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Abstract

Smart farming (SF) is a sustainable farm management concept used for the intensification of
food production to meet the growing demand. With the progress of the Internet of Things,
advanced systems have been widely proposed for monitoring and processing data to generate
insights that help producers to optimize farm management processes. Centralizing data to a
remote Cloud is the conventional data processing method, though the extended latency in
getting insights back to the application and intermittent Internet connectivity limit its adoption
particularly in time-sensitive applications. Alternatively, distributed data analytics methods
have been introduced to enable processing data in proximity to the sources and then combine
insights accordingly for making timely and accurate decisions cooperatively. However, most
of the SF systems currently in use operate in isolation due mainly to the lack of analytic
techniques that can effectively incorporate them for processing data. Consequently, their full
potential as well as the data collected by them is significantly under-utilized.

This PhD research focuses on the development of distributed data processing and learning
methods to enable cooperative data analytics. Initially, this research explores how large-
scale complex data can be simplified for conducting effective analysis and then proposes
a Compressed Learning (CL) approach and a novel metric, known as animal importance
(AIm), to extract meaningful information to perform learning effectively. To illustrate the
potential of the CL approach in processing large-scale data in the SF domain, this study
presents an application of CL in analyzing large-scale Mid-Infrared (MIR) milk quality data.
Also, as an application of the AIm metric in the smart dairy farming domain, the research
discuses how effectively AIm could be used for alerting the prevalence of sick and estrus
cows in a herd based on the variability in behavioral dynamics. Second, this PhD research
develops a hybrid model to mitigate drawbacks that limit using conventional machine learning
models and proposes the Federated Learning (FL) method to train distributed data sources
cooperatively. The FL-based system is analyzed to determine its applicability for assessing
milk quality by incorporating MIR milk quality data collected at distributed farms. This
is then followed by considering the fact the limitations of the FL-based approach when it
comes to making the data analytics more trustable and transparent to every participant in the
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distributed network, by integrating a Block Chain-enabled fully decentralized distributed
learning framework. In particular, this framework integrates the Internet of Nano Things
(IoNT) that has previously not taken into account any Block Chain-enabled system. The
proposed framework is then used for monitoring the level of chemicals (e.g., fertilizers) on
farmlands. Finally, this PhD research discusses optimum utilization of available resources
in cooperative distributed data analytics by offloading computations to neighboring devices.
Computation offloading enhances the timeliness and learning accuracy in cooperative data
analytics as well as enabling the efficient use of limited energy resources found in sensor
devices, and this includes solar energy harvesting devices.
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Chapter 1

Introduction

1.1 Background and Motivation

This section provides the background and motivation for the research work presented in
this thesis. First, section 1.1.1 provides a general overview of the agriculture sector (agri-
sector) along with its current challenges. The thesis builds on these challenges by discussing
solutions that have been proposed for Smart Farming in section 1.1.2, and this is followed
by a discussion on how data analytics can contribute towards addressing these challenges in
section 1.1.3.

1.1.1 Agri-Food Production and Challenges

Agriculture is the oldest manufacturing sector and still the major livelihood for nearly 40%
of the world population [1]. It also plays a vital role in feeding the world, while making
a significant impact on society as well as the economy. In the past, mechanization of the
agri-sector contributed to a considerable shift in efficiency, productivity and sustainability.
The study in [2], for instance, reported that the world crop yield increased by 70% and
the greenhouse gas emission dropped by 23.8% during the period 1960-2007 and 1990-
2012, respectively. While these advancements have primarily focused on increasing food
productivity, it is not sufficient in mitigating the critical challenges raised in parallel to the
rapid expansion of the agri-sector. A number of these critical challenges include:

• Population growth: Based on the statistics provided by the Food and Agriculture
Organization (FAO) of the United Nations, the world population is expected to be
around 9.2 billion by 2050, and consequently, the food demand will be increased by
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70% [3]. At the same time factors such as growing urbanization and increasing income
are accelerating the world food demand.

• Food loss and waste: Nearly one-third of food produced for human consumption is
wasted annually. This causes economic losses of around 940 billion dollars, along with
wasting natural resources and increasing the CO2 footprint of food products [1].

• Environmental impact: Resource incentive and high-input farming strategies have
increased deforestation, degradation of natural resources, increased emission of green-
house gases, and soil depletion, resulting in instability of the ecosystem (e.g., loss of
biodiversity) and climate change.

• Food quality and security: With the growing demand for food, the use of low quality
and unsafe food production practices (e.g., excessive use of chemicals) has been
increased, creating critical challenges in food safety and human health.

