matrix of A−1 to determine its recurrence coeffi-

cients.

The coefficient matrix A−1 is given by

A−1 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 3 0 1 0 0 0
3 0 6 0 1 0 0
0 15 0 10 0 1 0
15 0 45 0 15 0 1




.

The production matrix of A−1 is given by

PA−1 =




0 1 0 0 0 0
1 0 1 0 0 0
0 2 0 1 0 0
0 0 3 0 1 0
0 0 0 4 0 1
0 0 0 0 5 0



.
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Remark: The tri-diagonal nature of the production matrix PA−1 of A−1 shows

that the matrix A is the coefficient matrix of a family of orthogonal polyno-

mial sequences defined by the Hermite polynomials Hen(x). Recall from section

(1.7) that for an orthogonal polynomial sequence (pn(x))n∈N satisfies the 3-term

recurrence relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), n ≥ 1 .

From the production matrix PA−1 we get αn = 0 and βn = n. Thus,

Hen+1(x) = xHen(x)− nHen−1(x)

for n ≥ 1 with the initial conditions He0 = 1 and He1 = x.

6.1.2.2 The Physicist Hermite polynomials Hn(x)

The physicists Hermite polynomials Hn(x) may be defined as

Hn(x) = n!

bn2 c∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
.

The generating function for Hn(x) is given by

e2xt−t2 =

∞∑

n=0

Hn(x)
tn

n!
.

The recursion relation of the Hermite polynomials Hn(x) is given by

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (6.7)

The coefficients of the Hermite polynomials Hn(x) can be represented by the

Riordan array
[
e−t

2

, 2t
]

such that

[
e−t

2

, 2t
]
.ext = (Hn(x))n∈N .
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The general formula for the polynomial sequence Hn(x) is computed using the

FTRA (1.5.1) and the method of coefficients as follows:

[tn]
[
e−t

2

, 2t
]
.ext = n![tn]e−t

2+2xt

= n![tn]

∞∑

k=0

(−t2 + 2xt)k

k!

=
n!

k!
[tn]

∞∑

k=0

tk (−t+ 2x)
k

=
n!

k!
[tn]

∞∑

k=0

tk
(
t

(
−1 +

2x

t

))k

=
n!

k!
[tn]

∞∑

k=0

t2k
(
−1 +

2x

t

)k

=
n!

k!
[tn]

∞∑

k=0

t2k
(
−1

(
1− 2x

t

))k

=
n!

k!
[tn]

∞∑

k=0

t2k(−1)k
(

1− 2x

t

)k

=
n!

k!
[tn]

∑

k

t2k(−1)k
k∑

j=0

(
k

j

)(−2x

t

)j

=
n!

k!
[tn]

∑

k

t2k(−1)k
k∑

j=0

(
k

j

)
(−1)j

(
2x

t

)j

=
n!

k!
[tn]

∑

k

t2k(−1)k
k∑

j=0

(
k

j

)
(−1)j

(
2x

t

)j

=
n!

k!
[tn]

∑

k

(−1)kt2k−j
∑

j

(
k

j

)
(−1)j(2x)j

=
n!

k!

∑

k=0

(−1)k
(

k

2k − n

)
(−1)2k−n(2x)2k−n..

The coefficient matrix of the Hermite polynomials Hn(x) is given by

A =




1 0 0 0 0 0 0
0 2 0 0 0 0 0
−2 0 4 0 0 0 0
0 −12 0 8 0 0 0
12 0 −48 0 16 0 0
0 120 0 −160 0 32 0

−120 0 720 0 −480 0 64




.
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The production matrix associated to A is given by

PA =




0 2 0 0 0 0
−1 0 2 0 0 0
0 −2 0 2 0 0
0 0 −3 0 2 0
0 0 0 −4 0 2
0 0 0 0 −5 0



.

Remark: The production matrix PA is tridiagonal which indicates that A−1

forms a family of orthogonal polynomial sequences.

We verify that the polynomial sequence Hn(x) forms an orthogonal polyno-

mial sequence satisfying the 3-term recurrence relation (6.7). We proceed by

calculating the inverse of the matrix A corresponding to the coefficient matrix

Hn(x) and the production matrix of A−1 to determine its recurrence coefficients.

The coefficient matrix A−1 is given by

A−1 =




1 0 0 0 0 0 0
0 1

2 0 0 0 0 0
1
2 0 1

4 0 0 0 0
0 3

4 0 1
8 0 0 0

3
4 0 3

4 0 1
16 0 0

0 15
8 0 5

8 0 1
32 0

15
8 0 45

16 0 15
32 0 1

64




.

The production matrix of A−1 is given by

PA−1 =




0 1
2 0 0 0 0

1 0 1
2 0 0 0

0 2 0 1
2 0 0

0 0 3 0 1
2 0

0 0 0 4 0 1
2

0 0 0 0 5 0



.

Remark: The tri-diagonal nature of the production matrix PA−1 of A−1 shows

that the matrix A is the coefficient matrix of a family of orthogonal polynomial

sequences defined by the Hermite polynomials Hn(x).

Recall from section (1.7) that for an orthogonal polynomial sequence (pn(x))n∈N
satisfies the 3-term recurrence relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x).

From the production matrix PA−1 we get αn = 0 and βn = 2n (by applying a
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scaling factor of 2 to PA−1 gives

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

as defined in (6.7).

6.1.3 The Reverse Bessel Polynomials

The reverse Bessel polynomial satisfies the differential equation given by

xθ′′n(x)− 2(x+ n)θ′n(x) + 2nθn(x) = 0. (6.8)

The explicit formula of the reverse Bessel polynomial is given by

θn(x) =

n∑

k=0

(2n− k)!

2n−kk!(n− k)!
xk. (6.9)

where k = 0, 1, ..., n.

The 3− term recurrence relation of the reverse Bessel polynomial is given by

θn(x) = (2n− 1)θn−1(x) + x2θn−2(x).

The proper exponential Riordan array of the reverse Bessel polynomial is RBS =[
1√

1−2t
, 1−

√
1− 2t

]
represents the solution of (6.8), in the sense that

RBS · {1,
x

1!
,
x2

2!
,
x3

3!
, . . .}T = {θ0(x), θ1(x), θ2(x), . . .}T .

The coefficient matrix of the reverse Bessel polynomial is given by

RBS =




1 0 0 0 0 0
1 1 0 0 0 0
3 3 1 0 0 0
15 15 6 1 0 0
105 105 45 10 1 0
945 945 420 105 15 1



.

The production matrix of RBS is given by




1 1 0 0 0
2 2 1 0 0
6 6 3 1 0
24 24 12 4 1
120 120 60 20 5



.
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The general formula for the entries of the coefficient matrix of the Reverse Bessel

polynomials are calculated using its Riordan array representation as follows:

[
1√

1− 2x
, 1−

√
1− 2x

]
=

n!

k!
[xn]

1√
1− 2x

(
1−
√

1− 2x
)k

=
n!

k!
[xn]

1

(1− 2x)1/2

∑(
k

j

)
(−1)j(1− 2x)j/2

=
n!

k!
[xn]

k∑

j=0

(
k

j

)
(−1)j(1− 2x)

j−1
2

=
n!

k!
[xn]

k∑

j=0

(
k

j

)
(−1)j

∑

i

( j−1
2

i

)
(−2)ixi

=
n!

k!

k∑

j=0

(
k

j

)
(−1)j

( j−1
2

n

)
(−2)n

=
n!

k!
(−2)n

k∑

j=0

(
k

j

)( j−1
2

n

)
(−1)j

=
n!

k!
(−2)n

k∑

j=0

(
k

j

)
(−1)j

( j−1
2

n

)
.

The Mathematica code below computes the coefficient matrix of the reverse

Bessel polynomials using the general formula.

Table
[
Table

[
n!
k! (−2)nSum

[
Binomial[k, j]Binomial

[
j−1

2 , n
]

(−1)j , {j, 0, k}
]
, {k, 0, 10}

]
,Table

[
Table

[
n!
k! (−2)nSum

[
Binomial[k, j]Binomial

[
j−1

2 , n
]

(−1)j , {j, 0, k}
]
, {k, 0, 10}

]
,Table

[
Table

[
n!
k! (−2)nSum

[
Binomial[k, j]Binomial

[
j−1

2 , n
]

(−1)j , {j, 0, k}
]
, {k, 0, 10}

]
,

{n, 0, 10}]{n, 0, 10}]{n, 0, 10}]

6.1.4 Chebyshev Polynomials

The Chebyshev differential equation given by

(1− x2)
d2y

dx2
− xdy

dx
+ λ2y = 0. (6.10)

In order to determine that the Chebyshev equation satisfies the Sturm-Liouville

equation (6.1) it is divided by
√

1− x2 to get the equation

(
√

1− x2)y′′ − x√
1− x2

y′ +
λ2

√
1− x2

y = 0 (6.11)
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such that (
√

1− x2)y′′− x√
1−x2

y′ corresponds to d
dx

[
(
√

1− x2) dydx

]
in the context

of the Sturm-Liouville form (6.1) with

p(x) =
√

1− x2, q(x) = 0, w(x) =
1√

1− x2
.

The solutions to the Chebyshev equation are known as the Chebyshev poly-

nomials The Chebyshev polynomials are of two types referred to as the Cheby-

shev polynomials of the first kind and the Chebyshev polynomials of

the second kind.

6.1.4.1 The Chebyshev polynomials of the second kind

The generating function of the Chebyshev polynomial of the second kind[122]

is

u(t, x) =
1

1− 2xt+ t2
=

∞∑

n=0

Un(x)tn. (6.12)

The formula for the general term of the chebyschev polynomial of the second

kind is given by

Un(x) =

bn2 c∑

k=0

(
n− k
k

)
(−1)k2xn−2k.

The ordinary Riordan array Rc =
(

1
1+t2 ,

2t
1+t2

)
represents the solution of the

differential system in the sense that

Rc · {1, x, x2, . . .}T = {U0(x), U1(x), U2(x), . . .}T .

6.1.4.2 The Scaled Chebyshev Polynomials

The family of scaled Chebyshev polynomials

yn(x) = Un(x/2) =

bn2 c∑

k=0

(
n− k
k

)
(−1)kxn−2k

satisfies the system of differential equations

(4− x2)y′′n − 3xy′n + n(n+ 2)yn = 0.
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The Riordan array

R =

(
1

1 + t2
,

t

1 + t2

)

represents the solution, in the sense that

R · {1, x, x2, . . .}T = {y0(x), y1(x), y2(x), . . .}T .

The general formula for the polynomial sequence yn(x) is computed using the

FTRA (1.5.1) and the method of coefficients as follows:

[tn]

(
1

1 + t2
,

t

1 + t2

)
· 1

1− xt = [tn]
1

1+t2

1− x
(

t
1+t2

)

= [tn]
1

1 + t2


 1

1− x
(

t
1+t2

)




= [tn]
1

1 + t2

∞∑

k=0

(
xt

1 + t2

)k

= [tn]
1

1 + t2

∞∑

k=0

tk

(1 + t2)k
xk

= [tn]

∞∑

k=0

tk

(1 + t2)k+1
xk

= [tn−k]

∞∑

j=0

(−(k + 1)

j

)
t2jxk

= [tn−k]

∞∑

j=0

(
k + 1 + j − 1

j

)
(−1)jt2jxk

= [tn−k]

∞∑

j=0

(
k + j

j

)
(−1)jt2jxk

=

n∑

k=0

(n+k
2

k

)
(−1)

n−k
2

(1 + (−1)n−k)

2
xk

= (yn(x))n∈N.

Remark: From the above results we have 2j = n− k =⇒ j = n−k
2 so that

(
k + n−k

2
n−k

2

)
(−1)

n−k
2

(1 + (−1)n−k)

2
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and also
n+ k

2
− n− k

2
= k.

6.1.5 Morgan-Voyce Polynomials

The Morgan-Voyce polynomials are can be explicitly defined in two types de-

noted by Bn(x) and bn(x).

6.1.5.1 The Morgan-Voyce Polynomials Bn(x)

The Morgan-Voyce polynomial Bn(x) is given explicitly by the formula

Bn(x) =

n∑

k=0

(
n+ k + 1

n− k

)
xk (6.13)

and it satisfies the ordinary differential equation

x(x+ 4)y′′ + 3(x+ 2)y′ − n(n+ 2)y = 0. (6.14)

The Morgan-Voyce polynomials Bn(x) can also be defined by the 3-term recur-

rence relation

Bn(x) = (x+ 2)Bn−1(x)−Bn−2(x) (6.15)

with B0(x) = 1 and B1(x) = 2 + x.

The proper ordinary Riordan array RMB =
(

1
(1−t)2 ,

t
(1−t)2

)
represents the so-

lution of (6.14), in the sense that

RMB · {1, x, x2, . . .}T = {B0(x), B1(x), B2(x), . . .}T .

The general formula for the polynomial sequence Bn(x) is computed using the
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FTRA (1.5.1) and the method of coefficients as follows:

[tn]

(
1

(1− t)2
,

t

(1− t)2

)
· 1

1− xt = [tn]

1
(1−t)2

1− x
(

t
(1−t)2

)

= [tn]
1

(1− t)2


 1

1− x
(

t
(1−t)2

)




= [tn]
1

(1− t)2

∞∑

k=0

(
xt

(1− t)2

)k

= [tn]
1

(1− t)2

∞∑

k=0

xk · tk

(1− t)2k

= [tn]

∞∑

k=0

xk · tk(1− t)−(2k+2)

= [tn−k]

∞∑

j=0

(
2k + 2 + j − 1

j

)
(−1)j(−t)jxk

= [tn−k]

n∑

k=0

(
2k + n− k + 1

n− k

)
tn−kxk

=

n∑

k=0

(
n+ k + 1

n− k

)
xk

= (Bn(x))n∈N.

The coefficient matrix of the Morgan-Voyce polynomials Bn(x) is given by

A =




1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 4 1 0 0 0 0
4 10 6 1 0 0 0
5 20 21 8 1 0 0
6 35 56 36 10 1 0
7 56 126 120 55 12 1




.

The production matrix associated to A is given by

PA =




2 1 0 0 0
−1 2 1 0 0
2 −1 2 1 0
−5 2 −1 2 1
14 −5 2 −1 2



.

Remark: The production matrix PA corresponds to the structural pattern

of the production matrices for proper ordinary Riordan arrays defined in sec-
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tion (1.6.1).

We verify that the polynomial sequence Bn(x) forms an orthogonal polyno-

mial sequence satisfying the 3-term recurrence relation (6.15). We proceed by

calculating the inverse of the matrix A corresponding to the coefficient matrix

Bn(x) and the production matrix of A−1 to determine its recurrence coefficients.

The coefficient matrix A−1 is given by

A−1 =




1 0 0 0 0 0 0
−2 1 0 0 0 0 0
5 −4 1 0 0 0 0

−14 14 −6 1 0 0 0
42 −48 27 −8 1 0 0

−132 165 −110 44 −10 1 0
429 −572 429 −208 65 −12 1




.

The production matrix of A−1 is given by

PA−1 =




−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2



.

Remark: The tri-diagonal nature of the production matrix PA−1 of A−1 shows

that the matrix A is the coefficient matrix of a family of orthogonal polynomial

sequences defined by the Morgan-Voyce polynomials Bn(x).

Recall from section (1.7) that for an orthogonal polynomial sequence (pn(x))n∈N
satisfies the 3-term recurrence relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x).

From the production matrix PA−1 we get αn = −2 and βn = 1. Thus,

Bn(x) = (x+ 2)Bn−1(x)−Bn−2(x) with B0(x) = 1 and B1(x) = 2 + x

as defined in (6.15).
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6.1.5.2 The Morgan-Voyce Polynomials bn(x)

The Morgan-Voyce polynomials bn(x) is given explicitly by

bn(x) =

n∑

k=0

(
n+ k

n− k

)
xk (6.16)

and it satisfies the equation

x(x+ 4)y′′ + 2(x+ 1)y′ − n(n+ 1)y = 0. (6.17)

The Morgan-Voyce polynomials bn(x) can also be defined by the 3-term recur-

rence relation

bn(x) = (x+ 2)bn−1(x)− bn−2(x) (6.18)

with b0(x) = 1 and b1(x) = 1 + x. The proper ordinary Riordan array RMb =(
1

1−t ,
t

(1−t)2
)

represents the solution of (6.17), in the sense that

RMb · {1, x, x2, . . .}T = {b0(x), b1(x), b2(x), . . .}T .

The general formula for the polynomial sequence bn(x) is computed using
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the FTRA (1.5.1) and the method of coefficients as follows:

[tn]

(
1

1− t ,
t

(1− t)2

)
· 1

1− xt = [tn]
1

1−t

1− x
(

t
(1−t)2

)

= [tn]
1

1− t


 1

1− x
(

t
(1−t)2

)




= [tn]
1

1− t
∞∑

k=0

(
xt

(1− t)2

)k

= [tn]
1

1− t
∞∑

k=0

xk · tk

(1− t)2k

= [tn]

∞∑

k=0

xk · tk(1− t)−(2k+1)

= [tn−k]

∞∑

j=0

(
2k + 1 + j − 1

j

)
(−1)j(−t)jxk

= [tn−k]

n∑

k=0

(
2k + n− k
n− k

)
tn−kxk

=

n∑

k=0

(
n+ k

n− k

)
xk

= (bn(x))n∈N.

The coefficient matrix of the Morgan-Voyce polynomials bn(x) is given by

A =




1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 5 1 0 0 0
1 10 15 7 1 0 0
1 15 35 28 9 1 0
1 21 70 84 45 11 1




.

The production matrix associated to A is given by

PA =




1 1 0 0 0
0 2 1 0 0
0 −1 2 1 0
0 2 −1 2 1
0 −5 2 −1 2



.

Remark: The production matrix PA corresponds to the structural pattern

of the production matrices for proper ordinary Riordan arrays defined in sec-
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tion (1.6.1).

We verify that the polynomial sequence bn(x) forms an orthogonal polynomial

sequence satisfying the 3-term recurrence relation (6.18). We proceed by calcu-

lating the inverse of the matrix A corresponding to the coefficient matrix bn(x)

and the production matrix of A−1 to determine its recurrence coefficients.

The coefficient matrix A−1 is given by

A−1 =




1 0 0 0 0 0 0
−1 1 0 0 0 0 0
2 −3 1 0 0 0 0
−5 9 −5 1 0 0 0
14 −28 20 −7 1 0 0
−42 90 −75 35 −9 1 0
132 −297 275 −154 54 −11 1




.

The production matrix of A−1 is given by

PA−1 =




−1 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2



.

Remark: The tri-diagonal nature of the production matrix PA−1 of A−1 shows

that the matrix A is the coefficient matrix of a family of orthogonal polynomial

sequences defined by the Morgan-Voyce polynomials bn(x).

Recall from section (1.7) that for an orthogonal polynomial sequence (pn(x))n∈N
satisfies the 3-term recurrence relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x).

From the production matrix PA−1 we get αn = −2 and βn = 1. Thus,

bn(x) = (x+ 2)bn−1(x)− bn−2(x) with b0(x) = 1 and b1(x) = 1 + x

as defined in (6.18).
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6.2 Boubaker polynomials and the solutions of

some Differential Equations

The Boubaker polynomials form a monic orthogonal sequence of polynomials

which originated from an attempt to determine the discrete form of solution

to a non-linear heat transfer problem related to the spray pyrolysis disposal

performance [16]. This led to the development of the Boubaker polynomials

expansion scheme denoted BPES, which is a resolution protocol with several

applications in applied physics, engineering and mathematical problems. Some

collection of the applications of BPES have been listed and summarized in the

3 page paper [17].

The main advantage of the BPES is that it requires that the boundary conditions

are satisfied irrespective of the main features of the equation. The BPES is

based on the Boubaker polynomials. The recursive definition of the Boubaker

polynomials is given by

Bn(x) =





1 if n = 0

x if n = 1

x2+2 if n = 2

xBn−1(x)-Bn−2(x) otherwise, n ∈ Z≥2

The ordinary generating function of the Boubaker polynomials is given by

B(x, t) =
1 + 3t2

1 + t(t− x)
.

The characteristic differential equation of the Boubaker polymials is given by

Any
′′ +Bny

′ − Cny = 0

where

An = (x2 − 1)(3nx2 + n− 2)

Bn = 3x(nx2 + 3n− 2)

Cn = −n(3n2x2 + n2 − 6n+ 8).
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The explicit closed form formula of the Boubaker polynomials is given by

Bn(x) =

bn/2c∑

k=0

n− 4k

n− k

(
n− k
K

)
(−1)kxn−2k.

The first 5 Boubaker polynomials are B0(x) = 1

B1(x) = x− 0x0

B2(x) = x2 − 0x+ 2x0

B3(x) = x3 − 0x0 + x+ 0

B4(x) = x4 − 0x3 + 0x2 + 0x− 2

B5(x) = x5 + 0x4 − x3 + 0x2 − 3x+ 0x0

The relationship between the Boubaker polynomials and the Chebyshev poly-

nomials [92] is given by

Bn(2x) =
4x

n

d

dx
Tn(x)− 2Tn(x)

Bn(2x) = −2Tn(x) + 4xUn−1(x)

where Tn denotes the Chebyshev polynomials of the first kind and Un denotes

the Chebyshev polynomials of the second kind.

The Riordan array representation of the coefficients of the Boubaker polyno-

mials is given by

B =

(
1 + 3x2

1 + x2
,

x

1 + x2

)
.

The coefficient matrix of B is given by

B =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 1 0 1 0 0 0
−2 0 0 0 1 0 0
0 −3 0 −1 0 1 0
2 0 −3 0 −2 0 1




.
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The production matrix of B is given by

PB =




0 1 0 0 0 0
2 0 1 0 0 0
0 −1 0 1 0 0
−4 0 −1 0 1 0
0 −1 0 −1 0 1
4 0 −1 0 −1 0



.