• Transparency in food supply chain: Lack of collaborative and coordinated food
production and distribution strategies limits the available information for effective
management of food supply and demand. Consequently, this increases food waste,
health issues and economic loss.

• Competition for resources and market: Natural resources available for farming are
becoming extremely limited, though their usage is rapidly increasing due to extensive
farming. The rapid expansion of the agri-sector has also created market competition
which negatively impacts the small-scale farm holders who find it difficult to compete
with large-scale multinational companies.

Alternatively, the recent developments in the Internet of Things (IoT), Internet of Nano
Things (IoNT) and Information and Communication Technologies (ICT) are being widely
proposed to overcome these limitations. These technologies provide great opportunities to
convert the agri-sector into a smart sector, by developing innovative approaches to smart
food production and distribution strategies. Therefore, the agri-sector is aiming today to
integrate these technologies in order to address the growing food demand through sustainable
intensification of productivity. For example, it is expected that the use of IoT devices
in agriculture will reach up to 75 million by 2020 [1]. The Smart Farming concept is
the realization of integrating modern technology in the agri-sector in order to balance the
environmental costs while aiming to feed the current and future population.
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1.1.2 Smart Farming (SF)

Smart Farming (SF) is a farm management concept that is used to employ sustainable farm
management that aims to create greater production and profit with minimum environmental
impact and waste. In doing so, modern IoT devices such as sensors, mobile phones, robots,
and various ICT infrastructures will collectively monitor the spatial and temporal variability
(e.g., grass growth, soil fertility, weather and animal well-being) during the farming process.
The collected data is then processed and converted into actionable insights that help producers
to make meaningful and timely informed decisions to optimize the farm management process.
Today, SF is not only about intensifying farm productivity but also maintaining a transparent
and credible food supply chain. Hence, farm management as well as supply chain processes
such as consumer buying behavior and satisfaction and variability in demand for different
food items are carefully monitored and managed as a single system. This means that the
collected data is integrated and processed cooperatively to derive insights that can empower
the collaborative operation of the entire food production and supply chain system. An
example of this is adjusting dairy milk production based on the market demand as well as
prevailing weather conditions, while maintaining optimum animal well-being (see Figure
1.1). This new form of connected system can bring several benefits to the agri-sector, and
examples of this are listed as follows:

• Community farming: Producers can work together as a community to improve the
quality and effectiveness of their farming practices. This is particularly beneficial for
rural farming where there are limited resources. For example, IoT technologies can be
used to produce a common data storage to share information, thereby increasing the
interactivity between farmers, retailers, and agri-experts.

• Operational efficiency: Continuous monitoring of SF processes can enable early
warning of health issues and adjustments in the production and supply chain depending
on the variability in the market demand.

• Cost and wastage: Remote monitoring and self-adaptability of a large number of IoT
devices deployed in SF can contribute to reducing human labor and saving money
and time required for farm management. Such autonomous functionality allows for
on-demand supply of farm inputs such as fertilizers, feed, and water. This helps to
reduce farm input wastage significantly.

• Awareness: Collaborative SF enables everyone (e.g., farmers, consumers) to be aware
of the whole food production and supply chain practices. For example, producers are
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well aware of current food prices and demand, market competition, overall environ-
mental impact. Consumers can also have opportunities to access information such as
food quality, safety and freshness required in order to determine the quality of products
that they are going to buy.

Therefore, SF has a great potential in mitigating the challenges mentioned above and
addressing the world’s increasing food demand.

Various advanced systems are available today in the agri-sector to provide intelligent
services to enable autonomous and remote control of SF operations in order to improve the SF
practices. These systems primarily consist of three main components: IoT devices, supporting
communication infrastructure, and data storage and processing facilities. Integrating these
elements creates a smart web of connected objects (e.g., wireless sensor network (WSN)),
enabling monitoring of various farming processes that can possibly be controlled remotely.
The IoT devices are mostly sensors which are mainly used for monitoring different parameters
such as weather, soil nutrients and food quality. Communication technology plays a vital
role in deploying IoT systems, and some of the commonly used communication technologies
are low power wide area (LPWA), Bluetooth and WiFi. The Internet paves the way to
exchange data over the network and enables data to be available anywhere and anytime.
Cloud, Fog and Edge computing methods coupled with advanced data analytic methods such
as Machine Learning (ML) and Artificial Intelligence (AI) are used to process data in order
to derive insights for decision-making. For instance, DairyMgt, a suite of decision support
systems (DSSs) developed for smart dairy farming sectors, consists of decision support
tools that enable monitoring of animal nutrition and feeding, production and productivity,
environmental stewardship, price risk management and financial analysis [4].

The progressive involvement of such advanced systems accelerates the datafication of
the agri-sector. Consequently, the whole agri-food production and supply chain have shifted
towards data-driven and data-enabled frameworks which has propelled new innovations in
disruptive technologies. For example, the use of emerging nanotechnology in SF applications
for monitoring nutrients in soil has expanded the spectrum of data from the macro-scale to the
nano-scale, creating opportunities to gain novel insights and deeper knowledge [5]. Thus, the
knowledge acquired from data plays a vital role in empowering sustainable farm productivity
and supply chain operations to meet increase in food demand. Therefore, analysis of SF data
would not only help to improve the effectiveness of farm practices but will also stimulate the
innovation of novel strategies to employ more knowledge-based food production and supply
chain operations.



1.1 Background and Motivation 5

Information	sharing	and	collaborative	operation		

Information	sharing	and	collaborative	operation		

Customers	and	SupermarketsDistributers Storage Suppliers

Food	supply	Level	

Market	AnalystsStakeholders Stock	market	

Stakeholder	Level	

Scientists

Grass	managementHerd	Management

Farm	Level	

Milking	Parlor	

Fig. 1.1 Data analytics at different levels of the food production and supply chain.

1.1.3 Data Analytics in Smart Farming

The greater prevalence of modern IoT devices, hardware and software systems, and sup-
porting communication technologies can enable generation of data from diverse sources at
different levels in the SF process. This may include data sources from animals/plants-, the
farm environment-, production facilities-, and end-product-levels (Figure 1.1). Different
communication technologies described in section 1.1.2 can be used for efficient delivery
of data to infrastructure storage (and processing) resources such as remote Cloud and data
centers. Consequently, large amounts of heterogeneous and complex datasets are collected in
three different forms; structured, semi-structured, and unstructured.

The data analytic process may vary depending on the complexity and nature of the data to
be analyzed. At the same time, data analytic process is executed to suit application-specific
requirements such as resource availability on the device. Therefore, these two factors are
inter-related and various ML techniques and models are available for effective analysis of
large-scale complex data under diverse application specific requirements.

1.1.3.1 ML Techniques

Considering the complexity and nature of data, modern data science uses several advanced
ML techniques. Example of these techniques include Representative learning, deep learning,
transfer learning, distributed and parallel learning, and Active learning [6]. Representative
learning can effectively deal with higher dimensional data as it enables deriving a common
representation by using different data analysis techniques such as classification and feature
selection. Transfer learning is designed to learn from datasets that have different distributions,
while distributed and parallel learning can deal with multidisciplinary datasets. Deep learning
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is a promising method for extracting features from both structured and unstructured data.
However, it requires massive amounts of data for achieving higher accuracy and collecting
such large datasets has proven to be difficult in some applications. As an alternative, active
learning is commonly used as it can achieve higher accuracy with limited data.

As far as application requirements are concerned, different learning approaches are used
to derive insights, and primarily, they are divided into four categories; real-time data analytics,
off-line data analytics, memory-level data analytics, and massive data analytics [6]. Real-time
data analytics is used when immediate responses are required. This can include time-sensitive
(streaming) data that has to be processed in real-time based on the application deadline in
order to generate and distribute insights. For example, the distributed and parallel learning
method can be used to adjust irrigation systems according to daily weather changes. In
certain cases, long-term data collection is required in order to take action to optimize farming
operations in response to climate change. In such cases, off-line data analytics is used as
there is no need for immediate responses (e.g., historical data analysis), and representative
learning is a good fit. When there is sufficient memory space to perform data analytics
compared to the data volume, memory-level data analytics is used. In situations where there
is a large data set, massive analytic approaches such as Cloud computing are commonly used
and deep learning is one of the most famous models utilized.