The inverse of the matrix B is given by

B−1 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−2 0 1 0 0 0 0
0 −1 0 1 0 0 0
2 0 0 0 1 0 0
0 2 0 1 0 1 0
−4 0 3 0 2 0 1




.

The production matrix of B−1 is given by

PB−1 =




0 1 0 0 0 0
−2 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



.

The tri-diagonal nature of the production matrix PB−1 of B−1 shows that the

matrix B is the coefficient matrix of a family of orthogonal polynomial sequences

defined by the Boubaker polynomials Bn(x). Recall from section (1.7) that for

an orthogonal polynomial sequence (pn(x))n∈N satisfies the 3-term recurrence

relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x).

From the production matrix PB−1 we get αn = 0 and βn = 1. Thus, we have

Bn(x) = xBn−1(x)−Bn−2(x)

where the initial conditions B0 = 1, B1(x) = x,B2(x) = x2 + 2 are satisfied.

The 4 key properties derived from the Boubaker polynomials pertains to its

polynomial non-zero orders being divisible by 4. This forms the basis behind

its already existing and ongoing research to analytic solutions of the differen-

tial equations that it solves. These properties when considered for n = 4q,

q = 1.....N , N ∈ Z>0 are listed as:
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1.
∑
n>0

Bn(x) |x=0= −2N 6= 0.

2.
∑
n>0

Bn(αi) = 0, αi a non-zero positive root of Bn.

3.
∑
n>0

dBn(x)
dx = 0 |x=0 and Hn = B′4k(rn) =




4rn[2−r2n]
n∑
q=1

B2
4q(rn)

B4(n+1)(rn) + 4r3
n


 .

4.
∑
n>0

dB2
n(x)
dx2 = 8

3N(N2 − 1) |x=0.

Some of the differential equations having analytic solutions arising from the

implementation of the BPES technique are listed below.

• The Lane-Emden equations of the first and second kind respectively gov-

erning polytropic and isothermal gas spheres, are given in Boubaker & Gorder[18]

as follows

y′′ +
2

x
y′ + yn = 0 with initial conditions y(0) = 1, y′(0) = 0.

y′′ +
2

x
y′ = e−y with initial conditions y(0) = 0, y′(0) = 0.

• The Bloch NMR Flow equation given in Awojoyogbe et al.[4] as follows

x
d2My

dx2
+ α

dMy

dx
+ βxMn

y = 0 |α=1,β=2;n=2,3,4,5 .

satisfying the initial conditions

My(0) = 1;
dMy(0)

dx
= 0

where β is a unique constant associated to the NMR system under inves-

tigation.

• A differential equation from a nonlinear circuit investigated in Vazquez et

al.[113] is given by

dq(t)

dt
+
α

R
q3(t) = I, q(0) = 0.

Other examples of differential equations solved using the BPES technique are

found in [59, 2, 112].
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Chapter 7

Elliptic Functions and the

Travelling Wave Solutions

to the KdV equation

7.1 Introduction

The presence of solitary water waves moving for a considerable distance down

a narrow channel was first observed and reported by John Scott Russell, a

Scottish naval engineer back in 1834. This was followed up by Korteweg and de

Vries(1895) mathematical formulation of a third order nonlinear PDE referred

to as the KdV equation [60]. The role of this KdV equation which admits

traveling wave solutions was to determine an approximate theory to model the

evolution of the propagation of nonlinear shallow water waves. There are many

different variants of the KdV equation. The standard form of the KdV equation

is given by

ut − 6uux + uxxx = 0. (7.1)

Sometimes it is +6 used in the above equation. In the KdV equation, the vari-

able t denotes the time, the variable x denotes the space coordinate along the

canal and the function to be determined denoted u = u(x, t) represents the ele-

vation of the fluid above the bottom of the canal [3].

In 1965 Kruskal and Zabusky showed that the KdV equation admits analytic
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solutions known as “Solitons” [123]. Solitons can be described as propagating

pulses or solitary waves which are stable by maintaining their shape and do not

disperse with time. The KdV equation can also have more than one soliton

solution which can move towards each other, interact and then emerge at the

same speed with no change in shape but only a time lag [93].

There are several methods available for solving different forms of non-linear

wave equations in mathematical physics [52]. The method applied in determin-

ing the explicit exact solutions to the KdV equation provides a good entry point

on how to approach the solutions of other such non-linear wave equations. In

particular, using appropriate elliptic functions to determine the explicit solu-

tions for the KdV equation is important as it leads to periodic wave solutions

and not only solitary wave solutions.

7.2 Elliptic functions as solutions to the KdV

equation

In this section we shall consider the two types of elliptic functions that solve

the KdV equation. These are the cnoidal travel wave solution determined by

elliptic cn2 and the elliptic Weierstrass ℘. Each of these solutions characterized

by their doubly periodic nature are elaborated below.

7.2.1 Elliptic cn2 as a solution to the KdV equation

In this subsection we verify the solution to the KdV equation (7.1) with the

aid of the symbolic computational algebra system Mathematica, by using the

cnoidal traveling wave solution of the form u(ξ) = a+ bcn2(ξ,m) proposed but

unsolved in [36].

Consider the nonlinear PDE of the form

H(u, ut, ux, uxx, ..) = 0 (7.2)

for which equation (7.1) satisfies. H is expressible as a polynomial in u where

u = u(x, t) is the unknown function such that u is the physical field and x, t

represents its independent variables. The simplest mathematical wave function
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is of the form u(x, t) = f(x − ct) which can easily be shown to be a solution

to the PDE ut + cux = 0. In order to obtain an ODE we transform using the

simplest traveling wave equation

u(x, t) = u(ξ), ξ = x− ct (7.3)

u(x, t) = u(ξ), ξ = k(x− ct) where c is the wave speed moving in either the left

or right direction, k is the wave number.

Using (7.3) the PDE (7.2) can be transformed to a nonlinear ordinary differ-

ential equation given by

F (u, u′, u′′, u′′′, ...) ≡ F
(
u,
du

dξ
,
d2u

d2ξ
,
d3u

d3ξ
, ...

)

where the prime is such that

′ :=
d

dξ

and F is expressible as a polynomial in terms of u(ξ). As a result we have that

substituting u(ξ) into (7.1) we get the ODE

−cdu
dξ
− 6u

du

dξ
+
d3u

dξ3
= 0. (7.4)

Integrating equation (7.4), we get the second order differential equation

−cu− 3u2 +
d2u

dξ2
= k1 (7.5)

where k1 is the constant of integration. Given that k1 vanishes if x → ∞ and

u→ 0, we have

−cu− 3u2 +
d2u

dξ2
= 0. (7.6)

The steps to determine the exact solution of (7.1) are outlined below.

• Using u(ξ) = a+ bcn2(ξ,m) we have

d2u

dξ2
= b

(
−2cn(ξ|m)2dn(ξ|m)2 + 2mcn(ξ|m)2sn(ξ|m)2 + 2dn(ξ|m)2sn(ξ|m)2

)
.

(7.7)

• Substituting u(ξ) = a+ bcn2(ξ,m) and (7.7) into (7.6) we get
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− c
(
a+ bcn(ξ|m)2

)
− 3

(
a+ bcn(ξ|m)2

)2
+

b
(
−2cn(ξ|m)2dn(ξ|m)2 + 2mcn(ξ|m)2sn(ξ|m)2 + 2dn(ξ|m)2sn(ξ|m)2

)
.

(7.8)

• Simplifying and expanding equation (7.8) gives

− 3a2 − 6abcn(ξ|m)2 − ac− 3b2cn(ξ|m)4 − bccn(ξ|m)2−
4bcn(ξ|m)2dn(ξ|m)2 + 2bcn(ξ|m)2 + 2bdn(ξ|m)2sn(ξ|m)2. (7.9)

• Recall that

cn2ξ = 1− sn2ξ and dn2ξ = 1−m2sn2ξ (7.10)

where m is the modulus with 0 ≤ m ≤ 1.

• Substituting (7.10) for sn2 and dn2 in terms of cn2 in (7.9) results to

− 3a2 − 6abcn(ξ|m)2 − ac− 3b2cn(ξ|m)4 − bccn(ξ|m)2−
4b
(
1−m2

(
1− cn(ξ|m)2

))
cn(ξ|m)2+

2b
(
1− cn(ξ|m)2

) (
1−m2

(
1− cn(ξ|m)2

))
+ 2bcn(ξ|m)2. (7.11)

• Expanding (7.11) gives

− 3a2 − 6abcn(ξ|m)2 − ac− 3b2cn(ξ|m)4 − bccn(ξ|m)2 − 6bm2cn(ξ|m)4

+ 8bm2cn(ξ|m)2 − 4bcn(ξ|m)2 − 2bm2 + 2b. (7.12)

• Extracting the coefficients of (7.12) from cni where i = 0, 1, 2, 3, 4 we get

{−3a2−ac−2bm2 +2b, 0,−6ab− bc+8bm2−4b, 0,−3b2−6bm2}. (7.13)

• Setting the non-zero elements in (7.13) to zero and solving the system

of equations for a, b, c in terms of m, the following set of solutions are

obtained :
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1. Solution 1- If − 1√
2
< m < 1√

2
then a = − 1

6

√
16m4 − 16m2 + 16 −

1
6

√
64m4 − 64m2 + 16, b = −2m2, c =

√
16m4 − 16m2 + 16

2. Solution 2- If m > 1√
2
∨m < − 1√

2
then a = 1

6

√
64m4 − 64m2 + 16−

1
6

√
16m4 − 16m2 + 16, b = −2m2, c =

√
16m4 − 16m2 + 16

3. Solution 3- If m > 1√
2
∨m < − 1√

2
then a = 1

6

√
16m4 − 16m2 + 16+

1
6

√
64m4 − 64m2 + 16, b = −2m2, c = −

√
16m4 − 16m2 + 16.

4. Substituting the values of a, b, c obtained in the step above into

u(ξ) = a + bcn2(ξ,m) where ξ = x − ct, we get the following so-

lutions outlined below for (7.1) in the form u(x, t) as required.

(a) For solution 1 we get u(x, t) = −2m2cn
(√

16m4 − 16m2 + 16t

−x|m)
2 − 1

6

√
16m4 − 16m2 + 16− 1

6

√
64m4 − 64m2 + 16.

(b) For solution 2 we get u(x, t) = −2m2cn
(√

16m4 − 16m2 + 16t

−x|m)
2 − 1

6

√
16m4 − 16m2 + 16 + 1

6

√
64m4 − 64m2 + 16.

(c) For solution 3 we get u(x, t) = −2m2cn
(√

16m4 − 16m2 + 16t

+x|m)
2

+ 1
6

√
16m4 − 16m2 + 16 + 1

6

√
64m4 − 64m2 + 16.

• In particular, we determine the solutions of (7.1) corresponding to m = 0

and the soliton solutions corresponding to m = 1. Observing the condi-

tions given in Solution 2 and Solution 3 which are m > 1√
2
∨m < − 1√

2

and m > 1√
2
∨m < − 1√

2
respectively, these solutions corresponding to (b)

and (c) above are

u(x, t) = −2sech2(4t− x) and u(x, t) = 4
3 − 2sech2(4t+ x) respectively.

The case for m = 0 in (a) resulted to u(x, t) = − 4
3 and so no non-trivial

solution was identified for this case.

The solutions of H in the form of u have physical significance. The soliton

solution u(x, t) = −2sech2(4t−x) in physical terms describes a trough of depth

2 traveling to the right with speed 4 and not changing its shape. On the other

hand the soliton solution u(x, t) = 4
3−2sech2(4t+x) in physical terms describes

a trough of depth 2 traveling to the left with speed 4 and not changing its shape.

The plots corresponding to the traveling wave solutions of the KdV equation

are depicted below.
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Figure 7.1: Plot depicting the KdV solution u(x, t) = −2sech2(4t− x) at t = 0.

Figure 7.2: Plot depicting the KdV solution u(x, t) = 4
3 − 2sech2(4t + x) at

t = 0.

7.2.2 Elliptic Weierstrass ℘ as a solution to the KdV equa-

tion

Another form of the KdV equation [15] equivalent to (7.1) is

ut =
3

2
uux +

1

4
uxxx.

Similar to (7.1) this equation describes the time evolution of the wave as it

travels in one direction. We look for a travelling wave solution to the KdV

equation, of the form

u(x, t) = w(x+ ct).
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We get

cw′ =
3

2
ww′ +

1

4
w′′′.

We integrate this equation to get

cw =
3

4
w2 +

1

4
w′′ + γ1.

By multiplying the equation across by the integrating factor w′ we get

cww′ =
3

4
w2w′ +

1

4
w′′w′ + γ1w

′.

A second integration gives

c

2
w2 =

1

4
w3 +

1

8
(w′)2 + γ1w + γ2.

Re-arranging the equation results to

(w′)2 = −2w3 + 4cw2 − 8γ1w − 8γ2.

Now for any constant ω, a solution to this equation is given by

w(z) = −2℘(z + ω, {g2, g3}) +
2

3
c,

where

g1 =
4

3
(c2 − 3γ1), and g2 =

8c3

27
− 4cγ1

3
− 2γ2.

Thus,

u(x, t) = −2℘(x+ ct+ ω, g2, g3) +
2c

3

is a solution to the KdV equation for any choice of ω, g2, g3 and c. A non-elliptic

function solution of the KdV is of the form

u(x, t) =
8k2

(ekx+k3t + e−kx−k3t)2
.

This particular solution describes for any k, a solitary wave that travels at speed

k2 and has a height of 2k2.
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Figure 7.3: Plot depicting a Weierstrass ℘ solution for the KdV PDE

7.3 Riordan arrays determined from Elliptic cn2

7.3.1
[
cn(ξ,m)2,

∫
cn(ξ,m)2dξ

]

The exponential Riordan array
[
cn(ξ,m)2,

∫
cn(ξ,m)2dξ

]
belongs to the deriva-

tive subgroup (1.4.1).

∫
cn(ξ,m)2dξ =

(
cn(ξ|m)2 + 1

m − 1
)
E(am(ξ|m)|m)

dn(ξ|m)
√

1−msn(ξ|m)2
− ξ

m
+ ξ

with its Taylor series expansion given by

ξ−ξ
3

3
+

1

15
(m+1)ξ5+

1

315

(
−2m2 − 13m− 2

)
ξ7+

(
m3 + 30m2 + 30m+ 1

)
ξ9

2835
+O

(
ξ11
)
.

The coefficient array of
[
cn(ξ,m)2,

∫
cn(ξ,m)2dξ

]
is given by

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−2 0 1 0 0 0 0
0 −8 0 1 0 0 0

8(m+ 1) 0 −20 0 1 0 0
0 48m+ 88 0 −40 0 1 0

−16
(
2m2 + 13m+ 2

)
0 56(3m+ 8) 0 −70 0 1




.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0 0
−2 0 1 0 0 0
0 −6 0 1 0 0

8(m− 1) 0 −12 0 1 0
0 40(m− 1) 0 −20 0 1

−16(m− 1)(2m− 11) 0 120(m− 1) 0 −30 0



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The production matrix of B in terms of m = −1, 0, 1 is given by

C =








0 1 0 0 0 0
−2 0 1 0 0 0
0 −6 0 1 0 0

−16 0 −12 0 1 0
0 −80 0 −20 0 1

−416 0 −240 0 −30 0



,




0 1 0 0 0 0
−2 0 1 0 0 0
0 −6 0 1 0 0
−8 0 −12 0 1 0
0 −40 0 −20 0 1

−176 0 −120 0 −30 0



,




0 1 0 0 0 0
−2 0 1 0 0 0
0 −6 0 1 0 0
0 0 −12 0 1 0
0 0 0 −20 0 1
0 0 0 0 −30 0








.

Remark:

• The sequence −2,−6,−12,−20,−30, ... positioned on the diagonal of the

matrix C for m = 1 corresponds to A002378 (Pronic Number) having

the g.f

g(ξ) =
2ξ

(1− ξ)3
& g(n) = n(n+ 1).

Furthermore, the production matrix C for m = 1 is tridiagonal which im-

plies that
[
cn(ξ,m)2,

∫
cn(ξ,m)2dξ

]−1
is the coefficient matrix of a family

of formal orthogonal polynomials. For m = 1 we have

[
cn(ξ,m)2,

∫
cn(ξ,m)2dξ

]
=

[
sech2(ξ),− cosh(ξ)sech(ξ)E

(
1

2

(
π − 4 tan−1 (ez)

)∣∣∣∣ 1
)]

.

≡
[
sech2(ξ), tanh(ξ)

]
.

Furthermore,

[
sech2(ξ), tanh(ξ)

]−1
=

[
1

1− ξ2
, tanh−1(ξ)

]

represents the coefficient matrix of the family of orthogonal polynomials.

The three term recurrence relation for these polynomials is given by

Pn+1(ξ) = ξPn(ξ) + n(n+ 1)Pn−1(ξ)

with P0(ξ) = 1, P1(ξ) = ξ s.t − 1 < ξ < 1.

In particular, let Qn(ξ) =
Pn(iξ)

in
, (i2 = −1)

we get

Qn+1(ξ) = ξQn(ξ)− n(n+ 1)Qn−1(ξ), ∀n ≥ 1.

• The first and the second generating function of
[
cn(ξ,m)2,

∫
cn(ξ,m)2dξ

]

determine the solution of the KdV PDE.
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7.3.2 [cn(z,m)2, z]

The exponential Riordan array
[
cn(z,m)2, z

]
having coefficient matrix given by

A =




1 0 0 0 0
0 1 0 0 0
−2 0 1 0 0
0 −6 0 1 0

8(m+ 1) 0 −12 0 1



.

REMARK The numbers 2, 6, 12, 20, 30, ... correspond to the the OEIS number

A002378

The production matrix of A in terms of m is given by

B =




0 1 0 0
−2 0 1 0
0 −4 0 1

8m− 4 0 −6 0


 .

The production matrix of B for m = −1, 0, 1 is given by:

C =








0 1 0 0
−2 0 1 0
0 −4 0 1

−12 0 −6 0


 ,




0 1 0 0
−2 0 1 0
0 −4 0 1
−4 0 −6 0


 ,




0 1 0 0
−2 0 1 0
0 −4 0 1
4 0 −6 0







.

The generating function of the c sequence of
[
cn(z,m)2, z

]
in terms of m is

2dn(z|m)sn(z|m)

cn(z|m)
.

The generating function of the c sequence of
[
cn(z,m)2, z

]
in terms of m = 1

and m = 0 are 2 tanh(z) and 2 tan(z) respectively.

7.3.3 [cn(z,m)2, sn(z,m)]

The exponential Riordan array
[
cn(z,m)2, sn(z,m)

]
has its coefficient matrix

given by

A =




1 0 0 0 0 0
0 1 0 0 0 0
−2 0 1 0 0 0
0 −m− 7 0 1 0 0

8(m+ 1) 0 −4(m+ 4) 0 1 0
0 m2 + 74m+ 61 0 −10(m+ 3) 0 1



.
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Remark: The second column of the matrix A corresponds to the expansion

of cn(z,m)2sn(z,m). The non-zero elements from the sequence generated by

cn(z,m)2sn(z,m) forms a sequence of monic polynomials associated to the ma-

trix in (5.2.7).

The production matrix corresponding to A is given by

B =




0 1 0 0
−2 0 1 0
0 −m− 5 0 1

6(m− 1) 0 −3(m+ 3) 0


 .

The production matrices of B for m = −1, 0, 1 are as follows:








0 1 0 0
−2 0 1 0
0 −4 0 1

−12 0 −6 0


 ,




0 1 0 0
−2 0 1 0
0 −5 0 1
−6 0 −9 0


 ,




0 1 0 0
−2 0 1 0
0 −6 0 1
0 0 −12 0







.

REMARK: The production matrix of
[
cn(z,m)2, sn(z,m)

]
is tri-diagonal for

the case of m = 1. Therefore, the inverse of
[
cn(z,m)2, sn(z,m)

]
forms a family

of monic orthogonal polynomials for m = 1. That is

[
sech2(z), tanh(z)

]−1
=

[
1

1− z2
, tanh−1(z)

]

represents the coefficient matrix of the family of orthogonal polynomials. The

three term recurrence relation for these polynomials is given by

Pn+1(z) = zPn(z) + n(n+ 1)Pn−1(z)

with P0(z) = 1, P1(z) = z s.t − 1 < z < 1.

In particular, let Qn(z) =
Pn(iz)

in
, (i2 = −1)

we get

Qn+1(z) = zQn(z)− n(n+ 1)Qn−1(z), ∀n ≥ 1.
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7.4 The KdV Hierarchy

The equation representing the KdV hierarchy [56] is given by

Ut2n+1 + ∂xLn+1[U ] = 0, n ≥ 0

where L satisfies ∂xLn+1{U} = (∂xxx + 4U∂x + 2Ux)Ln{U} and

L0 =
1

2
L1{U} = U.

The first 3 terms of the infinite sequence of PDE’s derived from the equation of

the KdV hierarchy are listed as follows:

n = 0 : Ut1 + Ux = 0 L = U

n = 1 : Ut3 + 6UUx + Uxxx = 0 L2 = Uxx + 3U2

n = 2 : Ut5 + U5x + 10UUxxx + 20UxUxxx + 30U2Ux = 0.

The travel wave solution is of the form f(x ± ct) , where c is the speed of the

waves. For the case n = 0, it can easily be verified that

f(x± t)

is a solution to Ut1 + Ux = 0.

The case for n = 1 is equivalent to the standard form of the KdV equation (7.1).

It can be established in a similar procedure carried out in section (7.2.1) that

the KdV hierarchy for n ≥ 2 have solutions of the form U(ξ) = a+ bcn2(ξ,m).
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Chapter 8

Riordan arrays inspired by

the analytical solutions of

nonlinear PDE of wave

propagation in nonlinear

low pass electrical

transmission lines

8.1 Introduction

In this chapter we establish the relationship between Riordan arrays and the

solution to the nonlinear fourth order PDE which governs wave propagation in

nonlinear low-pass electrical lines investigated in [124]. This nonlinear PDE is

given by

∂2V (x, t)

∂t2
− α∂

2V (x, t)

∂t2
+ β

∂2V 3(x, t)

∂t2
− δ2 ∂

2V (x, t)

∂x2
− δ4

12

∂4V (x, t)

∂x4
(8.1)

where α, β, δ are constants, V (x, t) is the voltage of the transmission lines such

that x is the propagation distance and t is the slow time.
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The proposed travel wave solutions of (8.1) in [124] is given by

V (ξ) = g0 +

N∑

i=1

[
z(ξ)

1 + z2(ξ)

]i−1{
gi

(
z(ξ)

1 + z2(ξ)

)
+ fi

(
1− z2(ξ)

1 + z2(ξ)

)}
(8.2)

where z(ξ) satisfies

(z′(ξ))2 = a+ bz2(ξ) + cz4(ξ)

with the goal of determining the constants a, b, c, g0, gi, fi(i = 1, .., N) such that

gN 6= 0 or fN 6= 0. Based on Kirchoff’s law for the physical derivation of (8.1),

N represents the total number of voltages measured.

In addition possible values of a, b, c in terms of the modulus m have been pre-

sented for 6 cases of Jacobi elliptic functions z (ξ) which are

sn(ξ), cn(ξ),ns(ξ),nc(ξ),ns(ξ)± cs(ξ),nc(ξ)± sc(ξ).

In particular, for the case z(ξ) = sn(ξ,m) we determine that V (ξ) is expressible

in terms of a Riordan array.

Setting j = i− 1 in (8.2) and substituting z(ξ) = sn(ξ,m) gives

V (ξ) = g0+

N∑

j=0

[
sn(ξ,m)

1 + sn2(ξ,m)

]j {
gj+1

(
sn(ξ,m)

1 + sn2(ξ,m)

)
+ fj+1

(
1− sn2(ξ,m)

1 + sn2(ξ,m)

)}
.

(8.3)

Let h(ξ) = sn(ξ,m)
1+sn2(ξ,m) .

On the other hand, let d(ξ) = gj+1

(
sn(ξ,m)

1+sn2(ξ,m)

)
+ fj+1

(
1−sn2(ξ,m)
1+sn2(ξ,m)

)
.

Rewriting equation (8.3) in terms of d(ξ) and h(ξ) results in

V (ξ) = g0 +

N∑

j=0

d(ξ)h(ξ)j . (8.4)

Expanding the functions h(ξ) and d(ξ) respectively gives

sn(ξ|m)

sn(ξ|m)2 + 1
= ξ +

(
−m

6
− 7

6

)
ξ3 +

1

120

(
m2 + 74m+ 181

)
ξ5+

(
−m3 − 681m2 − 6939m− 9787

)
ξ7

5040
+O

(
ξ9
)

(8.5)
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and

gj+1

(
sn(ξ,m)

1 + sn2(ξ,m)

)
+ fj+1

(
1− sn2(ξ,m)

1 + sn2(ξ,m)

)
=

fj+1 + ξgj+1 + ξ2 (−2fj+1 − gj+1) + ξ3

(
5gj+1

6
− mgj+1

6

)
+

1

3
ξ4 (2mfj+1 + 8fj+1 +mgj+1 − 2gj+1)+

1

120
ξ5
(
m2gj+1 − 46mgj+1 + 61gj+1

)
+

1

45
ξ6
(
−4m2fj+1 − 86mfj+1 − 154fj+1 − 2m2gj+1 + 17mgj+1 − 17gj+1

)
+O

(
ξ7
)

(8.6)

Let d̂(ξ) = d(ξ)
fj+1

∈ F0 with h(ξ) ∈ F1 in (8.5). From the definition of the generic

element of a Riordan array it follows that

dN,j = [ξN ]
N !

j!
d̂(ξ)h(ξ)j . (8.7)

Rewriting (8.4) in terms of (8.7) gives

V̂ (ξ) = g0 +

N∑

j=0

[ξN ]
N !

j!
d̂(ξ)h(ξ)jξj (8.8)

= g0 +

N∑

j=0

dN,jξ
j (8.9)

= g0 +

N∑

j=0

dN,j [t
j ]j!etξ. (8.10)

That is

V̂ (ξ) = g0 +




1 0 0 0 0
gj+1

fj+1
1 0 0 0

− 2gj+1

fj+1
− 4

2gj+1

fj+1
1 0 0

− (m−5)gj+1

fj+1
−m− 6gj+1

fj+1
− 19

3gj+1

fj+1
1 0

8(2(m+4)fj+1+(m−2)gj+1)
fj+1

− 8(m+1)gj+1

fj+1
−4(m+ 13)− 12gj+1

fj+1

4gj+1

fj+1
1

...
...

...
...

...
. . .




·




1
ξ
ξ2

ξ3

ξ4

...



.

Thus,

V (ξ) = g0 + fj+1

N∑

j=0

dN,jξ
j

can represent the family of solutions of the PDE (8.1) for the determined val-
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ues of g0, fj+1 and gj+1.

Remark:The coefficients fj+1 and gj+1. are determined by suitable methods

and their values depend on the size given by the row number N for each case.

The case for z(ξ) = ns(ξ) can be used to express V (ξ) in a similar procedure as

above in terms of a Riordan array.

8.2 Generating functions from
(

z(ξ)
1+z2(ξ)

)
&
(

1−z2(ξ)
1+z2(ξ)

)

We use the two quantities

(
z(ξ)

1 + z2(ξ)

)
&

(
1− z2(ξ)

1 + z2(ξ)

)

that define the solution V (ξ) in (8.2) to show that for appropriate choice of

z(ξ) there exist some interesting Riordan arrays. Some of these Riordan arrays

appear to be orthogonal for m = 1. The following sequences are generated

below.

sn(ξ|m)

sn(ξ|m)2 + 1
= ξ +

(
−m

6
− 7

6

)
ξ3 +

1

120

(
m2 + 74m+ 181

)
ξ5+

(
−m3 − 681m2 − 6939m− 9787

)
ξ7

5040
+O

(
ξ9
)

(8.11)

cn(ξ|m)

cn(ξ|m)2 + 1
=

1

2
− ξ

4

16
+

(
m

24
− 1

48

)
ξ6 +

(
−16m2 + 16m− 1

)
ξ8

1280
+O

(
ξ9
)

(8.12)

1− sn(ξ|m)2

sn(ξ|m)2 + 1
= 1− 2ξ2 +

2

3
(m+ 4)ξ4 − 2

45

(
2m2 + 43m+ 77

)
ξ6+

2

315

(
m3 + 93m2 + 597m+ 694

)
ξ8 +O

(
ξ9
)

(8.13)

1− cn(ξ|m)2

cn(ξ|m)2 + 1
=
ξ2

2
+

(
1

12
− m

6

)
ξ4 +

1

360

(
8m2 − 8m− 7

)
ξ6+

(
−8m3 + 12m2 + 138m− 71

)
ξ8

5040
+O

(
ξ9
)

(8.14)

184



ns(ξ|m)

ns(ξ|m)2 + 1
= ξ +

(
−m

6
− 7

6

)
ξ3 +

1

120

(
m2 + 74m+ 181

)
ξ5+

(
−m3 − 681m2 − 6939m− 9787

)
ξ7

5040
+O

(
ξ9
)

(8.15)

nc(ξ|m)

nc(ξ|m)2 + 1
=

1

2
− ξ4

16
+

(
m

24
− 1

48

)
ξ6 +

(
−16m2 + 16m− 1

)
ξ8

1280
+O

(
ξ9
)

(8.16)

1− ns(ξ|m)2

ns(ξ|m)2 + 1
= −1 + 2ξ2 − 2

3
(m+ 4)ξ4 +

2

45

(
2m2 + 43m+ 77

)
ξ6−

2

315

(
m3 + 93m2 + 597m+ 694

)
ξ8 +O

(
ξ9
)

(8.17)

1− nc(ξ|m)2

nc(ξ|m)2 + 1
= −ξ

2

2
+

(
m

6
− 1

12

)
ξ4 +

1

360

(
−8m2 + 8m+ 7

)
ξ6+

(
8m3 − 12m2 − 138m+ 71

)
ξ8

5040
+O

(
ξ9
)

(8.18)

The Riordan arrays below are derived from some of the sequences above.

8.3
[
1, sn(ξ|m)

sn(ξ|m)2+1

]

The exponential Riordan array
[
1, sn(ξ|m)

sn(ξ|m)2+1

]
having coefficient matrix given

by

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −m− 7 0 1 0 0
0 0 −4(m+ 7) 0 1 0
0 m2 + 74m+ 181 0 −10(m+ 7) 0 1



.

Remark: The non-zero entries of the second column of A forms a triangle of

numbers which has been treated in section (5.2.8).

The associated production matrix of A in terms of m is given by

B =




0 1 0 0 0
0 0 1 0 0
0 −m− 7 0 1 0
0 0 −3(m+ 7) 0 1
0 −3

(
m2 − 6m+ 5

)
0 −6(m+ 7) 0



.
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For m = −1, 0, 1 respectively,
[
1, sn(ξ|m)

sn(ξ|m)2+1

]
evaluates to

{[
1,

sn(ξ| − 1)

sn(ξ| − 1)2 + 1

]
,

[
1,

sin(ξ)

sin2(ξ) + 1

]
,

[
1,

tanh(ξ)

tanh2(ξ) + 1

]}
.

The production matrix of B for m = −1, 0, 1 are respectively given by

C =








0 1 0 0 0
0 0 1 0 0
0 −6 0 1 0
0 0 −18 0 1
0 −36 0 −36 0



,




0 1 0 0 0
0 0 1 0 0
0 −7 0 1 0
0 0 −21 0 1
0 −15 0 −42 0



,




0 1 0 0 0
0 0 1 0 0
0 −8 0 1 0
0 0 −24 0 1
0 0 0 −48 0







.

8.4
[
2 cn(ξ|m)

cn(ξ|m)2+1 , ξ
]

The exponential Riordan array
[
2 cn(ξ|m)

cn(ξ|m)2+1 , ξ
]

having as coefficient matrix A

equals to




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
−3 0 0 0 1 0 0 0 0
0 −15 0 0 0 1 0 0 0

30(2m− 1) 0 −45 0 0 0 1 0 0
0 210(2m− 1) 0 −105 0 0 0 1 0

−63
(
16m2 − 16m+ 1

)
0 840(2m− 1) 0 −210 0 0 0 1




.

The production matrix of A is

B =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−3 0 0 0 1 0 0 0
0 −12 0 0 0 1 0 0

30(2m− 1) 0 −30 0 0 0 1 0
0 180(2m− 1) 0 −60 0 0 0 1

−126
(
8m2 − 8m+ 3

)
0 630(2m− 1) 0 −105 0 0 0




.

The production matrices of B for m = −1, 0, 1 respectively are

C =








0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
−3 0 0 0 1 0 0
0 −12 0 0 0 1 0

−90 0 −30 0 0 0 1
0 −540 0 −60 0 0 0




,




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
−3 0 0 0 1 0 0
0 −12 0 0 0 1 0

−30 0 −30 0 0 0 1
0 −180 0 −60 0 0 0







0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
−3 0 0 0 1 0 0
0 −12 0 0 0 1 0
30 0 −30 0 0 0 1
0 180 0 −60 0 0 0








.
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8.5
[

1−sn(ξ|m)2

sn(ξ|m)2+1 , ξ
]

The exponential Riordan array
[

1−sn(ξ|m)2

sn(ξ|m)2+1 , ξ
]

having coefficient matrix

A =




1 0 0 0 0 0
0 1 0 0 0 0
−4 0 1 0 0 0
0 −12 0 1 0 0

16(m+ 4) 0 −24 0 1 0
0 80(m+ 4) 0 −40 0 1



.

The production matrix of A is given by

B =




0 1 0 0 0
−4 0 1 0 0
0 −8 0 1 0

16(m+ 1) 0 −12 0 1
0 64(m+ 1) 0 −16 0




For m = −1, 0, 1 respectively,
[

1−sn(ξ|m)2

sn(ξ|m)2+1 , ξ
]

evaluates to

{[
1− sn(ξ| − 1)2

sn(ξ| − 1)2 + 1
, ξ

]
,

[
1− sin2(ξ)

sin2(ξ) + 1
, ξ

]
,

[
1− tanh2(ξ)

tanh2(ξ) + 1
, ξ

]}
.

The production matrices of B for m = −1, 0, 1 are given by

C =








0 1 0 0 0
−4 0 1 0 0
0 −8 0 1 0
0 0 −12 0 1
0 0 0 −16 0



,




0 1 0 0 0
−4 0 1 0 0
0 −8 0 1 0
16 0 −12 0 1
0 64 0 −16 0



,




0 1 0 0 0
−4 0 1 0 0
0 −8 0 1 0
32 0 −12 0 1
0 128 0 −16 0







.

8.6
[
1, ns(ξ|m)

ns(ξ|m)2+1

]

Consider the exponential Riordan array
[
1, ns(ξ|m)

ns(ξ|m)2+1

]
which has the coefficient

matrix

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −m− 7 0 1 0 0
0 0 −4(m+ 7) 0 1 0
0 m2 + 74m+ 181 0 −10(m+ 7) 0 1



.
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The production matrix of A is

B =




0 1 0 0 0
0 0 1 0 0
0 −m− 7 0 1 0
0 0 −3(m+ 7) 0 1
0 −3

(
m2 − 6m+ 5

)
0 −6(m+ 7) 0



.

For m = −1, 0, 1 respectively,
[
1, ns(ξ|m)

ns(ξ|m)2+1

]
evaluates to

{[
1,

ns(ξ| − 1)

ns(ξ| − 1)2 + 1

]
,

[
1,

csc(ξ)

csc2(ξ) + 1

]
,

[
1,

coth(ξ)

coth2(ξ) + 1

]}
.

The production matrix of B for the case m = −1, 0, 1 respectively are given by

C =








0 1 0 0 0
0 0 1 0 0
0 −6 0 1 0
0 0 −18 0 1
0 −36 0 −36 0



,




0 1 0 0 0
0 0 1 0 0
0 −7 0 1 0
0 0 −21 0 1
0 −15 0 −42 0



,




0 1 0 0 0
0 0 1 0 0
0 −8 0 1 0
0 0 −24 0 1
0 0 0 −48 0







.

8.7 Riordan arrays from cn(ξ|m)
1−sn(ξ|m) and cn(ξ|m)

1+sn(ξ|m)

Consider the series

cn(ξ|m)

1− sn(ξ|m)
= 1+ξ+

ξ2

2
+

(
1

3
− m

6

)
ξ3+

(
5

24
− m

6

)
ξ4+

1

120

(
m2 − 16m+ 16

)
ξ5+

1

720

(
16m2 − 76m+ 61

)
ξ6 +

(
−m3 + 138m2 − 408m+ 272

)
ξ7

5040
+

(
−64m3 + 1104m2 − 2424m+ 1385

)
ξ8

40320
+O

(
ξ9
)

(8.19)

nc(ξ|m)+sc(ξ|m) = 1+ξ+
ξ2

2
+

(
1

3
− m

6

)
ξ3+

(
5

24
− m

6

)
ξ4+

1

120

(
m2 − 16m+ 16

)
ξ5+

1

720

(
16m2 − 76m+ 61

)
ξ6 +

(
−m3 + 138m2 − 408m+ 272

)
ξ7

5040
+

(
−64m3 + 1104m2 − 2424m+ 1385

)
ξ8

40320
+O

(
ξ9
)

(8.20)
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cn(ξ|m)

sn(ξ|m) + 1
= 1−ξ+ξ2

2
+

1

6
(m−2)ξ3+

(
5

24
− m

6

)
ξ4+

1

120

(
−m2 + 16m− 16

)
ξ5+

1

720

(
16m2 − 76m+ 61

)
ξ6 +

(
m3 − 138m2 + 408m− 272

)
ξ7

5040
+

(
−64m3 + 1104m2 − 2424m+ 1385

)
ξ8

40320
+O

(
ξ9
)

(8.21)

nc(ξ|m)−sc(ξ|m) = 1−ξ+ξ2

2
+

1

6
(m−2)ξ3+

(
5

24
− m

6

)
ξ4+

1

120

(
−m2 + 16m− 16

)
ξ5+

1

720

(
16m2 − 76m+ 61

)
ξ6 +O

(
ξ7
)

(8.22)

REMARK: Equation (8.19) is equivalent to equation (8.20) and similarly equa-

tion (8.21) is equivalent to equation (8.22). That is

cn(ξ|m)

1− sn(ξ|m)
≡ nc(ξ|m) + sc(ξ|m) &

cn(ξ|m)

1 + sn(ξ|m)
≡ nc(ξ|m)− sc(ξ|m). (8.23)

8.7.1
[

cn(ξ|m)
1+sn(ξ|m)

, ξ
]

Consider the Riordan array of the Appell subgroup
[

cn(ξ|m)
1+sn(ξ|m) , ξ

]
having as

coefficient matrix

A =




1 0 0 0 0 0
−1 1 0 0 0 0
1 −2 1 0 0 0

m− 2 3 −3 1 0 0
5− 4m 4(m− 2) 6 −4 1 0

−m2 + 16m− 16 25− 20m 10(m− 2) 10 −5 1



.

The production matrix of A is given by

B =




−1 1 0 0 0
0 −1 1 0 0

m− 1 0 −1 1 0
0 3m− 3 0 −1 1

−m2 + 6m− 5 0 6m− 6 0 −1



.

The production matrix of B for the case m = −1, 0, 1 are given by

C =








−1 1 0 0 0
0 −1 1 0 0
−2 0 −1 1 0
0 −6 0 −1 1

−12 0 −12 0 −1



,




−1 1 0 0 0
0 −1 1 0 0
−1 0 −1 1 0
0 −3 0 −1 1
−5 0 −6 0 −1



,




−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1







.
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Remark: The production matrix in C for the case m = 1 corresponds to the

production matrix of the inverse Pascal triangle.

8.7.1.1 The Inverse of
[

cn(ξ|m)
1+sn(ξ|m) , ξ

]

By applying (1.4) , the inverse of the matrix A corresponds to the Riordan

matrix
[

sn(ξ|m)+1
cn(ξ|m) , ξ

]
which has coefficient matrix given by

D =




1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0

2−m 3 3 1 0 0
5− 4m 8− 4m 6 4 1 0

m2 − 16m+ 16 25− 20m −10(m− 2) 10 5 1



.

The production matrix of D in terms of m is given by

E =




1 1 0 0 0
0 1 1 0 0

1−m 0 1 1 0
0 3− 3m 0 1 1

m2 − 6m+ 5 0 6− 6m 0 1



.

The production matrix E for the case m = −1, 0, 1 are as follows

F =








1 1 0 0 0
0 1 1 0 0
2 0 1 1 0
0 6 0 1 1
12 0 12 0 1



,




1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 3 0 1 1
5 0 6 0 1



,




1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1







.

REMARK 1: The production matrix derived from D for the case m = 1 in F

corresponds to the production matrix of the Pascal triangle. The Riordan matrix

for the case m = 1 in D corresponds to [cosh(ξ)(tanh(ξ) + 1), ξ] . Furthermore,

we show that cosh(z)(tanh(z) + 1) ≡ ez using the relations

cosh(z) =
ez + e−z

2
and tanh(z) =

ez − e−z
ez + e−z

.

That is

cosh(z)(tanh(z) + 1) =
ez + e−z

2

(
1 +

ez − e−z
ez + e−z

)

=
ez + e−z

2
+
ez − e−z

2
= ez.
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Thus, [cosh(z)(tanh(z) + 1), z] defined by hyperbolic functions generates the

Pascal triangle in addition to the already known Riordan arrays
(

1
1−z ,

z
1−z

)
and [ez, z] .

Remark 2: By extracting the monic polynomials located on the odd posi-

tions of the expanded matrix D starting from the first row n = 0, results to the

submatrix given by

F =




1 0 0 0 0 0 0 0 0 0 0 0 0
2 −1 0 0 0 0 0 0 0 0 0 0 0
16 −16 1 0 0 0 0 0 0 0 0 0 0
272 −408 138 −1 0 0 0 0 0 0 0 0 0
7936 −15872 9168 −1232 1 0 0 0 0 0 0 0 0

353792 −884480 729728 −210112 11074 −1 0 0 0 0 0 0 0



.

Remark:

• The row sums of the first column of F is given by (1, 1, 1, 1, 1, 1, 1, ..) which

corresponds to A000012 having e.g.f ez

• The numbers 1, 2, 16, 272, 7936, 353792, ... located on the first column of

F correspond to A000182 having the e.g.f tanh(z).

Using the generating function for the row sums of F given by ez and the gen-

erating function of the first column of F given by tanh(z) we determine a new

Riordan array from these results. Recall that for an exponential Riordan array

[g(z), f(z)], the row sums is given by

g(z)ef(z)

where g(z) ∈ F0 and f(z) ∈ F1.

But tanh(z) ∈ F1 since

tanh(z) = z − z3

3
+

2z5

15
− 17z7

315
+O

(
z9
)
.

The first generating function of the new Riordan array can be determined as

follows:

ez = g(z)etanh(z)

g(z) =
ez

etanh(z)

= ez−tanh(z).
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That is g(z) = ez−tanh(z) ∈ F0 since

ez−tanh(z) = 1 +
z3

3
− 2z5

15
+
z6

18
+

17z7

315
− 2z8

45
+O

(
z9
)
.

The coefficient matrix of the exponential Riordan array

[
ez−tanh(z), tanh(z)

]

is given by

G =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
2 −2 0 1 0 0 0 0 0
0 8 −8 0 1 0 0 0 0

−16 16 20 −20 0 1 0 0 0
40 −176 136 40 −40 0 1 0 0
272 8 −896 616 70 −70 0 1 0

−1792 5760 −2848 −3136 2016 112 −112 0 1




.

The production matrix of G is given by

H =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
2 −2 0 1 0 0 0 0
0 6 −6 0 1 0 0 0
0 0 12 −12 0 1 0 0
0 0 0 20 −20 0 1 0
0 0 0 0 30 −30 0 1
0 0 0 0 0 42 −42 0




.