1.1.3.2 ML Tasks

The ML techniques mentioned above use different tasks to extract insights based on different
models and they are mainly identified as classification, clustering, association rule mining,
and predictions [3]. These ML tasks are further categorized as supervised, semi-supervised,
and unsupervised depending on whether the data used for the task is labeled or not. Classifi-
cation is a supervised learning technique widely used for identifying groups that represent
mutually distinct characteristics. For instance, identifying groups of animals which may
have nutrient deficiencies will require classification. The most commonly used ML models
for classification are Artificial Neural Network (ANN), Support Vector Machine (SVM),
k-nearest neighbor (kNN), and Bayesian models [7]. Clustering is similar to classification,
but it is an unsupervised approach and mostly used for grouping massive datasets into smaller
subgroups which can easily be used for further analysis. Identifying inter-relationships among
different parameters is vital for generating robust insights and in doing so, the associate rule
mining is a promising method. Prediction is the most commonly used supervised learning
method to identify, for instance, food consumption trends. Time series based ARMA and
ARIMA models, regression, ANN, deep learning, and fuzzy logic techniques are some of the
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commonly used ML models for prediction. In SF, these methods can be used to warn farmers
about the prevalence of diseases and extreme weather conditions and customer buying trends.

Availability of sufficient resources is one of the most critical factors that need careful
attention before using these data analytics techniques. Based on both the nature of the
data and application requirements (e.g., timeliness of learning outcomes) and availability of
computing, communication and storage resources, these learning techniques are mainly used
under two schemes: centralized and distributed ML (CML and DML). With the advances in
modern ICT and IoT devices and data mining methods, the development of novel CML and
DML based analytic platforms have gained phenomenal success in recent years.

Centralized Machine Learning (CML)

CML is the most dominant ML approach and facilitates the extraction of meaningful insights
from complex data in more precise and effective manner. Most sensor technologies and
IoT platforms provide services to collate and store vast quantities of data collected from
geographically distributed sources. Computational facilities for analyzing such data mostly
reside in centralized data centers (e.g., Cloud) where data will be consolidated as single large
datasets and analytics can subsequently be performed. It is widely accepted that CML is
highly advantageous for developing new hypotheses, as it enables improved learning accuracy
and model acceptability [8]. The most widely used CML approach is Cloud computing [9]. It
facilitates on-demand access to computational and storage requirements in remote servers via
the internet. Furthermore, the Cloud infrastructure provides computing facilities by utilizing
resources based on the load of the tasks and avoids over and under-provisioning of resources.
Thus, the infrastructure can save capital expenditure and in particular the energy costs.

However, the unprecedented volumes of data collected by IoT devices can overwhelm
the storage, computing, and communication capabilities of existing CML-based data analytic
platforms. This causes unnecessary delays in communication and computation and can affect
applications in rural agriculture where there is intermittent connectivity between the Cloud
infrastructure and farms. This results in extended latency, making CML platforms unsuitable
for time-sensitive and real-time analytic applications. At the same time, CML suffers from
other challenges such as single point failure, storage, energy consumption, data heterogeneity
and security problems. As a promising alternative to mitigate these shortcomings, DML
platforms have gained a considerable attention in modern-day data analytics.
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Distributed Machine Learning (DML)

DML is based on the data gravity concept that uses computing, storage and networking
resources in close proximity to the data sources. This means the data analysis are performed
synchronously in close proximity or on the device that generated the data. This model
provides new opportunities for extracting insights from large-scale data in a real-time manner
with minimum need of centralized data collection, while optimally utilizing distributed
computing, storage, and communication resources. Thus, DML minimizes the dependency
on intermediate (or a third party) entities such as Cloud servers, which in turn facilitates
preservation for data security, privacy and ownership, which are identified as the most critical
challenges in modern-day data analytics applications. Therefore, DML can ensure timely and
accurate decisions by collaborating with pervasive data sources. Fog- and Edge-computing
are new paradigms that are utilizing DML methods and work in conjunction with Cloud
computing systems [10]. They provide opportunities for partial migration of computing
tasks away from the Cloud towards the edge of the network. Fog or Edge devices with
deployed intelligence are capable of executing light-weight and ML tasks (e.g., aggregation,
classification) and making time-sensitive decisions accordingly. In parallel to this, certain
data and learning outcomes are also sent to the Cloud for long-term storage and further
analysis. In doing so, they contribute to reducing application latency and minimize data
communication cost for transmitting data to the Cloud.