Remark: The 4-diagonal production matrix H indicates that G−1 is the coef-

ficient array of a family of 2-orthogonal polynomials [61].

On the other hand by multiplying the matrix F with (−1)n where n is the

column number starting from 0, gives the submatrix

I =




1 0 0 0 0 0 0
2 1 0 0 0 0 0
16 16 1 0 0 0 0
272 408 138 1 0 0 0
7936 15872 9168 1232 1 0 0

353792 884480 729728 210112 11074 1 0



.

But in the case of I no significant results were determined for its row sums.
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8.8
[

1−z2(ξ)
1+z2(ξ) ,

z(ξ)
1+z2(ξ)

]

In this section we consider the Riordan array
[

1−z2(ξ)
1+z2(ξ) ,

z(ξ)
1+z2(ξ)

]
which corre-

sponds to the two factors of the proposed travel wave solutions (8.2) for the

case z(ξ) = sn(ξ|m) and z(ξ) = ns(ξ|m).

8.8.1 Case 1: z(ξ) = sn(ξ|m)

If z(ξ) = sn(ξ,m) we have the sequences:

sn(ξ,m)

1 + sn2(ξ,m)
= ξ +

(
−m

6
− 7

6

)
ξ3 +

1

120

(
m2 + 74m+ 181

)
ξ5+

(
−m3 − 681m2 − 6939m− 9787

)
ξ7

5040
+O

(
ξ9
)

(8.24)

1− sn2(ξ,m)

1 + sn2(ξ,m)
= 1− 2ξ2 +

2

3
(m+ 4)ξ4 − 2

45

(
2m2 + 43m+ 77

)
ξ6+

2

315

(
m3 + 93m2 + 597m+ 694

)
ξ8 +O

(
ξ9
)

(8.25)

The Riordan array
[

1−sn2(ξ,m)
1+sn2(ξ,m) ,

sn(ξ,m)
1+sn2(ξ,m)

]
has the coefficient matrix

A =




1 0 0 0 0 0
0 1 0 0 0 0
−4 0 1 0 0 0
0 −m− 19 0 1 0 0

16(m+ 4) 0 −4(m+ 13) 0 1 0
0 m2 + 194m+ 781 0 −10(m+ 11) 0 1



.

Remark The non-zero entries of the second column of A corresponds to the

triangle of numbers




1 0 0 0 0
−19 −1 0 0 0
781 194 1 0 0

−57919 −28947 −1773 −1 0
6823801 5269828 823758 15988 1



.
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The production matrix of A in terms of m is given by

B =




0 1 0 0 0
−4 0 1 0 0
0 −m− 15 0 1 0

12(m− 1) 0 −3(m+ 11) 0 1
0 −3

(
m2 − 22m+ 21

)
0 −6m− 58 0



.

The production matrix B for the case m = −1, 0, 1 is given by

C =








0 1 0 0 0
−4 0 1 0 0
0 −14 0 1 0

−24 0 −30 0 1
0 −132 0 −52 0



,




0 1 0 0 0
−4 0 1 0 0
0 −15 0 1 0

−12 0 −33 0 1
0 −63 0 −58 0



,




0 1 0 0 0
−4 0 1 0 0
0 −16 0 1 0
0 0 −36 0 1
0 0 0 −64 0







.

REMARK: The tri-diagonal nature of the production matrix C for the case

m = 1 shows that the inverse Riordan array of A corresponds to the coefficient

matrix of a family of formal orthogonal polynomial sequences. This gives some

indication to the possible relationship between orthogonal polynomials and the

solution of the travel wave solution (8.2). Form = 1,
[

1+tanh2(ξ)
1−tanh2(ξ)

, tanh(ξ)
1−tanh2(ξ)

]−1

=

[
1√

1− 4ξ2
,

1

4
log

(
1 + 2ξ

1− 2ξ

)]
.

This is the coefficient array of the orthogonal polynomials. The three-term

recurrence relation representing these polynomials is given by

Pn(ξ) = ξPn−1(ξ) + 4(n− 1)2Pn−2(ξ)

with P0(ξ) = 1, P1(ξ) = ξ.

In particular, let Qn−1(ξ) =
Pn−1(iξ)

in
, (i2 = −1)

we get

Qn(ξ) = ξQn−1(ξ)− 4(n− 1)2Qn−2(ξ), ∀n ≥ 1.

8.8.1.1 The Inverse of
[

1−sn2(ξ,m)
1+sn2(ξ,m) ,

sn(ξ,m)
1+sn2(ξ,m)

]

For a Riordan array [g, f ], the inverse [g, f ]−1 =
[

1
g(f̄)

, f̄
]
.
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Using [g, f ] =
[

1−sn2(ξ,m)
1+sn2(ξ,m) ,

sn(ξ,m)
1+sn2(ξ,m)

]
,

f̄ = sn−1

(
1−

√
1− 4ξ2

2ξ

∣∣∣∣∣m
)

1

g(f̄)
=

1−
√

1− 4ξ2

4ξ2 +
√

1− 4ξ2 − 1
.

Recall the generating function of the Catalan numbers A000108 is given by

C(x) =
1−
√

1− 4x

2x
.

Therefore,

f̄ = sn−1
(
ξC(ξ2),m

)

where C(ξ2) is the generating function of the aerated Catalan numbers A126120.

On the other hand

1

g(f̄)
=

1−
√

1− 4ξ2

4ξ2 +
√

1− 4ξ2 − 1
=

1√
1− 4z2

,

is the generating function corresponding to A126869 which are the central bi-

nomial coefficients A000984 interpolated with 0′s.

The coefficient array of

[
1√

1−4z2
, sn−1

(
1−
√

1−4ξ2

2ξ

∣∣∣∣m
)]

which corresponds to

the inverse of
[

1−sn2(ξ,m)
1+sn2(ξ,m) ,

sn(ξ,m)
1+sn2(ξ,m)

]
is given by

A =




1 0 0 0 0 0
0 1 0 0 0 0
4 0 1 0 0 0
0 m+ 19 0 1 0 0
144 0 4m+ 52 0 1 0
0 9m2 + 106m+ 1309 0 10m+ 110 0 1



.

The corresponding production matrix of A in terms of m is given by

B =




0 1 0 0 0
4 0 1 0 0
0 m+ 15 0 1 0

68− 4m 0 3m+ 33 0 1
0 5m2 − 6m+ 385 0 6m+ 58 0



.
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8.8.2 Case 2: z(ξ) = ns(ξ,m)

If z(ξ) = ns(ξ|m) we have the sequences:

ns(ξ,m)

1 + ns2(ξ,m)
= ξ +

(
−m

6
− 7

6

)
ξ3 +

1

120

(
m2 + 74m+ 181

)
ξ5+

(
−m3 − 681m2 − 6939m− 9787

)
ξ7

5040
+O

(
ξ9
)

(8.26)

1− ns2(ξ,m)

1 + ns2(ξ,m)
= −1 + 2ξ2 − 2

3
(m+ 4)ξ4 +

2

45

(
2m2 + 43m+ 77

)
ξ6−

2

315

(
m3 + 93m2 + 597m+ 694

)
ξ8 +O

(
ξ9
)

(8.27)

The Riordan array
(

1−ns2(ξ,m)
1+ns2(ξ,m) ,

ns(ξ,m)
1+ns2(ξ,m)

)
has coefficient matrix given by

A =




−1 0 0 0 0 0
0 −1 0 0 0 0
4 0 −1 0 0 0
0 m+ 19 0 −1 0 0

−16(m+ 4) 0 4(m+ 13) 0 −1 0
0 −m2 − 194m− 781 0 10(m+ 11) 0 −1



.

The production matrix of A in terms of m is given by

B =




0 1 0 0 0
−4 0 1 0 0
0 −m− 15 0 1 0

12(m− 1) 0 −3(m+ 11) 0 1
0 −3

(
m2 − 22m+ 21

)
0 −6m− 58 0



.

The production matrix of B in terms of m = −1, 0, 1 is given by

C =








0 1 0 0 0
−4 0 1 0 0
0 −14 0 1 0

−24 0 −30 0 1
0 −132 0 −52 0



,




0 1 0 0 0
−4 0 1 0 0
0 −15 0 1 0

−12 0 −33 0 1
0 −63 0 −58 0



,




0 1 0 0 0
−4 0 1 0 0
0 −16 0 1 0
0 0 −36 0 1
0 0 0 −64 0







.

REMARK: The tri-diagonal nature of the production matrix C for the case

m = 1 shows that the inverse Riordan array of A corresponds to the coefficient

matrix of a family of formal orthogonal polynomial sequences. This gives a pos-

sible indication of the relationship between orthogonal polynomials and the so-
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lution of the travel wave solution (8.2). For m = 1,
[

1+tanh2(ξ)
1−tanh2(ξ)

, tanh(ξ)
1−tanh2(ξ)

]−1

=

[
1√

1− 4ξ2
,

1

4
log

(
1 + 2ξ

1− 2ξ

)]
.

This is the coefficient array of the orthogonal polynomials. The three-term

recurrence relation representing these polynomials is given by

Pn(ξ) = ξPn−1(ξ) + 4(n− 1)2Pn−2(ξ)

with P0(ξ) = 1, P1(ξ) = ξ.

In particular, let Qn−1(ξ) =
Pn−1(iξ)

in
, (i2 = −1)

we get

Qn(ξ) = ξQn−1(ξ)− 4(n− 1)2Qn−2(ξ), ∀n ≥ 1.

197



Chapter 9

Riordan arrays related to

the FRLW Cosmological

model

9.1 Introduction

Previously we studied elliptic functions representing the exact solutions to wave-

like problems in water waves modeled by KdV (7) and low pass electrical

transmission (8). In this chapter, we examine some other forms of elliptic func-

tions in order to determine the Riordan array that represent exact solutions

to the Einstein gravitational fields equations present in the FRLW(Friedmann-

Robertson-Lemâıtre-Walker) cosmolgy. The FRLW cosmological model mathe-

matically describes the expansion of the universe by assuming in particular that

our current expanding universe is on a large scale homogeneous and isotropic.

In essence, it provides the solutions to the Einstein field equations. The FRLW

assumption on a d- dimensional spacetime is given by

ds2 = −dt2 + ã(t)2

(
dr2

1− k′r2
+ r2dΩ2

d−2

)
(9.1)

where ã(t) is the cosmic scale factor and k′ ∈ {−1, 0, 1} is the curvature param-

eter. On the other hand, the Einstein’s equations associated to (9.1) is given
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by
(d− 1)(d− 2)

2

(
H2 +

k′

ã2

)
= κdρ(t) + Λ (9.2)

where ρ(t) is the pressure of the fluid, Λ > 0 is the cosmological constant

and Λd = 8πGd, where Gd is a generalization of Newton’s constant to d−
dimensional spacetime, H(t) = def ˙̃a/ã(t). Further details on the Einstein field

equations is given in [34]. In particular, the elliptic functions determining the

solution to the Einstein gravitational equations which govern the evolution of

the universe over time has been treated in the paper [34]. These solutions are

given in the form below:

asn(η) =
k√

Λ̃(1 + k2)
sn

(
η√

1 + k2
, k

)
(9.3)

ans(η) =
k√

Λ̃(1 + k2)
ns

(
η√

1 + k2
, k

)
(9.4)

acd(η) =
k√

Λ̃(1 + k2)
cd

(
η√

1 + k2
, k

)
(9.5)

adc(η) =
k√

Λ̃(1 + k2)
dc

(
η√

1 + k2
, k

)
(9.6)

Using the elliptic function given above we shall construct proper Riordan arrays

belonging to the Appell subgroup that represent these solutions.

9.2

[
k√

Λ̃(1+k2)
cd
(

η√
1+k2

, k
)
, η

]
≡ [acd(η), η]

In particular,

acd(η) = k√
(k2+1)Λ

+ η2(k−1)k

2(k2+1)
√

(k2+1)Λ
+

η4k(5k2−6k+1)
24(k2+1)2

√
(k2+1)Λ

+
η6k(61k3−107k2+47k−1)

720(k2+1)3
√

(k2+1)Λ
+

η8k(1385k4−3116k3+2142k2−412k+1)
40320(k2+1)4

√
(k2+1)Λ

+O
(
η9
)

We can construct the proper exponential Riordan array

[
k√

Λ̃(1+k2)
cd
(

η√
1+k2

, k
)
, η

]
≡
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[acd(η), η] having coefficient matrix given by

A =




1√
(k2+1)Λ

0 0 0 0 0

0 1√
(k2+1)Λ

0 0 0 0

(k−1)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ
0 0 0

0 3(k−1)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ
0 0

(k−1)(5k−1)

(k2+1)2
√

(k2+1)Λ
0 6(k−1)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ
0

0 5(k−1)(5k−1)

(k2+1)2
√

(k2+1)Λ
0 10(k−1)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ




.

The production matrix of A in terms of k where 0 < k < 1 which corresponds

to non elementary functions is given by

B =




0 1 0 0 0
k−1
k2+1 0 1 0 0

0 2(k−1)
k2+1 0 1 0

2(k2−1)
(k2+1)2

0 3(k−1)
k2+1 0 1

0
8(k2−1)
(k2+1)2

0 4(k−1)
k2+1 0



.

The production matrix B for the case k = −1, 0, 1 corresponding to the elemen-

tary trigonometric function cos(η) and the identity matrix [1, η]

C =








0 1 0 0 0
−1 0 1 0 0
0 −2 0 1 0
0 0 −3 0 1
0 0 0 −4 0



,




0 1 0 0 0
−1 0 1 0 0
0 −2 0 1 0
−2 0 −3 0 1
0 −8 0 −4 0



,




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0







.

The generating function of the c sequence of the production matrix of [acd(η), η]

in terms of modulus k is given by

(k − 1)nd
(

η√
k2+1

∣∣∣ k
)

sd
(

η√
k2+1

∣∣∣ k
)

√
k2 + 1cd

(
η√
k2+1

∣∣∣ k
) . (9.7)

In particular, the generating function of the c sequence of the production matrix

of [acd(η), η] for the case k = 0 is − tan(η).
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9.3

[
1√

Λ̃(1+k2)
dc
(

η√
1+k2

, k
)
, η

]
≡ [adc(η), η]

We consider the case when the solution takes the form of the sequence adc(η)

adc(η) =
1√

(k2 + 1) Λ
+

η2(1− k)

2 (k2 + 1)
√

(k2 + 1) Λ
+

η4
(
k2 − 6k + 5

)

24 (k2 + 1)
2
√

(k2 + 1) Λ
+

η6
(
−k3 + 47k2 − 107k + 61

)

720 (k2 + 1)
3
√

(k2 + 1) Λ
+
η8
(
k4 − 412k3 + 2142k2 − 3116k + 1385

)

40320 (k2 + 1)
4
√

(k2 + 1) Λ
+O

(
η9
)
.

(9.8)

We can construct the proper exponential Riordan array

[
1√

Λ̃(1+k2)
dc
(

η√
1+k2

, k
)
, η

]
≡

[adc(η), η] having coefficient matrix given by

A =




1√
(k2+1)Λ

0 0 0 0 0

0 1√
(k2+1)Λ

0 0 0 0

(1−k)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ
0 0 0

0 (3−3k)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ
0 0

(k−5)(k−1)

(k2+1)2
√

(k2+1)Λ
0 (6−6k)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ
0

0 5(k−5)(k−1)

(k2+1)2
√

(k2+1)Λ
0 − 10(k−1)Λ

((k2+1)Λ)3/2
0 1√

(k2+1)Λ




.

The production matrix of A in terms of k where 0 < k < 1 which corresponds

to non elementary function is given by

B =




0 1 0 0 0
1−k
k2+1 0 1 0 0

0 2−2k
k2+1 0 1 0

− 2(k2−1)
(k2+1)2

0 3−3k
k2+1 0 1

0 − 8(k2−1)
(k2+1)2

0 4−4k
k2+1 0

.




.

The production matrix of B in terms of k = −1, 0, 1 are given by

C =








0 1 0 0 0
1 0 1 0 0
0 2 0 1 0
0 0 3 0 1
0 0 0 4 0



,




0 1 0 0 0
1 0 1 0 0
0 2 0 1 0
2 0 3 0 1
0 8 0 4 0



,




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0







.

The generating function of the c sequence of the production matrix of [adc(η), η]
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in terms of modulus k is given by

(k − 1)nc
(

η√
k2+1

∣∣∣ k
)

sc
(

η√
k2+1

∣∣∣ k
)

√
k2 + 1dc

(
η√
k2+1

∣∣∣ k
) . (9.9)

In particular, the generating function of the c sequence of the production matrix

of [adc(η), η] for the case k = 0 is − tan(η).
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Chapter 10

Riordan arrays and the

analytical solution of the

Quantum-Mechanical

Oscillator Equation

10.1 Overview

This chapter will begin with an introduction to the classical mechanical oscil-

lator followed by the quantum mechanical oscillator. Some key aspects of the

harmonic oscillator in both classical and quantum mechanics will be highlighted.

The relationship between the analytic solution of the quantum mechanical os-

cillator and the Riordan arrays associated to the Hermite polynomials will be

illustrated. The chapter will culminate with verifying the solution of the quan-

tum mechanical oscillator from the basis of the theory of Riordan arrays using

the symbolic computational algebra system Mathematica.

10.2 The Harmonic Oscillator

The simple harmonic oscillator in classical mechanics corresponds to the case of

the harmonic oscillator for which there is assumed to be no friction. Harmonic

motion constitutes one of the most important examples of motion in physics.
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Some examples of mechanical systems that can illustrate the phenomena of the

harmonic oscillator include pendulums, acoustical systems and the spring-mass

dashpot. Motion under a harmonic potential which in simple cases is often a

mass attached to a spring is determined starting from the solution to Newton’s

equation given by

F = ma = m
d2x

dt2
= −dV (x)

dx
= −kx (10.1)

where k is a force constant for the spring connecting the masses, and V (x) =
1
2kx

2 is the harmonic potential also known as (Hooke’s Law). In general

vibrations having a restoring force equivalent to the Hooke’s law arises from

a simple harmonic oscillator. The potential for the harmonic oscillator occurs

as the natural solution satisfied by every potential having small oscillations at

the minimum. The importance of the harmonic oscillator can be highlighted

by the fact that a very significant number of potentials that occur in nature

have small potentials at the minimum which also includes systems relevant to

quantum mechanics. The harmonic motion is a prerequisite to understanding

more rigorous applications. The general solution of equation (10.1) is given by

x = xM cos(ωt− φ).

The displacement of the particle from the equillibrium position is sinusoidally

varying with amplitude xM and angular frequency ω. The connection between

ω, the mass and force constant is given by

ω =

√
k

m
.

The kinetic energy of the mass is

T =
1

2
m

(
dx

dt

)2

=
p2

2m

where p = mdx
dt is the momentum of the particle.
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Since k = mω2, the total energy is given by

E = T + V (x)

=
p2

2m
+

1

2
kx2

=
p2

2m
+

1

2
mω2x2.

The formula for the total energy of the classical harmonic oscillator will later

be used to write the Shrödinger equation for the quantum harmonic oscillator.

Furthermore, the harmonic oscillator for the case of a spring mass dashpot

satisfies the differential equation:

mÿ(t) + ky(t) = 0. (10.2)

The equation (10.2) can be rewritten as

ÿ(t) + ω2
0y(t) = 0 , ω0 =

√
k

m
. (10.3)

The solution of (10.3) can be expressed in the form y(t) = ert for which there

exists a solution if r = ±iω0 [90].

It can equally be established that the motion arising from a simple harmonic

oscillator is sinusoidal about the equilibrium point, with a constant amplititude

and a constant frequency based on the alternative form of its solution given by

y(t) = A cos(ω0t) +B sin(ω0t) (10.4)

10.3 Quantum-Mechanical Oscillator Equation

and Riordan arrays

The quantum harmonic oscillator is characterized by the Shrödinger equation

[96, 97]. The Shrödinger equation for a harmonic oscillator may be derived from

the classical spring-mass potential in section (10.2) to give

−~2

2m

d2Ψ(x)

dx2
+

1

2
mω2x2Ψ(x) = EΨ(x)
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where

Ψ(x) = Ce−αx
2/2

such that Ψ→ 0 as x→∞. By substituting the function Ψ into the Shrödinger

equation and applying the boundary conditions, it follows that the ground state

energy is given by

E0 =
~ω
2

where ~ is the Planck’s constant.

The classical forces in a chemical bond can also be described in terms of a

spring-like approximation or Hooke’s law type forces. The simplest atom can

be described by the PDE

−ihut =
h2

2m
4u+

e2

r
u (10.5)

where the potential e
2

r is a variable coefficient. The free Shrödinger equation is

given by

−i δu
δt

=
1

2
4u (10.6)

in three dimensions where h = m = 1 and the potential term e2

r dropped in

(10.5) . The quantization arises from the boundary conditions when solving

the Shrödinger equation. Molecules can be viewed dynamically through the lens

of both vibrational and rotational dynamics, which can be formulated and de-

termined from a quantum mechanical framework. The quantum-mechanical

oscillator which is sometimes referred to as the quantum harmonic oscillator

represents the quantum mechanical description of the classical harmonic oscil-

lator. At very high energy chemical bonds or forces holding spring-like systems

reach their dissociation limits resulting in a significant deviation from Hooke’s

law and it therefore becomes important to consider the quantum mechanics of a

harmonic oscillator. A peculiarity of defining an oscilator quantum mechanically

is the probability of determining the position of a particle based on the solu-

tion of the Shrödinger’s equation which leads to the occcurence of eigen values.

Another key aspect of the quantum-mechanical oscillator is that it is one of the

few quantum-mechanical systems for which there exists analytic solution to the

model system that describes it. A real chemical bond normally exists in three

dimensions, but it is still possible to get useful results from the one-dimensional
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case. The quantum mechanical oscillator in one dimension is given by

−iut = uxx − x2u (−∞ < x <∞) (10.7)

The condition

u→ 0 as x→ ±∞ (10.8)

since at x = ±∞ the potential energy becomes infinite. In particular, the

condition (10.8) is required to derive the eigen functions [109]. Furthermore,

seperating the variables in

u = T (t)v(x)

results to

−iT
′

T
=
v′′−x2v

v
= −λ

where λ is considered the energy of the harmonic oscillator with v(x) satisfying

the ODE

v′′ + (λ− x2)v = 0. (10.9)

The simplest solution of (10.9) is e−x
2/2 [109]. That is, for the case λ = 1 we

have that v(x) = e−x
2/2 and for any other λ the general solution to (10.9) is

v(x) = w(x)e−x
2/2. (10.10)

In (10.10) we can construct the proper exponential Riordan array

[
e−x

2/2, x
]

which is the coefficient matrix of the Hermite polynomials Hen defined and

constructed in section (6.1.2.1) .

Using the FTRA we can determine that

[
e−x

2/2, x
]
w(x) ≡ ex2/2w(x) = v(x).

By substituting (10.10) into (10.9) results to the Hermite differential equation
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in terms of w given by

w′′ − 2xw′ + (λ− 1)w = 0 (10.11)

The solution of the PDE (10.7) derived in [109] is given explicitly by

uk(x, t) = e−i(2k+1)tHk(x)e−x
2/2. (10.12)

It can be rewritten as

uk(x, t) = e−iλtHk(x)e−x
2/2

where only odd cases of λ are considered in (10.9) so that λ = 2k + 1 with

k = 0, 1, 2, 3, ...

The coefficient matrix arising from the Hermite polynomials Hk(x) can be rep-

resented by the exponential Riordan array

H =
[
e−z

2

, 2z
]
,

which has been defined and constructed in section (6.1.2.2).

The generating function of the polynomial sequence of H is given by

Hk(x) =
[
e−z

2

, 2z
]
· exz = e−z

2 · ex2z.

The first five terms of the sequence Hk(x) are given by

(
1, 2x, 4x2 − 2, 8x3 − 12x, 16x4 − 48x2 + 12, ....

)
.

The Riordan array H associated to the Hermite polynomials is embedded in the

solution (10.12) to the quantum mechanical oscillator (10.2) such that
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u(x, t) = e−i(2k+1)te−z
2 · ex2ze−x

2/2

= e−z
2 · ex2ze−i(2k+1)te−x

2/2

=
[
e−z

2

, 2z
]
exz · e−i(2k+1)te−x

2/2

=
[
e−z

2

, 2z
]
· exz−x2/2−i(2k+1)t

= (uk(x, t))k∈N.

That is

(uk(x, t))k∈N =




1

0 2

−2 0 4

0 −12 0 8
...

...
...

...
. . .







e−it−
x2

2

xe−3it− x22

x2e−5it− x22

x3e−7it− x22
...




= (u0(x, t), u1(x, t), u2(x, t), u3(x, t), ...)T .

The solution of the PDE associated to the Quantum-Mechanical oscillator can

therefore be represented as the product of an infinite lower triangular Riordan

matrix and an infinite dimensional vector derived from the sequence xke−i(2k+1)t− x22

indexed by k or xke−iλt−
x2

2 indexed by k with λ representing the energy levels

at odd positions. Thus, there exists a Riordan matrix representation for the

solution of the PDE associated to the Quantum-Mechanical Oscillator.

Furthermore, using the terms of the Hermite polynomial sequence we can ex-

pand the function uk(x, t) to get

(
e−it + e−3itz + e−5itz2 + e−7itz3 + e−9itz4 +O

(
z5
))

(e−
x2

2 + 2e−
x2

2 xz+

e−
x2

2

(
4x2 − 2

)
z2+e−

x2

2

(
8x3 − 12x

)
z3+e−

x2

2

(
16x4 − 48x2 + 12

)
z4+O

(
z5
)
).

(10.13)
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That is the product (10.13) using the rules of f.p.s becomes:

e−
x2

2 −it + 2xze−
x2

2 −3it +
(
4x2 − 2

)
z2e−

x2

2 −5it +
(
8x3 − 12x

)
z3e−

x2

2 −7it+
(
16x4 − 48x2 + 12

)
z4e−

x2

2 −9it +O
(
z5
)
. (10.14)

Equation (10.14) forms the sequence of solutions corresponding to (10.12)

which is given by

(
e−

x2

2 −it, 2xe−
x2

2 −3it,
(
4x2 − 2

)
e−

x2

2 −5it,
(
8x3 − 12x

)
e−

x2

2 −7it ,

(
16x4 − 48x2 + 12

)
e−

x2

2 −9it, ...) . (10.15)

The sequence (10.15) with the generating function

e−i(2n+1)t− x22 +2xz−z2 , n = 0, 1, 2, 3, ...

can be verified using Mathematica to represent the family of solutions of the

PDE describing the motion of the quantum mechanical oscillator (10.7) . The

solution (10.15) can also be written in terms of the Euler’s identity to have the

sequence

Pu =
(

(cos(t) + i sin(t)) e−1− x22 , 2x (cos(3t) + i sin(3t)) e−1− x22 , ...
)
.

The Mathematica symbolic code to derive the solution of the quantum mechical

oscillator using Riordan array technique is given below.

Expand
[
Table

[
n!SeriesCoefficient

[
Exp

[
−z2

]
Exp[x2z], {z, 0, n}

]
, {n, 0, 4}

]]
Expand

[
Table

[
n!SeriesCoefficient

[
Exp

[
−z2

]
Exp[x2z], {z, 0, n}

]
, {n, 0, 4}

]]
Expand

[
Table

[
n!SeriesCoefficient

[
Exp

[
−z2

]
Exp[x2z], {z, 0, n}

]
, {n, 0, 4}

]]

{
1, 2x,−2 + 4x2,−12x+ 8x3, 12− 48x2 + 16x4

}

Table[Exp[−I(2n+ 1)t], {n, 0, 4}]Table[Exp[−I(2n+ 1)t], {n, 0, 4}]Table[Exp[−I(2n+ 1)t], {n, 0, 4}]
{
e−it, e−3it, e−5it, e−7it, e−9it

}

SeriesData
[
z, 0,

{
e−it, e−3it, e−5it, e−7it, e−9it

}
, 0, 5, 1

]
SeriesData

[
z, 0,

{
e−it, e−3it, e−5it, e−7it, e−9it

}
, 0, 5, 1

]
SeriesData

[
z, 0,

{
e−it, e−3it, e−5it, e−7it, e−9it

}
, 0, 5, 1

]

e−it + e−3itz + e−5itz2 + e−7itz3 + e−9itz4 +O[z]5

{
1, 2x,−2 + 4x2,−12x+ 8x3, 12− 48x2 + 16x4

}
Exp

[
−x2

2

]{
1, 2x,−2 + 4x2,−12x+ 8x3, 12− 48x2 + 16x4

}
Exp

[
−x2

2

]{
1, 2x,−2 + 4x2,−12x+ 8x3, 12− 48x2 + 16x4

}
Exp

[
−x2

2

]
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{
e−

x2

2 , 2e−
x2

2 x, e−
x2

2

(
−2 + 4x2

)
, e−

x2

2

(
−12x+ 8x3

)
, e−

x2

2

(
12− 48x2 + 16x4

)}

SeriesData
[
z, 0,

{
e−

x2

2 , 2e−
x2

2 x, e−
x2

2

(
−2 + 4x2

)
, e−

x2

2

(
−12x+ 8x3

)
, e−

x2

2

(
12− 48x2 + 16x4

)}
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Chapter 11

Filter Design and Riordan

arrays

11.1 Introduction

Filter design constitutes an important area known as signal processing in elec-

tronics. A signal in electronics can simply be described as a physical quantity

usually represented by its waveform that transmits information from one point

to another. The operation on a signal in order to remove unwanted compo-

nents is known as filtering. Filters are important in both analog and digital

electronics. Filters can be designed in a variety of ways in mathematics using

some classical polynomial sequences. Some key areas in which the application

of filters can be found are in the seperation of signal components with different

frequency ranges such as in the telephone, in the suppression of disturbances

such as narrow band interference or noise of the signal spectrum such as equal-

izer, sound controller. The concepts of a filter’s systems functions, the order of

a filter, types of filters, time and group delay are discussed below.

11.1.1 Systems Function of a Filter

The System functions (also known as transfer functions or network function)

which are uniquely realizable by an electrical network implementing electro-

technology describes the input versus the output behavior of a given system

using mathematically defined functions based on the frequency domain. Equiv-
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alently a transfer function can be defined as the ratio of the Laplace transforms

of its output and input signals. The voltage transfer function H(s) of a filter

can therefore be written as:

H(s) =
VOUT (s)

VIN (s)
. (11.1)

In particular having knowledge about the transfer function’s magnitude or gain

at each frequency is a prerequisite to understanding how well the filter can deal

with variations arising from signals transmitted at various frequency values.

The filter’s effect on the magnitude and phase of the signal is given by

|H(jω)| =
∣∣∣∣
VOUT (jω)

VIN (jω)

∣∣∣∣ . (11.2)

On the other hand the phase is given by

argH(jω) = arg
VOUT (jω)

VIN (jω)
(11.3)

where VIN (s) and VOUT (s) are the input and output signal voltages respectively,

s is the complex frequency variable, jω, where j is equal to
√
−1, such that ω

is the radian frequency (2πf).

F (s) =
U2(s)

U1(s)
. (11.4)

In terms of its power series expansion this can be described as

F (s) =
a0 + a1 · s+ ...+ am · sm

b0 + b1.s...+ bn.sn
(11.5)

with m : number of zeros, n : number of poles, n ≥ m, s = σ + jω :

complex frequency if σ = 0 : s→ jω ⇒ F (s)→ F (jω).

11.1.2 The Order of a Filter

The order of a filter is the highest power of the variable s in its transfer func-

tion. Calculations with respect to the order of a filter are important for several

reasons arising from the fact that it is directly related to the number of compo-

nents in the filter, and therefore has an effect on its cost, its physical size, and

the complexity of the design task. It is on this basis that higher-order filters are
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more expensive, take up more space, and are associated with complexities in

their design structures. The primary advantage of a higher-order filter is that it

will have a steeper roll-off slope than a similar lower-order filter. Before actually

calculating the amplitude response of the network, we can see that at very low

frequencies (small values of s), the numerator becomes very small, as do the

first two terms of the denominator. Thus, as s approaches zero, the numer-

ator approaches zero, the denominator approaches one, and H(s) approaches

zero. Similarly, as the input frequency approaches infinity, H(s) also becomes

progressively smaller, because the denominator increases with the square of fre-

quency while the numerator increases linearly with frequency. Therefore, H(s)

will have its maximum value at some frequency between zero and infinity, and

will decrease at frequencies above and below the peak.

11.1.3 Types of Filters

Filters are named based on the frequency range that are permitted for transmis-

sion through them and in the process effectively seeking to prevent any unwanted

frequencies in the system. Based on this principle there are three categories of

filters which are generally known:

• The Low Pass Filters are designed to ensure that only low frequencies are

transmitted having a range from OHz to the cut-off frequency inclusive.

The cut-off frequency is simply the frequency at which transmission occurs.

• The High Pass Filter are designed to ensure that only high frequency

signals from its cut-off frequency point and higher up to infinity are trans-

mitted thereby discarding any lower frequencies.

• The Band Pass Filter are designed to allow signals falling within a defined

range consisting of a minimum and maximum point are allowed transmis-

sion. On the other hand, a stopband is the range of frequencies which

fall between a specified upper and lower limit, through which a circuit

such as a filter does not allow signals to pass.

There are different kinds of filters comprising the Butterworth, the Chebyshev

Filters, Elliptic Filters, Bessel Filters. In this chapter we shall focus on the

Bessel Filters and the Elliptic Filters. The elliptic filters are constructed from

elliptic functions which have been treated in previous chapters. The Bessel

Filters are constructed using the reverse Bessel polynomials defined and con-

structed in section (6.1.3).
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11.1.4 Time and Group Delay

In signal processing, there is a time period allowed for the waves to propagate

through the system. For a time delay λ, the signal will be delayed without any

altering of its amplitude. The delay results in a phase lag φ which is directly

proportional to its frequency ω. Time delay is the preferable measure of the

filter’s time effects rather than the phase delay relative to the frequency domain.

A phase delay φ{f}(radians) at a frequency f has a time delay given by

4t =
φ{f}
2πf

.

The filter tends to delay the signals in its passband by uniform amounts when

considering the time delay. A filter whose phase is a linear function of frequency

has constant time delay with applications found in the circuits of control and

communication systems [108]. The Bessel filter produces an excellent approxi-

mation to a constant time delay.

The group delay D(ω) for a given smooth phase function describes the time

delay of its amplitude envelope of a sinusoid at the frequency ω. The bandwidth

of the amplitude envelope for the group delay under consideration is restricted

to a frequency interval over which the phase response is approximately linear

[82].

11.2 Elliptic Filter

Elliptic filters are constructed using the approximating function known as the

elliptic rational function, usually denoted by Rn(ξ, x). In the context of sig-

nal processing the elliptic rational function Rn(ξ, x) is most widely used as the

most suitable minimax approximation of a unit square pulse. Chebyshev poly-

nomials can be used for the approximation of the unit square pulse [68] but with

a less accurate approximation compared to the elliptic rational functions of the

same order.

The rational function Rn(ξ, x) can be implemented using the elliptic Jacobi

function cd [68]. The key properties of the elliptic rational function which is

satisfied by the elliptic Jacobi function are as follows:

• The equiripple property and | Rn(ξ, x) |≤ 1 whenever | x |≤ 1
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• The largest value of min(| Rn(ξ, x) |≤ 1) for | x |≥ ξ > 1

• The minimal order n.

The elliptic rational function [58] is defined by

Rn(k, x) = cd
( u
M
, λ
)

x = cd(u, k) (11.6)

The explicit definition in Lutovac [68] is given by

Rn(ξ, x) = cd


n

K
(

1
Ln(ξ)

)

K
(

1
ξ

) cd−1

(
x,

1

ξ

)
,

1

Ln(ξ)


 (11.7)

Another alternative definition of the elliptic rational function [68] is given in

parametric form

Rn(ξ, x) = cd

(
nwK

(
1

Ln(ξ)

)
,

1

Ln(ξ)

)
(11.8)

where K is the complete elliptic integral of the first kind, n is the order, ξ is

the selectivity factor(ξ > 1), w is an intermediate variable. The notation Ln(ξ)

represents the discrimination factor which is the minimal value of | Rn(ξ, x) |
for | x ≥ ξ | .

The connection between the elliptic filter and Riordan arrays is based on exam-

ining the Jacobi Riordan array

ERn =
[
cd(

u

M
, λ), u

]
.

The coefficient matrix of ERn is given by

Ec =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
λ−1
M2 0 1 0 0 0 0

0 3(λ−1)
M2 0 1 0 0 0

5λ2−6λ+1
M4 0 6(λ−1)

M2 0 1 0 0

0
5(5λ2−6λ+1)

M4 0 10(λ−1)
M2 0 1 0

61λ3−107λ2+47λ−1
M6 0

15(5λ2−6λ+1)
M4 0 15(λ−1)

M2 0 1




.
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The corresponding production matrix of Ec is given by

Ep =




0 1 0 0 0 0
λ−1
M2 0 1 0 0 0

0 2(λ−1)
M2 0 1 0 0

2(λ2−1)
M4 0 3(λ−1)

M2 0 1 0

0
8(λ2−1)
M4 0 4(λ−1)

M2 0 1
16(λ−1)((λ−1)λ+1)

M6 0
20(λ2−1)

M4 0 5(λ−1)
M2 0




.

The c generating function of Ep corresponding to Ec is given by

c(u, λ,M) =
(λ− 1)nd

(
u
M

∣∣λ
)

sd
(
u
M

∣∣λ
)

Mcd
(
u
M

∣∣λ
) .

Since as the r generating function is 1, therefore the c generating function that

determines the first column ERn determines the Jacobi Riordan array Ec. Note

that u, λ,M are defined based on (11.6,11.7,11.8).
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Figure 11.1: Bode plot of a third order lowpass elliptic filter model with cutoff

frequency ωc = 1
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Figure 11.2: Bode plot of a fourth order lowpass elliptic filter model with cutoff

frequency ωc = 1
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Figure 11.3: Bode Plot of a fifth order lowpass elliptic filter model with cutoff

frequency ωc = 1

11.3 Bessel Filter

11.3.1 Introduction

The origin of the Bessel filter is based on the mathematical theory of Bessel

functions put forward in the 1824 memoir of the German mathematician and

astronomer Friedrich Bessel(1784− 1846) [116]. In signal processing, the Bessel

filter is characterized by a maximally flat group and phase delay such that out-

put response results to an unchanged wave shape of the filtered signals in the

passband [111, 7].

In particular a low-pass Bessel filter is characterised by its transfer function

given by

H(s) =
θn(0)

θn(s/ωc)
(11.9)

where n = 1, 2, 3, ... and ωc is the cut-off frequency and θn(s) is the reverse

Bessel polynomial . We consider the case when the cut-off frequency ωc = 1 so

that the transfer function of the Bessel filter (11.9) becomes

H(s) =
θn(0)

θn(s)
. (11.10)

Using the techniques from Riordan array we determine the general term of the

transfer function (11.10) of order n.

The Bessel polynomial used for High pass filters has the denominator polynomial

given by

{1

3
+ s+ s2,

1

15
+

2

5
s+ s2 + s3,

1

105
+

2

21
s+

9

21
s2 + s3 + s4, ...}
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On the other hand, the reverse Bessel polynnomial used for Low pass denomi-

nator polynomial given by

{1 + s+
1

3
s3, 1 + s+

2

5
s2 +

1

15
s3, 1 + s+

9

21
s2 +

2

21
s3 +

1

105
s4, ...}.

11.3.2 Bessel filter using
[

1√
1−2t , 1−

√
1− 2t

]

The coefficient matrix corresponding to the Bessel polynomials can be repre-

sented by the exponential Riordan array belonging to the derivative subgroup

given by [
1√

1− 2t
, 1−

√
1− 2t

]
,

where
d

dt
(1−

√
1− 2t) =

1√
1− 2t

.

In terms of Riordan arrays, the reverse Bessel polynomials corresponds to the

polynomial sequence determined by

[
1√

1− 2t
, 1−

√
1− 2t

]
· est, (11.11)

which is equivalent to the Riordan array bivariate generating function such that

1√
1− 2t

es(1−
√

1−2t). (11.12)

In particular using (11.12) , let 1√
1−2t

es(1−
√

1−2t) = θ(s, t) such that

θ(s, t) =

∞∑

n=0

θn(s)tn. (11.13)

Also, using equation (11.12) when s = 0 and let 1√
1−2t

= θ(t) such that

θ(t) =

∞∑

n=0

θn(0)tn. (11.14)

We have that from (11.13) & (11.14)

θ(t)

θ(s, t)
=

∑∞
n=0 θn(0)tn∑∞
n=0 θn(s)tn

. (11.15)
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The right hand side of (11.13) for a given Bessel filter of order n can be rewrit-

ten as

θ0(0) + θ1(0) + θ2(0) + θ3(0) + ...+ θn(0)

θ0(s) + θ1(s) + θ2(s) + θ3(s) + ...+ θn(s)
=
θ0(0)

θ0(s)
+
θ1(0)

θ1(s)
+
θ2(0)

θ2(s)
+
θ3(0)

θ3(s)
+...+

θn(0)

θn(s)
.

(11.16)

Since as a formal power series can be interchanged with its associated sequence

we have that (11.16) corresponds to the sequence

(
θ0(0)

θ0(s)
,
θ1(0)

θ1(s)
,
θ2(0)

θ2(s)
,
θ3(0)

θ3(s)
, ...,

θn(0)

θn(s)

)
=

(
θn(0)

θn(s)

)

n∈N
. (11.17)

The sequence in (11.17) corresponds to a sequence of transfer functions of the

form given in (11.9) for n = 1, 2, 3, ... where n is the order of the Bessel filter.

Therefore, starting from the exponential Riordan array

R =

[
1√

1− 2t
, 1−

√
1− 2t

]

we can obtain a sequence of transfer function of the Bessel filter. The r and c

generating functions of R are

r(z) =
1

4z − 2
+

1√
1− 2z

c(z) =
1

(z − 1)2
.
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Figure 11.4: The plot shows the gain of low pass Bessel Filter of order n =

1, 2, 3, 4
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Figure 11.5: The plot shows the group delay of low pass Bessel filter of order

n = 1, 2, 3, 4
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Figure 11.6: The plot illustrates the effect of low pass Bessel filter of order 4

that filters out high frequency noise from a sinusoidal signal

11.3.3 Bessel filter using
[

1√
1−4t , 1−

√
1− 4t

]

The coefficient array of R =
[

1√
1−4t

, 1−
√

1− 4t
]

is given by

A =




1 0 0 0 0 0
2 2 0 0 0 0
12 12 4 0 0 0
120 120 48 8 0 0
1680 1680 720 160 16 0
30240 30240 13440 3360 480 32



.
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The production matrix of A is given by

B =




2 2 0 0 0
4 4 2 0 0
12 12 6 2 0
48 48 24 8 2
240 240 120 40 10



.

The r and c generating functions of R are given by

r(z) =
2

1− z c(z) =
2

(1− z)2
.

The polynomial sequence from A is given by

1, 2s+2, 4s2+12s+12, 8s3+48s2+120s+120, 16s4+160s3+720s2+1680s+1680,

32s5 + +480s4 + 3360s3 + 13440s2 + 30240 + 30240, ... (11.18)

By using the elements staring from the second row of the first column of the

matrix A as the numerator and the elements of the polynomial sequence in

(11.18) starting from the second element, we get the transfer function of order

1, 2, 3, 4 respectively in the form

C =
2

2s+ 2
,

12

4s2 + 12s+ 12
,

120

8s3 + 48s2 + 120s+ 120
,

1680

16s4 + 160s3 + 720s2 + 1680s+ 1680
.
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Figure 11.7: The plot shows the gain of low pass Bessel Filter of order n =

1, 2, 3, 4 using
[

1√
1−4t

, 1−
√

1− 4t
]

222



0.1 1 10

-80.