Based on these computing paradigms, more advanced and also fully distributed DML
platforms have been introduced for modern-day DML applications. For example, Apache

Hadoop software library is a distributed data processing platform in which large datasets
are processed as batches across clusters of computers. Apache also proposed Storm [11]
and Spark [12] platforms for processing streaming data in order to improve the timeliness
of the analytical outcomes. MapReduce [13] is also a widely used DML platform for
parallelism of data processing tasks. Similarly, Horovod, a distributed learning framework,
is mainly designed for TensorFlow, Keras, PyTorch and MXNet to employ distributed deep
learning algorithms [14]. The most recent DML platforms, CommentCloudCare(C3), offers
a suite of functionalities for conducting more transparent and privacy preserved analysis
on sensitive data [15] and Galaxy learning framework uses Block Chain technology and
Federated learning jointly for realizing fully distributed data analytics [16]. However, these
computing approaches are confronted with several challenges such as as what and how

much computations to offload to the edge devices in order to stabilize the trade-off between
communication tasks. Further advances are, therefore, required to enhance the potential of
scalability, security, autonomy and programmability of DML platforms [17].
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1.2 Research Scope of the Thesis

This section discusses the scope of the PhD research presented in this thesis. Section 1.2.1
presents the challenges that current data analytic systems are confronted with and will be the
main focus of the research. Section 1.2.2 will present the research objectives.

1.2.1 Challenges

Advances in data analysis techniques along with modern IoT and ICT and their applications
in the agri-sector provide greater opportunities to bring more farms and stakeholders into
the dynamic food production and distribution cycle (agri-ecosystem). This combination can
pave the way to transforming the agri-ecosystem into a smart web (e.g., as illustrated in
Figure 1.1) that can operate autonomously and controlled remotely to provide timely and
intelligent services with minimal human intervention. Nonetheless, to achieve such a level of
services, it is crucial to have advanced data analysis techniques that empower collaborative
operations with various technologies, devices, and systems contained in the smart web (i.e.,
agri-ecosystem) for decision-making. However, there are several challenges where care
must be taken in developing such techniques. This is because addressing these challenges
will not only create opportunities for alternative solutions to mitigate problems, but it will
also improve the potential to create novel opportunities for developing innovative solutions.
Therefore, this section aims to explore some of the most critical challenges in the context of
smart dairy farming, and they are listed as follows:

• C1-Data Complexity: A large number of devices continuously monitor the farming
process and generate massive datasets such as milk quality data, accelerometer data
of animal mobility, rumination and IR-imagery data of animal Body Condition Score
(BCS). The unprecedented growth of such massive data collection exceeds the com-
munication, computing and storage capabilities of the existing data mining platforms.
Since these voluminous datasets are formed by aggregating data coming from geo-
graphically distributed data sources at different time points, they are highly complex
and contain redundant and unnecessary data. Moreover, high noise accumulation,
spurious correlation, and inconsistency in ML model selection are also some of the
other critical issues associated with such voluminous data. These issues, however, limit
the effective transferring, storing and analysis of data for extracting timely and accurate
insights. More specifically, processing these data in resource-constrained environments
such as in rural farming environments is highly challenging. Thus, care must be taken
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for effective processing such as cleansing, dimension reduction and compression of
data before applying data analytics to extract insights. It would significantly help to
simplify data for conducting efficient analysis, transferring and storing. Therefore, the
design of novel metrics for explaining complex data, and optimal and effective data
processing methods which can optimally utilize the available resources is of utmost
importance.

• C2-Real-time Data Analytics: SF applications are highly dynamic because the factors
that affect the stability of the agri-ecosystem are highly distributed and time-variant,
resulting in their significance varying over the period of SF management. This em-
phasizes the need for analysis of data in a real-time to capture time-variant dynamics
for making timely and accurate decisions. However, the growing complexity of data
limits the use of existing ML models and algorithms for conducting such data analytics
as they are mostly designed for static data analytic applications under CML settings.
Alternatively, many DML algorithms have been proposed, but they are confronted
with critical issues such as interoperability with different ML techniques as well as
distributed data sources. Thus, they have limited (or no) knowledge and flexibility in
mining data by incorporating information from pervasive data sources. Consequently,
these drawbacks limit the use of the full potential of the collected data as well as the
available SF technologies currently in use for driving insights to employ effective SF
practices. Therefore, SF requires effective and advanced ML models and algorithms
that can perform real-time analytics.

• C3-The Need to be Inter-connected: Various devices, systems and technologies
provide infrastructure to intensify SF practices and it is highly acknowledged that their
collaborative operation can produce value-added services to the SF system. However,
the current solutions are fragmented and poorly combined due to various reasons such
as data sharing issues. Hence, they have very limited (or no) inter-communicability and
operate in isolation. Consequently, the full potential of the devices and the technologies
currently in use is significantly underutilized. This hinders the potential of inferring
useful information by integrating distributed SF data sources. Moreover, the ML
models and data analytic systems currently in use are not specially designed for SF
applications, so that necessary modifications are essential to use them for a more in-
depth understanding of the underlying dynamics of the SF system. However, initiatives
for the development of innovative solutions for overcoming these drawbacks are still
at the early stage. Therefore, the urgency of exploring solutions to allow flexible
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incorporation of multiple data sources for effective decision-making is critical in the
SF sector.