-60.

-40.

-20.

0.

Figure 11.8: The plot shows the group delay of low pass Bessel Filter of order

n = 1, 2, 3, 4 using
[

1√
1−4t

, 1−
√

1− 4t
]

11.3.4 Bessel filter using
[

1√
1−6t , 1−

√
1− 6t

]

The coefficient array of R =
[

1√
1−6t

, 1−
√

1− 6t
]

is given by

A =




1 0 0 0 0 0
3 3 0 0 0 0
27 27 9 0 0 0
405 405 162 27 0 0
8505 8505 3645 810 81 0
229635 229635 102060 25515 3645 243



.

The production matrix of A is given by

B =




3 3 0 0 0
6 6 3 0 0
18 18 9 3 0
72 72 36 12 3
360 360 180 60 15



.

The r and c generating functions of R are given by

r(z) =
3

1− z c(z) =
3

(1− z)2
.

The polynomial sequence from A is given by

1, 3s+3, 9s2+27s+27, 27s3+162s2+405s+405, 81s4+810s3+3645s2+8505s+8505, 243s5+

+3645s4 + 25515s3 + 102060s2 + 229635s+ 229635, ... (11.19)

By using the elements staring from the second row of the first column of the

matrix A as the numerator and the elements of the polynomial sequence in

(11.19) starting from the second element, we get the transfer function of order
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1, 2, 3, 4 respectively in the form

C =
3

3s+ 3
,

27

9s2 + 27s+ 27
,

405

27s3 + 162s2 + 405s+ 405
,

8505

81s4 + 810s3 + 3645s2 + 8505s+ 8505

0.1 1 10

-25.

-20.

-15.

-10.

-5.

0.

Figure 11.9: The plot shows the gain of low pass Bessel Filter of order n =

1, 2, 3, 4 using
[

1√
1−6t

, 1−
√

1− 6t
]
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Figure 11.10: The plot shows the group delay of low pass Bessel Filter of order

n = 1, 2, 3, 4 using
[

1√
1−6t

, 1−
√

1− 6t
]

Similar results can be verified for the case of
[

1√
1−8t

, 1−
√

1− 8t
]

and
[

1√
1−10t

, 1−
√

1− 10t
]

11.3.5 Bessel filter using
[

1
3√1−3t , 1−

3
√

1− 3t
]

The coefficient array of R =
[

1
3
√

1−3t
, 1− 3

√
1− 3t

]
is given by




1 0 0 0 0 0
1 1 0 0 0 0
4 4 1 0 0 0
28 28 9 1 0 0
280 280 100 16 1 0
3640 3640 1380 260 25 1



.
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The production matrix of A is given by




1 1 0 0 0
3 3 1 0 0
12 12 5 1 0
60 60 27 7 1
360 360 168 48 9



.

The r and c generating functions of R are given by

r(z) =
1

(1− z)2 c(z) =
1

(1− z)3
.

The polynomial sequence from A is given by

1, s+1, s2+4s+4, s3+9s2+28s+28, s4+16s3+100s2+280s+280, s5+25s4+260s3

+ 1380s2 + 3640s+ 3640, ... (11.20)

By using the elements staring from the second row of the first column of the

matrix A as the numerator and the elements of the polynomial sequence in

(11.20) starting from the second element, we get the transfer function of order

1, 2, 3, 4 respectively in the form

C =
1

1s+ 1
,

4

s2 + 4s+ 4
,

28

s3 + 9s2 + 28s+ 28
,

280

s4 + 16s3 + 100s2 + 280s+ 280

0.1 1 10

-25.

-20.

-15.

-10.

-5.

0.

Figure 11.11: The plot shows the gain of low pass Bessel Filter of order n =

1, 2, 3, 4 using
[

1
3
√

1−3t
, 1− 3

√
1− 3t

]
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Figure 11.12: The plot shows the group delay of low pass Bessel Filter of order

n = 1, 2, 3, 4 using
[

1
3
√

1−3t
, 1− 3

√
1− 3t

]

11.3.6 Bessel filter using
[

1
4√1−4t , 1−

4
√

1− 4t
]

The coefficient array of R =
[

1
4
√

1−4t
, 1− 4

√
1− 4t

]
is given by




1 0 0 0 0 0
1 1 0 0 0 0
5 5 1 0 0 0
45 45 12 1 0 0
585 585 177 22 1 0
9945 9945 3240 485 35 1



.

The production matrix of A is given by




1 1 0 0 0
4 4 1 0 0
20 20 7 1 0
120 120 48 10 1
840 840 360 88 13



.

The r and c generating functions of R are given by

r(z) =
1

(1− z)3 c(z) =
1

(1− z)4
.

The polynomial sequence from A is given by

1, s+1, s2+5s+5, s3+12s2+45s+45, s4+22s3+177s2+585s+585, s5+35s4+485s3+3240s2

+ 9945s+ 9945, ... (11.21)

By using the elements staring from the second row of the first column of the

matrix A as the numerator and the elements of the polynomial sequence in

(11.21) starting from the second element, we get the transfer function of order
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1, 2, 3, 4 respectively in the form

C =
1

1s+ 1
,

5

s2 + 5s+ 5
,

45

s3 + 12s2 + 45s+ 45
,

585

s4 + 22s3 + 177s2 + 585s+ 585
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-25.
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-10.
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0.

Figure 11.13: The plot shows the gain of low pass Bessel Filter of order n =

1, 2, 3, 4 using
[

1
4
√

1−4t
, 1− 4

√
1− 4t

]

0.1 1 10

-80.

-60.

-40.

-20.

0.

Figure 11.14: The plot shows the group delay of low pass Bessel Filter of order

n = 1, 2, 3, 4 using
[

1
4
√

1−4t
, 1− 4

√
1− 4t

]

11.4 Passive Systems

11.4.1 Introduction

Passive systems are most often associated to control systems engineering and

circuit network theory in analog electronics, represent components used in the

implementation of such systems which consumes energy but do not produce en-

ergy. The design and modeling of filters for passive systems corresponding to

single-input single-output linesr time-invariant systems are achieved using cer-

tain types polynomials. In particular, such systems are implemented by having

their transfer function as the ratio between two successive recursively defined

polynomials characterized by certain properties. These polynomials include the
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Fibonacci, Morgan-Voyce, Lucas and Jacobsthal type. Loss-less systems and

Positive real relaxation systems constitute particular classes of passive sys-

tems designed from these polynomials. A loss-less one port circuit conserves the

total energy from the generating source flowing through its elements. Loss-less

systems can be derived based on the ratio between successive polynomials of the

Fibonacci or Lucas polynomials . On the other hand, relaxation systems are

passive systems that are designed using only subsets of possible passive com-

ponents comprising resistor, capacitors and inductors. Relaxation systems are

designed from the ratio of successive Morgan-Voyce or Jacobsthal polynomials.

Given that fn, ln, bn and Bn are the Fibonacci,Lucas polynomials, Morgan-

Voyce polynomials of the first and second kind respectively of degree n, the

following theorems in [42] below describe the way these polynomials achieve

loss-less systems.

Theorem 11.4.1 G(s) = fn(s)
fn+1(s) represents the transfer function of a control-

lable and observable loss-less system of order n.

Theorem 11.4.2 G(s) = fn(s)
ln(s) represents the transfer function of a controllable

and observable loss-less system of order n.

Theorem 11.4.3 Gn(s) = bn(s)
bn+1(s) represents the transfer function of a control-

lable and observable positive real and relaxation system of order n+ 1.

Theorem 11.4.4 Gn(s) = Bn(s)
Bn+1(s) represents the transfer function of a con-

trollable and observable positive real and relaxation system of order n+ 1.

We redefine the concepts of passive systems represented by the four theorems

above in terms of Riordan arrays associated to the Fibonacci and the Morgan-

Voyce polynomials.

11.4.2 Riordan arrays from the Fibonacci and Morgan-

Voyce polynomials

The Fibonacci polynomials has the coefficient matrix represented by the ordi-

nary Riordan array given by

f =

(
1

1− t2 ,
t

1− t2
)
.
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The coefficient matrix of f is given by




1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 2 0 1 0 0 0
1 0 3 0 1 0 0
0 3 0 4 0 1 0
1 0 6 0 5 0 1




.

The production matrix of f is given by




0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
−1 0 1 0 1 0
0 −1 0 1 0 1
2 0 −1 0 1 0



.
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Using the Riordan array f we show that it represents the family of Fibonacci

polynomials as follows:

[tn]

(
1

1− t2 ,
t

1− t2
)
· 1

1− ts = [tn]

(
1

1− t2 ·
1

1− s t
1−t2

)

= [tn]
1

1− t2
∞∑

k=0

(
st

1− t2
)k

= [tn]
1

1− t2
∞∑

k=0

sktk

1− t2

= [tn]
∞∑

k=0

sk
tk

(1− t2)k+1

= [tn]

∞∑

k=0

sktk(1− t2)−(k+1)

= [tn−k]
∑

k

∑

j

(
k + 1 + j − 1

j

)
(−1)j(−t2)jsk

= [tn−k]
∑

k

∑

j

(
k + j

j

)
t2jsk

=

n∑

k=0

(
k + n−k

2
n−k

2

)
sk · (1 + (−1)n−k)

2

=

n∑

k=0

(n+k
2

k

)
sk · (1 + (−1)n−k)

2

= (fn(s))n∈N.

Remark: Note 2j = n− k =⇒ j = n−k
2 and

(
n

k

)
=

(
n

n− k

)
=⇒ n+ k

2
− n− k

2
= k.

Similarly, the Morgan-Voyce polynomials Bn and bn have been defined and

constructed in section (6.1.5) .
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11.4.3 The Transfer function G(s) of Passive Sytems and

Riordan arrays

The transfer functions G(s) for the controllable and observable loss-less systems

and relaxation systems in (11.4.1) can be rewritten in terms of Riordan arrays

below.

• The transfer function in (11.4.1) corresponds to

G(s) =
fn(s)

fn+1(s)
≡

[tn]
∑∞
k=0

1
1−t2

(
t

1−t2
)k
sk

[tn+1]
∑∞
k=0

1
1−t2

(
t

1−t2
)k
sk

where

fn(s) =

b (n+1)
2 c∑

k=0

(
n− k − 1

k

)
sn−2k−1.

• The transfer function in (11.4.2) corresponds to

G(s) =
fn(s)

ln(s)
≡

[tn]
∑∞
k=0

1
1−t2

(
t

1−t2
)k
sk

lnsk
.

where the denominator ln(s) equals

2−n
[(
s−

√
s2 + 4

)n
+
(
s+

√
s2 + 4

)n]
.

Furthermore, the Lucas polynomials are related to the triangular array

A027960 given by




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
0 3 0 1 0 0 0 0
2 0 4 0 1 0 0 0
0 5 0 5 0 1 0 0
2 0 9 0 6 0 1 0
0 7 0 14 0 7 0 1




.
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The array L has the production matrix given by

Lp =




0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 1 0 1 0 0 0
−4 0 1 0 1 0 0
0 −1 0 1 0 1 0
12 0 −1 0 1 0 1
0 2 0 −1 0 1 0




.

• The transfer function in (11.4.3) corresponds to

Gn(s) =
bn(s)

bn+1(s)
≡

[tn]
∑∞
k=0

1
1−t

(
t

(1−t)2
)k
sk

[tn+1]
∑∞
k=0

1
1−t

(
t

(1−t)2
)k
sk

where the numerator and the denominator are respectively given by

bn(s) =

n∑

k=0

(
n+ k

n− k

)
sk & bn+1(s) =

n+1∑

k=0

(
n+ k + 1

n− k + 1

)
sk.

• The transfer function in (11.4.4) corresponds to

Gn(s) =
Bn(s)

Bn+1(s)
≡

[tn]
∑∞
k=0

1
(1−t)2

(
t

(1−t)2
)k
sk

[tn+1]
∑∞
k=0

1
(1−t)2

(
t

(1−t)2
)k
sk

where the numerator and the denominator are respectively given by

Bn(s) =

n∑

k=0

(
n+ k + 1

n− k

)
sk & Bn+1(s) =

n+1∑

k=0

(
n+ k + 2

n− k + 1

)
sk.

11.5 Conclusion

• In this chapter some examples of families of polynomial sequences that

implement the transfer function used for Bessel filters and which have not

been investigated previously in the domain of signal processing have been

constructed using Riordan array techniques.
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• Conjecture: Riordan arrays of the form

[
1

m
√

1−mt, 1−
m
√

1−mt
]
· est &

[
1√

1− 2nt
, 1−

√
1− 2nt

]
· est

where m,n ∈ Z such that m ≥ 2 and n ≥ 1. provide the mechanics for

generating various families of polynomials that define the transfer function

used for implementing the Bessel filter.

• The transfer function of some Passive systems has been redefined in terms

of the generic element of the Riordan arrays of the Fibonacci and the

Morgan-Voyce polynomials.
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Chapter 12

Conclusions and Future

Directions

The main contributions of this thesis are :

• This thesis is the first work looking at elliptic functions and Riordan ar-

rays. A principal discovery is that exponential Riordan arrays and elliptic

functions are very well suited for each other, via the reversion process

which can be applied to functions defined by integrals, which is a feature

of both elliptic functions and exponential Riordan arrays. In particular,

for the case of exponential Riordan arrays the A-sequence(also known as

the c sequence) is also very important to establishing its relationship to

elliptic functions.

• In the study of Riordan arrays constructed from elliptic functions, some

interesting parameterized elliptic Riordan arrays have emerged. These are

interesting because of the polynomial nature of the entries, and in other

cases because of the shape of the resulting production matrices. Further

work can still be done on such elliptic Riordan arrays. But one key aspect

is that this is the first work to present parameterized polynomial entries

of Riordan arrays.

• Another contribution of this work is the identification and classification

of some Riordan arrays which constitute the solutions of systems of dif-

ferential equations (Sturm-Liouville equations).
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• As it is indicative of the thesis title several areas of applications of elliptic

Riordan arrays and other Riordan arrays have been investigated from

Chapter 7 to Chapter 11 of this thesis. These areas include the KdV, non

linear electrical transmission lines, cosmology, elliptic filters arising from

elliptic Riordan arrays on one hand and the Bessel filters and the solution

to the quantum-mechanical oscillator arising from some of the non-elliptic

Riordan arrays that are solutions of the Sturm-Liouville equations. In

particular, the identification of the role of Riordan arrays in filter design

constitutes a novel application that can further be developed at a later

stage.

Furthermore, in this thesis, we have established connections between elliptic

functions and Riordan arrays. Several examples of elliptic Riordan arrays have

been presented in chapters 2, 3, 4. In Chapter 2, some of the Jacobi Riordan

arrays were associated to important combinatorial and algebraic interpretations

for the cases of the nodulus m = {0, 1}. In addition, some previously unknown

new sequences and triangular arrays having interesting algebraic structures cor-

responding to the associated trigonometric and hyperbolic forms of the elliptic

Jacobi functions were found. These new sequences and arrays are currently in

the process of been added to the OEIS. Further investigation will seek to extend

the possible combinatorial significance arising from Jacobi Riordan arrays for

the general case 0 ≤ m ≤ 1.

In future research work the columns of elliptic Riordan arrays and their pro-

duction matrices will be examined for those with polynomial sequences in m

having first term 1. The hankel matrices of such polynomial sequences will then

be computed to determine whether they are non-negative which is a key crite-

rion for the moment sequences derived from orthogonal polynomial sequences.

The original polynomials can then be determined from the formula (1.12)

Pn(z) =
4n(z)

4n−1
.

The inverse of the coefficient matrix of Pn(z) and its tri-diagonal matrix can

then be examined. For elliptic dn function in [dn, sn] we have the following

initial results listed below. The elliptic dn function can be expanded to get

{
1, 0, 1, 0, 5− 4m, 0, 16m2 − 76m+ 61, 0,−64m3 + 1104m2 − 2424m+ 1385 + ...

}
.
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P =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 4m− 5 0 1 0 0 0
9 0 4m− 14 0 1 0 0
0 64m2 − 144m+ 89 0 20m− 30 0 1 0

−225 0 64m2 − 244m+ 439 0 20m− 55 0 1




.

P−1 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 5− 4m 0 1 0 0 0

5− 4m 0 14− 4m 0 1 0 0
0 16m2 − 76m+ 61 0 30− 20m 0 1 0

16m2 − 76m+ 61 0 16m2 − 256m+ 331 0 55− 20m 0 1




.

Pdmat =




0 1 0 0 0
1 0 1 0 0
0 4− 4m 0 1 0
0 0 9 0 1
0 0 0 16− 16m 0




where Pdmat represents the production matrix of P−1.

A particular focus of this thesis has been to identify the applications of Riordan

arrays and elliptic functions. The examples provided in this work for elliptic

Riordan arrays and other non-elliptic Riordan arrays associated to the solu-

tions of some Sturm-Liouville differential equations have provided new insights

to potential areas of applications. In this regard, this work has examined the

application of elliptic functions with their corresponding elliptic Riordan arrays

to the solution of the non-linear KdV wave equations in Chapter 7. This was

followed by applications of Riordan arrays to the PDE modelling the wave-like

phenomena of the quantum-mechanical harmonic oscillator in quantum physics

and Low pass electrical transmission in Chapter 10 and Chapters 8 respectively.

These application areas involved establishing the Riordan arrays linked to the

exact solutions of the differential equations modeling these wave-like phenom-

ena.

In Chapter 6, we presented examples of Riordan arrays as solutions to some

Sturm-Liouville differential equations. On the other hand, consider the Lamé

equation [64] which is a linear ordinary second-order differential equation in the

complex domain given by

d2w

dz2
= [A+B℘(z)]w,
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where ℘ is the Weierstrass function and A and B are constants. The corre-

sponding Jacobi form of the Lamé is given by

d2w

du2
=
[
C +Dsn2u

]
w.

The next step of investigation will seek to determine appropriate elliptic Rior-

dan arrays that are solutions to the Weierstrass and Jacobi forms of the Lamé

equation.

In filter design, the reverse Bessel polynomials in previous research has been

presented as the only explicit family of polynomials used in the design of the

Bessel filter [7]. By using the mechanics of Riordan arrays we determine new

families of polynomials that can be used to construct the Bessel filter described

in section (11.3). These families of polynomials were used to construct the

transfer functions that produced the characteristic maximally flat linear phase

response similar to that of the transfer function derived from the original reverse

Bessel polynomials.

We note the role of the Jacobi elliptic function cd in determining the solu-

tion of the FRLW cosmological model in Chapter 9 and the elliptic filter in

section (11.2). By constructing Appell type Riordan arrays using the cd elliptic

function we find that the recurrence formula arising from the Riordan array can

provide an alternative representation of the solution of the FRLW cosmological

model and the elliptic filter.

The researcher Zhedhanov [125] has previously studied the relationship between

elliptic functions and the Toda chain. On the other hand Barry [10] has estab-

lished the relationship between Toda chain and exponential Riordan arrays by

considering examples of Riordan arrays belonging to the Sheffer class of orthog-

onal polynomials. The natural question that arises whether we can use the

knowledge from this thesis on elliptic Riordan arrays to investigate the possi-

ble connections between the Toda chain and elliptic Riordan arrays. Zhedanov

starts his investigation of the elliptic Toda polynomials by determining the gen-

eral formula for the recurrence coefficients such that

un(t) = w2n2(℘(w(t+ β))− ℘(nw(t+ β) + q))
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and

bn(t) = µ1 + w(n+ 1)ζ(w(n+ 1)(t+ β) + q)− wnζ(wn(t+ β) + q)−
− (2n+ 1)wζ(w(t+ β))

where w, β, q, µ1 are arbitrary complex parameters. In addition, it is assumed

that ω1, ω3 are arbitrary independent periods corresponding to the arbitrary

parameters e1, e2, e3 such that e1 +e2 +e3 = 0. In particular, un(t), bn(t) satisfy

the restricted Toda chain equations given by

u̇n = un(bn − bn−1), ḃn = un+1 − un

with the condition that u0 = 0 and the dot (·) in the equation represents dif-

ferentiation w.r.t time t. An interesting result arises when all the roots coincide

s.t e1 = e2 = e3 = 0. It then follows that the elliptic functions degenerates to

simple rational ones given by ℘ = 1
z2 , ζ(z) = 1

z , σ(z) = z. For the additional

assumption that w = 1, β = 0

c0(t) =
t+ q

qt
=

1

t
+

1

q

which results in the first term 1
t in c0(t) above generating the Laguerre polyno-

mials such that

bn(t) = −2n+ 1

t
, un(t) =

n2

t2
,

where the recurrence coefficients corresponding to the Laguerre polynomials

L
(0)
n (−xt) is a solution of the restricted Toda chain for the initial conditions

c
(0)
o (t) = 1

t . In section (6.1.1), the connection between the Laguerre polyno-

mials and Riordan arrays has been established. This initial review shows that

the trigonometric and hyperbolic functions for appropriately chosen parameters

arising from the degenerate cases of the elliptic recurrence coefficients presented

in [125], can inspire further scope of studying the basis to determine if there

exists some forms of the elliptic Riordan arrays that may satisfy the Toda chain

equation.
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Appendix A

Appendix-Symbolic Code

1. How to do the reversion of the function t
1−t

Solve
[

u
1−u == t, u

]
Solve

[
u

1−u == t, u
]

Solve
[

u
1−u == t, u

]

{{
u→ t

1+t

}}

fbar[t ]:= t
1+t

fbar[t ]:= t
1+tfbar[t ]:= t
1+t

g[t ]:= 1
1−tg[t ]:= 1
1−tg[t ]:= 1
1−t

Simplify[Composition[g, fbar][t]]Simplify[Composition[g, fbar][t]]Simplify[Composition[g, fbar][t]]

1 + t

2. Determining the Riordan matrix and row sums of

[
d

dz
sn−1(z,m), sn−1(z,m)

]

Clear[m]Clear[m]Clear[m]

A:=Table
[
n!
k! SeriesCoefficient

[
(D[InverseJacobiSN[z,m], z])(InverseJacobiSN[z,m])k, {z, 0, n}

]
,A:=Table

[
n!
k! SeriesCoefficient

[
(D[InverseJacobiSN[z,m], z])(InverseJacobiSN[z,m])k, {z, 0, n}

]
,A:=Table

[
n!
k! SeriesCoefficient

[
(D[InverseJacobiSN[z,m], z])(InverseJacobiSN[z,m])k, {z, 0, n}

]
,

{n, 0, 6}, {k, 0, 6}]{n, 0, 6}, {k, 0, 6}]{n, 0, 6}, {k, 0, 6}]

Table[A.Table[1, {n, 0, 6}], {m,−1, 1}]Table[A.Table[1, {n, 0, 6}], {m,−1, 1}]Table[A.Table[1, {n, 0, 6}], {m,−1, 1}]

MatrixForm[Simplify[A[[1;;5, 1;;5]]]]MatrixForm[Simplify[A[[1;;5, 1;;5]]]]MatrixForm[Simplify[A[[1;;5, 1;;5]]]]

{{1, 1, 1, 1, 13, 73, 253}, {1, 1, 2, 5, 20, 85, 520}, {1, 1, 3, 9, 45, 225, 1575}}
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


1 0 0 0 0
0 1 0 0 0

1 +m 0 1 0 0
0 4(1 +m) 0 1 0

9 + 6m+ 9m2 0 10(1 +m) 0 1




3. Determining the Riordan matrix and production matrix for

[
d

dz
isc(z,m), isc(z,m)

]
.

Clear[m]Clear[m]Clear[m]

A:=Table

[
n!
k! SeriesCoefficient

[(
D
[
I JacobiSN[z,m]

JacobiCN[z,m] , z
])(

I JacobiSN[z,m]
JacobiCN[z,m]

)k
, {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]
A:=Table

[
n!
k! SeriesCoefficient

[(
D
[
I JacobiSN[z,m]

JacobiCN[z,m] , z
])(

I JacobiSN[z,m]
JacobiCN[z,m]

)k
, {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]
A:=Table

[
n!
k! SeriesCoefficient

[(
D
[
I JacobiSN[z,m]

JacobiCN[z,m] , z
])(

I JacobiSN[z,m]
JacobiCN[z,m]

)k
, {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]

MatrixForm[A[[1;;5, 1;;5]]]MatrixForm[A[[1;;5, 1;;5]]]MatrixForm[A[[1;;5, 1;;5]]]

MatrixForm[Simplify[A[[1;;5, 1;;5]]]]MatrixForm[Simplify[A[[1;;5, 1;;5]]]]MatrixForm[Simplify[A[[1;;5, 1;;5]]]]

Simplify[MatrixForm[Inverse[A][[1;;4, 1;;4]].A[[2;;5, 1;;4]]]]Simplify[MatrixForm[Inverse[A][[1;;4, 1;;4]].A[[2;;5, 1;;4]]]]Simplify[MatrixForm[Inverse[A][[1;;4, 1;;4]].A[[2;;5, 1;;4]]]]



i 0 0 0 0
0 −1 0 0 0

−i(−2 +m) 0 −i 0 0
0 4(−2 +m) 0 1 0

i
(
16− 16m+m2

)
0 10i(−2 +m) 0 i







i 0 0 0 0
0 −1 0 0 0

−i(−2 +m) 0 −i 0 0
0 4(−2 +m) 0 1 0

i
(
16− 16m+m2

)
0 10i(−2 +m) 0 i







0 i 0 0
i(−2 +m) 0 i 0

0 3i(−2 +m) 0 i
−3im2 0 6i(−2 +m) 0




4. Predicting the generating functions for the Riordan matrix corresponding to

the Bessel polynomials using the matrix generated from its general formula

n∑

k−0

(
(2n− k)!

2n−k(k)!(n− k)!

)
xk.

MatrixForm
[
Transpose

[
Table

[
SeriesCoefficient

[
Table

[
Sum

[(
(2n−k)!

2n−k(k)!(n−k)!

)
xk, {k, 0, n}

]
, {n, 0, 6}

]
,MatrixForm

[
Transpose

[
Table

[
SeriesCoefficient

[
Table

[
Sum

[(
(2n−k)!

2n−k(k)!(n−k)!

)
xk, {k, 0, n}

]
, {n, 0, 6}

]
,MatrixForm

[
Transpose

[
Table

[
SeriesCoefficient

[
Table

[
Sum

[(
(2n−k)!

2n−k(k)!(n−k)!

)
xk, {k, 0, n}

]
, {n, 0, 6}

]
,

{x, 0, n}], {n, 0, 6}]]]{x, 0, n}], {n, 0, 6}]]]{x, 0, n}], {n, 0, 6}]]]



1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 3 1 0 0 0 0
15 15 6 1 0 0 0
105 105 45 10 1 0 0
945 945 420 105 15 1 0
10395 10395 4725 1260 210 21 1



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B:=




1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 3 1 0 0 0 0
15 15 6 1 0 0 0
105 105 45 10 1 0 0
945 945 420 105 15 1 0
10395 10395 4725 1260 210 21 1




A:=Table[1, {n, 0, 6}]A:=Table[1, {n, 0, 6}]A:=Table[1, {n, 0, 6}]

B.AB.AB.A

{1, 2, 7, 37, 266, 2431, 27007}

A001515 E.g.f: e
1−√1−2x
√

1−2x

B[[All, 1]]B[[All, 1]]B[[All, 1]]

{1, 1, 3, 15, 105, 945, 10395}

A001147 E.g.f: 1√
1−2x

Solve

[
Exp[1−

√
1−2x]√

1−2x
== 1√

1−2x
Exp[y], y,Reals

]
Solve

[
Exp[1−

√
1−2x]√

1−2x
== 1√

1−2x
Exp[y], y,Reals

]
Solve

[
Exp[1−

√
1−2x]√

1−2x
== 1√

1−2x
Exp[y], y,Reals

]

{{
y → ConditionalExpression

[
1−
√

1− 2x, x < 1
2

]}}

BES:=Table
[
n!
k! SeriesCoefficient

[(
1√

1−2x

) (
1−
√

1− 2x
)k
, {x, 0, n}

]
,BES:=Table

[
n!
k! SeriesCoefficient

[(
1√

1−2x

) (
1−
√

1− 2x
)k
, {x, 0, n}

]
,BES:=Table

[
n!
k! SeriesCoefficient

[(
1√

1−2x

) (
1−
√

1− 2x
)k
, {x, 0, n}

]
,

{n, 0, 6}, {k, 0, 6}]{n, 0, 6}, {k, 0, 6}]{n, 0, 6}, {k, 0, 6}]

MatrixForm[BES]MatrixForm[BES]MatrixForm[BES]

MatrixForm[Inverse[BES][[;;6, ;;6]].BES[[2;;, ;;6]]]MatrixForm[Inverse[BES][[;;6, ;;6]].BES[[2;;, ;;6]]]MatrixForm[Inverse[BES][[;;6, ;;6]].BES[[2;;, ;;6]]]



1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 3 1 0 0 0 0
15 15 6 1 0 0 0
105 105 45 10 1 0 0
945 945 420 105 15 1 0
10395 10395 4725 1260 210 21 1







1 1 0 0 0 0
2 2 1 0 0 0
6 6 3 1 0 0
24 24 12 4 1 0
120 120 60 20 5 1
720 720 360 120 30 6




5. Evaluating the transfer functions for the Bessel filter of order 1, 2, 3, 4.

Simplify
[
Table

[
n!SeriesCoefficient

[
Evaluate

[(
1√

1−2t

)
Exp

[
s
(
1−
√

1− 2t
)]]

, {t, 0, n}
]
, {n, 0, 4}

]]
Simplify

[
Table

[
n!SeriesCoefficient

[
Evaluate

[(
1√

1−2t

)
Exp

[
s
(
1−
√

1− 2t
)]]

, {t, 0, n}
]
, {n, 0, 4}

]]
Simplify

[
Table

[
n!SeriesCoefficient

[
Evaluate

[(
1√

1−2t

)
Exp

[
s
(
1−
√

1− 2t
)]]

, {t, 0, n}
]
, {n, 0, 4}

]]
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{
1, 1 + s, 3 + 3s+ s2, 15 + 15s+ 6s2 + s3, 105 + 105s+ 45s2 + 10s3 + s4

}

Simplify
[
Table

[
n!SeriesCoefficient

[
1√

1−2t
, {t, 0, n}

]
, {n, 0, 4}

]]
Simplify

[
Table

[
n!SeriesCoefficient

[
1√

1−2t
, {t, 0, n}

]
, {n, 0, 4}

]]
Simplify

[
Table

[
n!SeriesCoefficient

[
1√

1−2t
, {t, 0, n}

]
, {n, 0, 4}

]]

{1, 1, 3, 15, 105}

Simplify

[
Table

[
n!SeriesCoefficient

[
1√

1−2t
,{t,0,n}

]
,{n,0,4}

]
Table

[
n!SeriesCoefficient

[
Evaluate

[(
1√

1−2t

)
Exp[s(1−√1−2t)]

]
,{t,0,n}

]
,{n,0,4}

]]Simplify

[
Table

[
n!SeriesCoefficient

[
1√

1−2t
,{t,0,n}

]
,{n,0,4}

]
Table

[
n!SeriesCoefficient

[
Evaluate

[(
1√

1−2t

)
Exp[s(1−√1−2t)]

]
,{t,0,n}

]
,{n,0,4}

]]Simplify

[
Table

[
n!SeriesCoefficient

[
1√

1−2t
,{t,0,n}

]
,{n,0,4}

]
Table

[
n!SeriesCoefficient

[
Evaluate

[(
1√

1−2t

)
Exp[s(1−√1−2t)]

]
,{t,0,n}

]
,{n,0,4}

]]

{
1, 1

1+s ,
3

3+3s+s2 ,
15

15+15s+6s2+s3 ,
105

105+105s+45s2+10s3+s4

}

6. Extracting the sub-matrix from the first column of [dc(z,m), z]

A:=Table
[
n!
k! SeriesCoefficient

[(
JacobiDN[z,m]
JacobiCN[z,m]

)
(z∧k), {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]
A:=Table

[
n!
k! SeriesCoefficient

[(
JacobiDN[z,m]
JacobiCN[z,m]

)
(z∧k), {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]
A:=Table

[
n!
k! SeriesCoefficient

[(
JacobiDN[z,m]
JacobiCN[z,m]

)
(z∧k), {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]

MatrixForm[Transpose[Table[SeriesCoefficient[A[[All, 1]], {m, 0, n}], {n, 0, 6}]]]MatrixForm[Transpose[Table[SeriesCoefficient[A[[All, 1]], {m, 0, n}], {n, 0, 6}]]]MatrixForm[Transpose[Table[SeriesCoefficient[A[[All, 1]], {m, 0, n}], {n, 0, 6}]]]

MatrixForm[Simplify[A[[1;;6, 1;;6]]]]MatrixForm[Simplify[A[[1;;6, 1;;6]]]]MatrixForm[Simplify[A[[1;;6, 1;;6]]]]



0 1 0 0 0 0
1−m 0 1 0 0 0

0 2− 2m 0 1 0 0
2− 2m2 0 3− 3m 0 1 0

0 8− 8m2 0 4− 4m 0 1
−16(−1 +m)(1 + (−1 +m)m) 0 −20

(
−1 +m2

)
0 5− 5m 0







1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 −1 0 0 0 0 0
0 0 0 0 0 0 0
5 −6 1 0 0 0 0
0 0 0 0 0 0 0
61 −107 47 −1 0 0 0







1 0 0 0 0 0
0 1 0 0 0 0

1−m 0 1 0 0 0
0 3− 3m 0 1 0 0

5− 6m+m2 0 6− 6m 0 1 0
0 5

(
5− 6m+m2

)
0 −10(−1 +m) 0 1




B:=




1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 −1 0 0 0 0 0
0 0 0 0 0 0 0
5 −6 1 0 0 0 0
0 0 0 0 0 0 0
61 −107 47 −1 0 0 0




T :=Table[B[[2n+ 1]], {n, 0, 3}]T :=Table[B[[2n+ 1]], {n, 0, 3}]T :=Table[B[[2n+ 1]], {n, 0, 3}]

G:=MatrixForm[T ]G:=MatrixForm[T ]G:=MatrixForm[T ]

GGG
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T.Table [mn, {n, 0, 6}]T.Table [mn, {n, 0, 6}]T.Table [mn, {n, 0, 6}]

MatrixForm
[
Transpose

[
Table

[
1

(−1)n SeriesCoefficient [T.Table [mn, {n, 0, 6}] , {m, 0, n}] , {n, 0, 3}
]]]

MatrixForm
[
Transpose

[
Table

[
1

(−1)n SeriesCoefficient [T.Table [mn, {n, 0, 6}] , {m, 0, n}] , {n, 0, 3}
]]]

MatrixForm
[
Transpose

[
Table

[
1

(−1)n SeriesCoefficient [T.Table [mn, {n, 0, 6}] , {m, 0, n}] , {n, 0, 3}
]]]




1 0 0 0 0 0 0
1 −1 0 0 0 0 0
5 −6 1 0 0 0 0
61 −107 47 −1 0 0 0




{
1, 1−m, 5− 6m+m2, 61− 107m+ 47m2 −m3

}




1 0 0 0
1 1 0 0
5 6 1 0
61 107 47 1




7. Determining the Dixonian Riordan matrix and production matrix of

[sm(z)′, sm(z)] .

cm[z ]:=(3WeierstrassPPrime[z, {0, 1/27}] + 1)/(3WeierstrassPPrime[z, {0, 1/27}]− 1)cm[z ]:=(3WeierstrassPPrime[z, {0, 1/27}] + 1)/(3WeierstrassPPrime[z, {0, 1/27}]− 1)cm[z ]:=(3WeierstrassPPrime[z, {0, 1/27}] + 1)/(3WeierstrassPPrime[z, {0, 1/27}]− 1)

sm[z ]:=(6WeierstrassP[z, {0, 1/27}])/(1− 3WeierstrassPPrime[z, {0, 1/27}])sm[z ]:=(6WeierstrassP[z, {0, 1/27}])/(1− 3WeierstrassPPrime[z, {0, 1/27}])sm[z ]:=(6WeierstrassP[z, {0, 1/27}])/(1− 3WeierstrassPPrime[z, {0, 1/27}])

Series[sm[z], {z, 0, 12}]Series[sm[z], {z, 0, 12}]Series[sm[z], {z, 0, 12}]

A:=Table[(n!/(k!))SeriesCoefficient[(D[sm[z], z])((sm[z])∧k), {z, 0, n}],A:=Table[(n!/(k!))SeriesCoefficient[(D[sm[z], z])((sm[z])∧k), {z, 0, n}],A:=Table[(n!/(k!))SeriesCoefficient[(D[sm[z], z])((sm[z])∧k), {z, 0, n}],

{n, 0, 8}, {k, 0, 8}]{n, 0, 8}, {k, 0, 8}]{n, 0, 8}, {k, 0, 8}]

MatrixForm[A]MatrixForm[A]MatrixForm[A]

FullSimplify[MatrixForm[Inverse[A][[1;;5, 1;;5]].A[[2;;6, 1;;5]]]]FullSimplify[MatrixForm[Inverse[A][[1;;5, 1;;5]].A[[2;;6, 1;;5]]]]FullSimplify[MatrixForm[Inverse[A][[1;;5, 1;;5]].A[[2;;6, 1;;5]]]]

z − z4

6 + 2z7

63 − 13z10

2268 +O[z]13




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−4 0 0 1 0 0 0 0 0
0 −20 0 0 1 0 0 0 0
0 0 −60 0 0 1 0 0 0
160 0 0 −140 0 0 1 0 0
0 1840 0 0 −280 0 0 1 0
0 0 10800 0 0 −504 0 0 1







0 1 0 0 0
0 0 1 0 0
−4 0 0 1 0
0 −16 0 0 1
0 0 −40 0 0




8. Determining the soliton solutions of the KdV equation using the proposed
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form of the solution given by

a+ bcn2(ξ,m).

D
[
a+ bJacobiCN[ξ,m]2, {ξ, 2}

]
D
[
a+ bJacobiCN[ξ,m]2, {ξ, 2}

]
D
[
a+ bJacobiCN[ξ,m]2, {ξ, 2}

]

−c
(
a+ bJacobiCN[ξ,m]2

)
− 3

(
a+ bJacobiCN[ξ,m]2

)2
+ b

(
−2JacobiCN[ξ,m]2JacobiDN[ξ,m]2+−c

(
a+ bJacobiCN[ξ,m]2

)
− 3

(
a+ bJacobiCN[ξ,m]2

)2
+ b

(
−2JacobiCN[ξ,m]2JacobiDN[ξ,m]2+−c

(
a+ bJacobiCN[ξ,m]2

)
− 3

(
a+ bJacobiCN[ξ,m]2

)2
+ b

(
−2JacobiCN[ξ,m]2JacobiDN[ξ,m]2+

2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2
)

2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2
)

2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2
)

b
(
−2JacobiCN[ξ,m]2JacobiDN[ξ,m]2+

2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2 )

−c
(
a+ bJacobiCN[ξ,m]2

)
−3
(
a+ bJacobiCN[ξ,m]2

)2
+b
(
−2JacobiCN[ξ,m]2JacobiDN[ξ,m]2+

2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2 )

FullSimplify
[
−c
(
a+ bJacobiCN[ξ,m]2

)
− 3

(
a+ bJacobiCN[ξ,m]2

)2
+ b

(
−2JacobiCN[ξ,m]2 ·FullSimplify

[
−c
(
a+ bJacobiCN[ξ,m]2

)
− 3

(
a+ bJacobiCN[ξ,m]2

)2
+ b

(
−2JacobiCN[ξ,m]2 ·FullSimplify

[
−c
(
a+ bJacobiCN[ξ,m]2

)
− 3

(
a+ bJacobiCN[ξ,m]2

)2
+ b

(
−2JacobiCN[ξ,m]2 ·

JacobiDN[ξ,m]2 +2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2
)]

JacobiDN[ξ,m]2 +2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2
)]

JacobiDN[ξ,m]2 +2mJacobiCN[ξ,m]2JacobiSN[ξ,m]2 + 2JacobiDN[ξ,m]2JacobiSN[ξ,m]2
)]

−a(3a+c)−bJacobiCN[ξ,m]2
(
−2 + 6a+ c+ 3bJacobiCN[ξ,m]2 + 4JacobiDN[ξ,m]2

)
+

2bJacobiDN[ξ,m]2JacobiSN[ξ,m]2

Expand
[
−a(3a+ c)− bJacobiCN[ξ,m]2

(
−2 + 6a+ c+ 3bJacobiCN[ξ,m]2 + 4JacobiDN[ξ,m]2

)
Expand

[
−a(3a+ c)− bJacobiCN[ξ,m]2

(
−2 + 6a+ c+ 3bJacobiCN[ξ,m]2 + 4JacobiDN[ξ,m]2

)
Expand

[
−a(3a+ c)− bJacobiCN[ξ,m]2

(
−2 + 6a+ c+ 3bJacobiCN[ξ,m]2 + 4JacobiDN[ξ,m]2

)

+2bJacobiDN[ξ,m]2JacobiSN[ξ,m]2
]

+2bJacobiDN[ξ,m]2JacobiSN[ξ,m]2
]

+2bJacobiDN[ξ,m]2JacobiSN[ξ,m]2
]

−3a2 − ac + 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2 −

3b2JacobiCN[ξ,m]4−4bJacobiCN[ξ,m]2JacobiDN[ξ,m]2+2bJacobiDN[ξ,m]2JacobiSN[ξ,m]2

−3a2 − ac+ 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2 − 3b2JacobiCN[ξ,m]4−−3a2 − ac+ 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2 − 3b2JacobiCN[ξ,m]4−−3a2 − ac+ 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2 − 3b2JacobiCN[ξ,m]4−

4bJacobiCN[ξ,m]2JacobiDN[ξ,m]2 + 2bJacobiDN[ξ,m]2JacobiSN[ξ,m]24bJacobiCN[ξ,m]2JacobiDN[ξ,m]2 + 2bJacobiDN[ξ,m]2JacobiSN[ξ,m]24bJacobiCN[ξ,m]2JacobiDN[ξ,m]2 + 2bJacobiDN[ξ,m]2JacobiSN[ξ,m]2

//.
{

JacobiSN[ξ,m]2 → 1− JacobiCN[ξ,m]2, JacobiDN[ξ,m]2 → 1−m2
(
1− JacobiCN[ξ,m]2

)}
//.
{

JacobiSN[ξ,m]2 → 1− JacobiCN[ξ,m]2, JacobiDN[ξ,m]2 → 1−m2
(
1− JacobiCN[ξ,m]2

)}
//.
{

JacobiSN[ξ,m]2 → 1− JacobiCN[ξ,m]2, JacobiDN[ξ,m]2 → 1−m2
(
1− JacobiCN[ξ,m]2

)}
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−3a2 − ac + 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2 −

3b2JacobiCN[ξ,m]4−4bJacobiCN[ξ,m]2
(
1−m2

(
1− JacobiCN[ξ,m]2

))
+2b

(
1− JacobiCN[ξ,m]2

)

·
(
1−m2

(
1− JacobiCN[ξ,m]2

))

Expand
[
−3a2 − ac+ 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2−Expand
[
−3a2 − ac+ 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2−Expand
[
−3a2 − ac+ 2bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2−

3b2JacobiCN[ξ,m]4 − 4bJacobiCN[ξ,m]2
(
1−m2

(
1− JacobiCN[ξ,m]2

))
+ 2b

(
1− JacobiCN[ξ,m]2

)
3b2JacobiCN[ξ,m]4 − 4bJacobiCN[ξ,m]2

(
1−m2

(
1− JacobiCN[ξ,m]2

))
+ 2b

(
1− JacobiCN[ξ,m]2

)
3b2JacobiCN[ξ,m]4 − 4bJacobiCN[ξ,m]2

(
1−m2

(
1− JacobiCN[ξ,m]2

))
+ 2b

(
1− JacobiCN[ξ,m]2

)