• C4: Safety and Credibility of Services: Since the SF sector is increasingly becoming
a data-driven and data-enabled framework, data is one of the most valuable assets. The
collaborative use of data is the key to generating precise insights required for operating
efficient farm management practices. However, data owners are now more concern
about the safety of their data due to the lack of data protection options deployed
in data mining platforms. Limited facilities available for ensuring the transparency,
integrity, validity and quality of data (and decisions) shared over the agri-ecosystem
also negatively impact the validity and trustworthiness of SF services. This is because
there may be malicious stakeholders who tamper, modify or delete sensitive data and
share misleading information. As a result, data owners are reluctant to participate in
collaborative decision-making. At the same time, valuable datasets reside in private
repositories without realizing their significance in optimizing SF practices. Therefore,
this emphasizes the need for novel data analytic mechanisms equipped with advanced
features that guarantee the safety of data as well as the credibility of the services for
the agri-ecosystem.

• C5-Energy Efficiency: It is widely recognized that deploying on-board intelligence in
devices such as sensors used in SF improves the effectiveness of the decision-making
process, such as memory-level analytics. However, such devices are mostly battery-
powered, and executing analytical tasks (e.g., sensing, aggregation, and classification)
is challenging as battery power is not always sufficient. Transmitting data to the Cloud
infrastructure is an option, although the cost of energy for data transmission depends on
the distance to the Cloud and the amount of data. Therefore, endeavors to minimize the
transmission of massive datasets over long distances to the Cloud must be reconsidered
to optimize energy consumption. Alternatively, efficient utilization of in-network
energy is a promising solution such as offloading computations to neighboring devices
based on their energy profiles. Such energy-aware cooperative computing methods
have the potential to enhance the energy balance across devices and contribute to the
sustainability of the SF operations. Therefore, it is of utmost importance to make
efficient use of available resources.

These challenges, however, complement each other and their criticality could be varied
depending on the application requirements. Care must be taken to understand these challenges
and necessary actions must be taken to overcome them effectively. Challenge C1 primarily
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emphasizes the need for techniques for simplifying data complexity. The next two challenges,
C2 and C3, are concerned with the significance of learning algorithms that have greater
potential in capturing time-variant dynamics by incorporating data generated over distributed
sources. When performing such distributed analytics, the safety of data as well as the quality,
validity and trustworthiness of data analytic can always be problematic due to the diversity in
data collection and processing methods. Therefore, C4 emphasizes the significance of having
an analytical framework that can ensure these factors. Finally, C5 considers the optimal
utilization of energy as it is a crucial challenge, and in particular for resource-constrained SF
applications.

1.2.2 Research Objectives

To address the challenges presented in section 1.2.1, this PhD research aims at developing a
distributed data processing and learning framework by using state-of-the-art ML techniques,
which can result in fully/semi-automated decision-making for smart dairy farming. Initially,
this study explores methods for simplifying highly complex and voluminous data with
minimal loss of information, thereby employing effective data mining practices. In particular,
this research focuses on deriving mechanisms for efficient data compression and defining
novel metrics for a more in-depth characterization of the underlying dynamics in data.
Secondly, this study takes into account deriving novel ML models and then performing
distributed analytics, guaranteeing data safety as well as validity of the learning outcomes.
Finally, since finding sufficient resources for executing distributed data analytics is a critical
challenge, the present study focuses on optimizing the available resources in a distributed
computing environment. Therefore, the objectives of this research are formulated by the
following Research Questions (RQ).

• RQ1-Simplifying Data: What are the optimal techniques and metrics for simplifying
and explaining complex data with minimal loss of information?

• RQ2-Distributed Learning: What frameworks can be designed to make data analytics
effective by securely incorporating distributed data sources?

• RQ3-Energy Management: How can energy be flexibly managed for systems that
require distributed data analytics?
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1.3 Summary

Agriculture is the one of oldest industries and the main livelihood for majority of the people.
Advances in technologies has led to considerable development over the last 100 years and the
agri-sector today is increasingly relying on technology. Consequently, the nature of farming
and food production has changed dramatically in order to address the world’s increasing
food demand. In parallel to this, several challenges such as environmental impact, resource
competition, population growth, and food waste, loss, and quality have also been raised and
could not be disregarded in addressing the rapidly growing future food demand. To overcome
these challenges, SF is widely used and it is a farm management concept to facilitate the
sustainable intensification of food production. In SF, the farming process is continuously
monitored by using modern IoT and ICT technologies, as well as new paradigms such as the
IoNT. The insights derived from the collected data are subsequently used to optimize farm
management for sustainable intensification of productivity as well as the food supply chain.
Therefore, learning from data plays a crucial role in obtaining timely and useful knowledge
that can subsequently be used to increase the success rate of the SF sector. However,
several challenges hamper effective data processing, and consequently, the significance of
SF data as well as the full potential of the technologies are significantly under-utilized. This
PhD research, therefore, aims to explore advanced and effective data analytic methods to
increase the potential of making timely and accurate decisions for effective farm management,
while overcoming such challenges in the context of smart dairy farming. The thesis has
identified five critical challenges which limit effective data analysis and decision-making.
Based on these challenges, three research questions (RQ) to address these challenges have
been formulated. The RQs mainly aim to simplify large-scale complex data through the
development of distributed data mining techniques, and optimizing the energy utilization in
data analytics.

Document Organization

This chapter discussed the background and motivation, along with the scope and objectives of
this PhD research. In chapter 2, the thesis will present a survey of relevant literature, followed
by a summary of the contribution of the research in chapter 3. In chapter 4, conclusions of the
present research will be presented, including the future works. Finally, the thesis will present
the research outcomes through original research articles in the subsequent Appendices.



Chapter 2

State-of-the-art

In this chapter, we discuss the state-of-the-art solutions that address the research problems
considered in the PhD research. Initially, section 2.1 presents an overview of the agri-
sector. This is followed by a discussion on the current solutions for data analytics in SF in
section 2.2 which includes data collection methods, ML models, and analytical frameworks
proposed to overcome limitations and drawbacks. Next, section 2.3 presents the methods for
resource management in data analytics. Finally, section 2.4 summarizes data analytics in SF,
emphasizing the current challenges that need further attention.

2.1 Overview of the Agri-sector

Agri-sector in the Past

With the industrial revolution in the 19th century, advances such as nitrogen fertilizers and
harnessing the energy from fossil fuels and integration of information technology with
geospatial tools (e.g., geographical information systems (GIS) and general positioning
systems (GPS)) have been introduced into the agri-sector. This has enabled the agri-sector to
gain significant improvements in food productivity [2]. However, drawbacks such as high
costs and limited data monitoring capabilities have made their deployments unsuitable for
large-scale applications in the agri-sector. At the same time, the integration of these new
technologies have primarily focused on increasing productivity and paid minimum attention
towards mitigating critical issues such as sustainability, diminishing natural resources (e.g.,
arable land) and uncertainty in climate conditions. These factors cannot be disregarded with
the rapid growth of the agri-sector. Ramping up the food production to feed the increasing
world population continues to be a critical challenge. The FAO report [18] has emphasized
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that major transformations of agriculture systems for food production and supply chain are
necessary to overcome these challenges, and to provide secure and healthy food for everyone.
Therefore, endeavors for developing sustainable agricultural systems to increase high-quality
food products had been a vital concern in the past.

Agri-sector Today

Today, the agri-sector widely uses SF concepts as a promising solution to address the
increasing food demand. Under SF, various advanced devices and systems have been
proposed into the agri-sector and they contribute to optimizing the farm management process
while mitigating the challenges mentioned in section 2.1. Sensors are increasingly being
introduced into the modern agri-sector, and almost two-fifth of the farms are now using
sensor-based systems (e.g., wireless sensor networks) [19]. The sensors are generally used
for monitoring various farm processes in order to create opportunities to optimize farm
management practices. Examples of sensors being used include AfiMilk, AgriCam, and
FullWood sensors, which are used for detecting mastitis and providing early warnings for
producers to take preventive actions. Meanwhile, SmartBow and EmbedVets sensors are used
to monitor cow rumination and mobility behaviors; rumination monitoring enables detecting
digestive problems, while tracking mobility patterns provides insight on the animal behavior,
which can subsequently be used to detect health issues such as lameness [20]. Various
robotic systems are also used in diverse SF applications to replace labor-intensive tasks
more effectively and autonomously. For example, the Lely’s Astronaut A5 and DeLaval’s