(
1−m2

(
1− JacobiCN[ξ,m]2

))](
1−m2

(
1− JacobiCN[ξ,m]2

))](
1−m2

(
1− JacobiCN[ξ,m]2

))]

−3a2+2b−ac−2bm2−4bJacobiCN[ξ,m]2−6abJacobiCN[ξ,m]2−bcJacobiCN[ξ,m]2+

8bm2JacobiCN[ξ,m]2 − 3b2JacobiCN[ξ,m]4 − 6bm2JacobiCN[ξ,m]4

−3a2 + 2b− ac− 2bm2 − 4bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2+−3a2 + 2b− ac− 2bm2 − 4bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2+−3a2 + 2b− ac− 2bm2 − 4bJacobiCN[ξ,m]2 − 6abJacobiCN[ξ,m]2 − bcJacobiCN[ξ,m]2+

8bm2JacobiCN[ξ,m]2 − 3b2JacobiCN[ξ,m]4 − 6bm2JacobiCN[ξ,m]4//.JacobiCN[ξ,m]→ cn8bm2JacobiCN[ξ,m]2 − 3b2JacobiCN[ξ,m]4 − 6bm2JacobiCN[ξ,m]4//.JacobiCN[ξ,m]→ cn8bm2JacobiCN[ξ,m]2 − 3b2JacobiCN[ξ,m]4 − 6bm2JacobiCN[ξ,m]4//.JacobiCN[ξ,m]→ cn

−3a2 + 2b− ac− 4bcn2− 6abcn2− bccn2− 3b2cn4− 2bm2 + 8bcn2m2− 6bcn4m2

Table
[
Coefficient

[
−3a2 + 2b− ac− 4bcn2 − 6abcn2 − bccn2 − 3b2cn4 − 2bm2+Table

[
Coefficient

[
−3a2 + 2b− ac− 4bcn2 − 6abcn2 − bccn2 − 3b2cn4 − 2bm2+Table

[
Coefficient

[
−3a2 + 2b− ac− 4bcn2 − 6abcn2 − bccn2 − 3b2cn4 − 2bm2+

8bcn2m2 − 6bcn4m2, cn, n
]
, {n, 0, 4}

]
8bcn2m2 − 6bcn4m2, cn, n

]
, {n, 0, 4}

]
8bcn2m2 − 6bcn4m2, cn, n

]
, {n, 0, 4}

]

{
−3a2 + 2b− ac− 2bm2, 0,−4b− 6ab− bc+ 8bm2, 0,−3b2 − 6bm2

}

Solve
[
−3a2 + 2b− ac− 2bm2 == 0&&− 4b− 6ab− bc+ 8bm2 == 0&&− 3b∧2− 6bm∧2 == 0,Solve
[
−3a2 + 2b− ac− 2bm2 == 0&&− 4b− 6ab− bc+ 8bm2 == 0&&− 3b∧2− 6bm∧2 == 0,Solve
[
−3a2 + 2b− ac− 2bm2 == 0&&− 4b− 6ab− bc+ 8bm2 == 0&&− 3b∧2− 6bm∧2 == 0,

{a, b, c},Reals]{a, b, c},Reals]{a, b, c},Reals]

Cases considered from list of solutions above after evaluation:
{
a→ ConditionalExpression

[
− 1

6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4,− 1√

2
< m < 1√

2

]
,

{
a→ ConditionalExpression

[
− 1

6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4,− 1√

2
< m < 1√

2

]
,

{
a→ ConditionalExpression

[
− 1

6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4,− 1√

2
< m < 1√

2

]
,

b→ ConditionalExpression
[
−2m2,− 1√

2
< m < 1√

2

]
,b→ ConditionalExpression

[
−2m2,− 1√

2
< m < 1√

2

]
,b→ ConditionalExpression

[
−2m2,− 1√

2
< m < 1√

2

]
,

c→ ConditionalExpression
[√

16− 16m2 + 16m4,− 1√
2
< m < 1√

2

]}
c→ ConditionalExpression

[√
16− 16m2 + 16m4,− 1√

2
< m < 1√

2

]}
c→ ConditionalExpression

[√
16− 16m2 + 16m4,− 1√

2
< m < 1√

2

]}

{
a→ ConditionalExpression

[
− 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4,m > 1√

2
‖m < − 1√

2

]
,

{
a→ ConditionalExpression

[
− 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4,m > 1√

2
‖m < − 1√

2

]
,

{
a→ ConditionalExpression

[
− 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4,m > 1√

2
‖m < − 1√

2

]
,

b→ ConditionalExpression
[
−2m2,m > 1√

2
‖m < − 1√

2

]
,b→ ConditionalExpression

[
−2m2,m > 1√

2
‖m < − 1√

2

]
,b→ ConditionalExpression

[
−2m2,m > 1√

2
‖m < − 1√

2

]
,

c→ ConditionalExpression
[√

16− 16m2 + 16m4,m > 1√
2
‖m < − 1√

2

]}
c→ ConditionalExpression

[√
16− 16m2 + 16m4,m > 1√

2
‖m < − 1√

2

]}
c→ ConditionalExpression

[√
16− 16m2 + 16m4,m > 1√

2
‖m < − 1√

2

]}

{{
a→ ConditionalExpression

[
1
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4,m > 1√

2
‖m < − 1√

2

]
,

{{
a→ ConditionalExpression

[
1
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4,m > 1√

2
‖m < − 1√

2

]
,

{{
a→ ConditionalExpression

[
1
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4,m > 1√

2
‖m < − 1√

2

]
,
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b→ ConditionalExpression
[
−2m2,m > 1√

2
‖m < − 1√

2

]
,b→ ConditionalExpression

[
−2m2,m > 1√

2
‖m < − 1√

2

]
,b→ ConditionalExpression

[
−2m2,m > 1√

2
‖m < − 1√

2

]
,

c→ ConditionalExpression
[
−
√

16− 16m2 + 16m4,m > 1√
2
‖m < − 1√

2

]}}
c→ ConditionalExpression

[
−
√

16− 16m2 + 16m4,m > 1√
2
‖m < − 1√

2

]}}
c→ ConditionalExpression

[
−
√

16− 16m2 + 16m4,m > 1√
2
‖m < − 1√

2

]}}

Clear[c]Clear[c]Clear[c]

a+ bJacobiCN[ξ,m]2//.ξ → x− cta+ bJacobiCN[ξ,m]2//.ξ → x− cta+ bJacobiCN[ξ,m]2//.ξ → x− ct

a+ bJacobiCN[ct− x,m]2

a+ bJacobiCN[ct− x,m]2//.
{
a→ − 1

6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4, b→ −2m2,a+ bJacobiCN[ct− x,m]2//.

{
a→ − 1

6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4, b→ −2m2,a+ bJacobiCN[ct− x,m]2//.

{
a→ − 1

6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4, b→ −2m2,

c→
√

16− 16m2 + 16m4
}

c→
√

16− 16m2 + 16m4
}

c→
√

16− 16m2 + 16m4
}

− 1
6

√
16− 16m2 + 16m4− 1

6

√
16− 64m2 + 64m4−2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2

a+ bJacobiCN[ct− x,m]2//.
{
a→ − 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4, b→ −2m2,a+ bJacobiCN[ct− x,m]2//.

{
a→ − 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4, b→ −2m2,a+ bJacobiCN[ct− x,m]2//.

{
a→ − 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4, b→ −2m2,

c→
√

16− 16m2 + 16m4
}

c→
√

16− 16m2 + 16m4
}

c→
√

16− 16m2 + 16m4
}

− 1
6

√
16− 16m2 + 16m4+ 1

6

√
16− 64m2 + 64m4−2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2

a+ bJacobiCN[ct− x,m]2//.
{
a→ 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4, b→ −2m2,a+ bJacobiCN[ct− x,m]2//.

{
a→ 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4, b→ −2m2,a+ bJacobiCN[ct− x,m]2//.

{
a→ 1

6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4, b→ −2m2,

c→ −
√

16− 16m2 + 16m4
}

c→ −
√

16− 16m2 + 16m4
}

c→ −
√

16− 16m2 + 16m4
}

1
6

√
16− 16m2 + 16m4+ 1

6

√
16− 64m2 + 64m4−2m2JacobiCN

[√
16− 16m2 + 16m4t+ x,m

]2

m:=0m:=0m:=0

− 1
6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2− 1
6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2− 1
6

√
16− 16m2 + 16m4 − 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2

− 4
3

m:=1m:=1m:=1

− 1
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2− 1
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2− 1
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t− x,m

]2

−2Sech[4t− x]2

usol[x , t ] = −2Sech[4t− x]2usol[x , t ] = −2Sech[4t− x]2usol[x , t ] = −2Sech[4t− x]2

−2Sech[4t− x]2

D[usol[x, t], t]==6usol[x, t]D[usol[x, t], x]−D[usol[x, t], {x, 3}]//SimplifyD[usol[x, t], t]==6usol[x, t]D[usol[x, t], x]−D[usol[x, t], {x, 3}]//SimplifyD[usol[x, t], t]==6usol[x, t]D[usol[x, t], x]−D[usol[x, t], {x, 3}]//Simplify
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True

m:=1m:=1m:=1

1
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t+ x,m

]21
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t+ x,m

]21
6

√
16− 16m2 + 16m4 + 1

6

√
16− 64m2 + 64m4 − 2m2JacobiCN

[√
16− 16m2 + 16m4t+ x,m

]2

4
3 − 2Sech[4t+ x]2

usol[x , t ] = 4
3 − 2Sech[4t+ x]2usol[x , t ] = 4
3 − 2Sech[4t+ x]2usol[x , t ] = 4
3 − 2Sech[4t+ x]2

4
3 − 2Sech[4t+ x]2

D[usol[x, t], t]==6usol[x, t]D[usol[x, t], x]−D[usol[x, t], {x, 3}]//SimplifyD[usol[x, t], t]==6usol[x, t]D[usol[x, t], x]−D[usol[x, t], {x, 3}]//SimplifyD[usol[x, t], t]==6usol[x, t]D[usol[x, t], x]−D[usol[x, t], {x, 3}]//Simplify

True

xmin = −8; xmax = 8;xmin = −8; xmax = 8;xmin = −8; xmax = 8;

sol2 = NDSolve
[{
D[u[x, t], t] == 6u[x, t]D[u[x, t], x]−D[u[x, t], {x, 3}], u[x, 0] == 4

3 − 2Sech[x]2,sol2 = NDSolve
[{
D[u[x, t], t] == 6u[x, t]D[u[x, t], x]−D[u[x, t], {x, 3}], u[x, 0] == 4

3 − 2Sech[x]2,sol2 = NDSolve
[{
D[u[x, t], t] == 6u[x, t]D[u[x, t], x]−D[u[x, t], {x, 3}], u[x, 0] == 4

3 − 2Sech[x]2,

u[xmin, t] == u[xmax, t]} , u, {x, xmin, xmax}, {t,−1, 1}]u[xmin, t] == u[xmax, t]} , u, {x, xmin, xmax}, {t,−1, 1}]u[xmin, t] == u[xmax, t]} , u, {x, xmin, xmax}, {t,−1, 1}]

{{u→ InterpolatingFunction[{{−8., 8.}, {−1., 1.}}, <>]}}

Plot3D[u[x, t]/.Flatten[sol2], {x,−7, 7}, {t,−1, 1},PlotPoints→ 50,PlotRange→ All,Plot3D[u[x, t]/.Flatten[sol2], {x,−7, 7}, {t,−1, 1},PlotPoints→ 50,PlotRange→ All,Plot3D[u[x, t]/.Flatten[sol2], {x,−7, 7}, {t,−1, 1},PlotPoints→ 50,PlotRange→ All,

AxesLabel→ {x, t,u}]AxesLabel→ {x, t,u}]AxesLabel→ {x, t,u}]

A:=Table
[
n!
k! SeriesCoefficient

[(
JacobiCN[ξ,m]2

) ((
Integrate

[
JacobiCN[ξ,m]2, ξ

])k)
,A:=Table

[
n!
k! SeriesCoefficient

[(
JacobiCN[ξ,m]2

) ((
Integrate

[
JacobiCN[ξ,m]2, ξ

])k)
,A:=Table

[
n!
k! SeriesCoefficient

[(
JacobiCN[ξ,m]2

) ((
Integrate

[
JacobiCN[ξ,m]2, ξ

])k)
,

{ξ, 0, n}], {n, 0, 5}, {k, 0, 5}]{ξ, 0, n}], {n, 0, 5}, {k, 0, 5}]{ξ, 0, n}], {n, 0, 5}, {k, 0, 5}]
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MatrixForm[Simplify[A]]MatrixForm[Simplify[A]]MatrixForm[Simplify[A]]

FullSimplify[MatrixForm[Inverse[A][[1;;5, 1;;5]].A[[2;;6, 1;;5]]]]FullSimplify[MatrixForm[Inverse[A][[1;;5, 1;;5]].A[[2;;6, 1;;5]]]]FullSimplify[MatrixForm[Inverse[A][[1;;5, 1;;5]].A[[2;;6, 1;;5]]]]



1 0 0 0 0 0
0 1 0 0 0 0
−2 0 1 0 0 0
0 −8 0 1 0 0
16 0 −20 0 1 0
0 136 0 −40 0 1







0 1 0 0 0
−2 0 1 0 0
0 −6 0 1 0
0 0 −12 0 1
0 0 0 −20 0




Reduce[Tanh[u] == ξ, u,Reals]Reduce[Tanh[u] == ξ, u,Reals]Reduce[Tanh[u] == ξ, u,Reals]

−1 < ξ < 1&&u == ArcTanh[ξ]

rr[ξ ]:=Sech[ξ]2rr[ξ ]:=Sech[ξ]2rr[ξ ]:=Sech[ξ]2

pp[ξ ]:=ArcTanh[ξ]pp[ξ ]:=ArcTanh[ξ]pp[ξ ]:=ArcTanh[ξ]

Composition[rr,pp][ξ]Composition[rr,pp][ξ]Composition[rr,pp][ξ]

1
Composition[rr,pp][ξ]

1
Composition[rr,pp][ξ]

1
Composition[rr,pp][ξ]

1− ξ2

1
1−ξ2

9. Extracting the second column of the exponnential Riordan array
[
cn(z,m)2, sn(z,m)

]

to determine the submatrix from the second column corresponding to the ex-

pansion of cn(z,m)2sn(z,m)

h = Simplify
[
Table

[
n!SeriesCoefficient

[
JacobiCN[z,m]2JacobiSN[z,m], {z, 0, n}

]
, {n, 0, 14}

]]
h = Simplify

[
Table

[
n!SeriesCoefficient

[
JacobiCN[z,m]2JacobiSN[z,m], {z, 0, n}

]
, {n, 0, 14}

]]
h = Simplify

[
Table

[
n!SeriesCoefficient

[
JacobiCN[z,m]2JacobiSN[z,m], {z, 0, n}

]
, {n, 0, 14}

]]

Table[h[[2n]], {n, 1, 7}]Table[h[[2n]], {n, 1, 7}]Table[h[[2n]], {n, 1, 7}]
{

0, 1, 0,−7−m, 0, 61 + 74m+m2, 0,−547− 2739m− 681m2 −m3, 0, 4921 + 80788m+ 85038m2+

6148m3 + m4, 0,−44287 − 2169797m − 6590134m2 − 2324554m3 − 55355m4 −

m5, 0, 398581+55949982m+ 413000631m2 + 421686548m3 + 60344691m4 + 498222m5 +m6, 0
}
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{
1,−7−m, 61 + 74m+m2,−547− 2739m− 681m2 −m3, 4921 + 80788m

+ 85038m2 + 6148m3 + m4,−44287 − 2169797m − 6590134m2 − 2324554m3 −

55355m4−m5, 398581+55949982m+413000631m2+421686548m3+60344691m4+

498222m5 +m6 }

vv:=vv:=vv:=

Transpose[Transpose[Transpose[

Table
[
SeriesCoefficient

[{
1,−7−m, 61 + 74m+m2,−547− 2739m− 681m2 −m3, 4921 + 80788m+Table

[
SeriesCoefficient

[{
1,−7−m, 61 + 74m+m2,−547− 2739m− 681m2 −m3, 4921 + 80788m+Table

[
SeriesCoefficient

[{
1,−7−m, 61 + 74m+m2,−547− 2739m− 681m2 −m3, 4921 + 80788m+

85038m2 + 6148m3 +m4,−44287− 2169797m− 6590134m2 − 2324554m3 − 55355m4 −m5,85038m2 + 6148m3 +m4,−44287− 2169797m− 6590134m2 − 2324554m3 − 55355m4 −m5,85038m2 + 6148m3 +m4,−44287− 2169797m− 6590134m2 − 2324554m3 − 55355m4 −m5,

398581 + 55949982m+ 413000631m2 + 421686548m3 + 60344691m4 + 498222m5 +m6
}
, {m, 0, n}

]
,398581 + 55949982m+ 413000631m2 + 421686548m3 + 60344691m4 + 498222m5 +m6

}
, {m, 0, n}

]
,398581 + 55949982m+ 413000631m2 + 421686548m3 + 60344691m4 + 498222m5 +m6

}
, {m, 0, n}

]
,

{n, 0, 6}]]{n, 0, 6}]]{n, 0, 6}]]

vv//MatrixFormvv//MatrixFormvv//MatrixForm

vvv:=Table
[
(−1)n+1vv[[n,All]], {n, 1, 7}

]
//MatrixFormvvv:=Table

[
(−1)n+1vv[[n,All]], {n, 1, 7}

]
//MatrixFormvvv:=Table

[
(−1)n+1vv[[n,All]], {n, 1, 7}

]
//MatrixForm

vvvvvvvvv

Table
[
(−1)n+1vv[[n,All]], {n, 1, 7}

]
.Table[1, {n, 0, 6}]Table

[
(−1)n+1vv[[n,All]], {n, 1, 7}

]
.Table[1, {n, 0, 6}]Table

[
(−1)n+1vv[[n,All]], {n, 1, 7}

]
.Table[1, {n, 0, 6}]




1 0 0 0 0 0 0
−7 −1 0 0 0 0 0
61 74 1 0 0 0 0

−547 −2739 −681 −1 0 0 0
4921 80788 85038 6148 1 0 0

−44287 −2169797 −6590134 −2324554 −55355 −1 0
398581 55949982 413000631 421686548 60344691 498222 1







1 0 0 0 0 0 0
7 1 0 0 0 0 0
61 74 1 0 0 0 0
547 2739 681 1 0 0 0
4921 80788 85038 6148 1 0 0
44287 2169797 6590134 2324554 55355 1 0
398581 55949982 413000631 421686548 60344691 498222 1




{1, 8, 136, 3968, 176896, 11184128, 951878656}

The code for section the inverse transformation of the embeddded submatrix to

get the row sums for m = 1 multiplied by (−1)n+1 resulting to the sequence

corresponding to A062197.

A:=Table

[
n!
k! SeriesCoefficient

[(
1

(1+z)3

)(
z

1+z

)k
, {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]
A:=Table

[
n!
k! SeriesCoefficient

[(
1

(1+z)3

)(
z

1+z

)k
, {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]
A:=Table

[
n!
k! SeriesCoefficient

[(
1

(1+z)3

)(
z

1+z

)k
, {z, 0, n}

]
, {n, 0, 6}, {k, 0, 6}

]

AA:=Table
[
(−1)n+1A[[n,All]], {n, 1, 7}

]
//MatrixFormAA:=Table

[
(−1)n+1A[[n,All]], {n, 1, 7}

]
//MatrixFormAA:=Table

[
(−1)n+1A[[n,All]], {n, 1, 7}

]
//MatrixForm

AAAAAA
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Table
[
(−1)n+1A[[n,All]], {n, 1, 7}

]
.Table[1, {n, 0, 6}]Table

[
(−1)n+1A[[n,All]], {n, 1, 7}

]
.Table[1, {n, 0, 6}]Table

[
(−1)n+1A[[n,All]], {n, 1, 7}

]
.Table[1, {n, 0, 6}]




1 0 0 0 0 0 0
3 −1 0 0 0 0 0
12 −8 1 0 0 0 0
60 −60 15 −1 0 0 0
360 −480 180 −24 1 0 0
2520 −4200 2100 −420 35 −1 0
20160 −40320 25200 −6720 840 −48 1




{1, 2, 5, 14, 37, 34,−887}

The transfer function and plot for the Bessel filter using
[

1
4
√

1−4t
, 1− 4

√
1− 4t

]

BodePlot[TransferFunctionModel[{{{1}}, 1s+ 1}, s]]BodePlot[TransferFunctionModel[{{{1}}, 1s+ 1}, s]]BodePlot[TransferFunctionModel[{{{1}}, 1s+ 1}, s]]

BodePlot[TransferFunctionModel[{{{5}}, s2 + 5s+ 5}, s]]BodePlot[TransferFunctionModel[{{{5}}, s2 + 5s+ 5}, s]]BodePlot[TransferFunctionModel[{{{5}}, s2 + 5s+ 5}, s]]

BodePlot[TransferFunctionModel[{{{45}}, s3 + 12s2 + 45s+ 45}, s]]BodePlot[TransferFunctionModel[{{{45}}, s3 + 12s2 + 45s+ 45}, s]]BodePlot[TransferFunctionModel[{{{45}}, s3 + 12s2 + 45s+ 45}, s]]

BodePlot[TransferFunctionModel[{{{585}}, s4 + 22s3 + 177s2 + 585s+ 585}, s]]BodePlot[TransferFunctionModel[{{{585}}, s4 + 22s3 + 177s2 + 585s+ 585}, s]]BodePlot[TransferFunctionModel[{{{585}}, s4 + 22s3 + 177s2 + 585s+ 585}, s]]
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