Voluntary Milking systems do not only cut the labor cost but also allow cows to milk in a
comfortable and safe environment. The LelyGrazeway is another robotic technology used
for cows to guide them to suitable grazing locations [21]. The report in [21] also mentions
the use of drones for the agri-sector. For example, PrecisionHawk and Agras MG-1 are used
for detecting grass growth and spraying different chemicals such as fertilizers, pesticides,
and herbicides; grass growth monitoring and applying nutrients based on their need in
order to manage high-quality grass are critical for pasture-based dairy farms as grass is the
primary feeding source of cows. Furthermore, more advanced systems formed by integrating
sensors and ICT infrastructure are also available today in the agri-sector. For example,
Stellapps [22] leverages IoT to offer all types of SF services from general herd management
to milk evaluation and distribution while Agriwebb [23] facilitates farm record-keeping.
Also, KEENAN InTouch [24] is another integrated system that uses a Cloud-based system to
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provide information for proper feed mixing formula to improve efficiencies and minimize
cost and waste.

Overall, these advanced devices, systems, and technologies provide a range of opportuni-
ties to monitor and track the dynamics in the agri-ecosystem, and to adjust it accordingly to
intensify sustainable productivity. The study in [25], for instance, described the general use
of these high-tech systems in the SF environments under four main categories which includes
monitoring, interpretation, integration, and fully/semi-autonomous decision-making. In [26],
an in-depth summary is discussed on the use of robotic milking and automated farming.

The adoption of these high-tech systems is increasing continuously and it is expected
that connected devices in the agri-ecosystem will grow to 225 million by 2024 [1]. In many
studies such as in [4], the collaborative use of these high-tech systems is highly recommended
as it improves the potential of empowering new services. However, achieving such a level
of integrated functionality is still at the early stage, and there are several challenges such as
lack of infrastructure, functional incompatibility, and limited inter-communicability. As a
result, today, these systems operate in isolation and that their full potential is significantly
under-utilized in SF practices [27]. Therefore, the agri-sector requires advanced tools
and technologies which are capable of performing intelligent analysis while optimally and
effectively utilizing the available resources.

Agri-sector Tomorrow

As SF technologies continue to develop, the agri-sector of the future will be equipped
with advanced high-tech systems that seamlessly work together as a smart web to enable
fully automated SF practices. Such advanced systems will not only enhance monitoring,
controlling, and optimizing farming and supply chain practices but will also encourage
more advanced and intelligent agricultural systems. This will create opportunities for
producers to adjust their farm management practices based on facts rather than gut feelings
[3]. Consequently, SF systems will be more proactive, which in turn, enables operating
demand-driven farming with improved end-to-end visibility and traceability in order to
ensure information such as quality and safety of food in the supply chain. Furthermore, they
will open paths for improving customer food awareness and also reduce food scandals such
as the distribution of low quality and fake food brands. Therefore, to achieve these levels
of advanced and autonomous agricultural systems in the future, we discuss the attempts
that have been made to propose novel solutions as well as their gaps in the context of data
analysis.
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2.2 Data Analytics in Smart Farming

The growing prevalence of high-tech systems in SF facilitates the collection of large data
sets that can provide unprecedented decision-making capabilities, and not only for farm
management but also for the entire food supply chain. The study in [28], for instance,
emphasized that data has become one of the most valuable assets in the agri-sector and
analysis of data is necessary to make important decisions. Moreover, among the several
application domains that acquire direct benefits to enhance the quality and efficiency of their
services through data analytics outlined in [29], the agri-sector is one of the domains that are
greatly emphasized. Therefore, the analysis of SF data using advanced AI and ML techniques
to extract insights plays a vital role in the SF decision-making process.

2.2.1 Data Generation

As mentioned in the previous section 2.1, numerous systems have been proposed to monitor
various aspects of the SF process in different ways. The study in [30] discussed farm
monitoring systems under three main methods: satellite-, images-, and location-based
monitoring systems. Examples for these technologies are remote sensing-based drought
index to monitor the arid and humid areas using multi-sensor satellite data [31], a drone-
based image system for crop monitoring [32], and a multi-sensor system based on five sensor
modules for collecting crop canopy traits in agri-terroirs [33]. Similarly, the study in [34]
described three main data monitoring mechanisms used in SF, which are machine-generated
(e.g., sensors, drones), process-meditated (e.g., commercial data such as purchase behavior),
and human-sourced (e.g., photos, videos, books). The recent advances in nanotechnology
have also made a notable contribution to the development of data monitoring systems,
enabling the collection of data that previously could not be sensed such as deep inside the
animal body. This has resulted in IoNT devices such as affinity-based nano-sensors that
expands data monitoring scales from the macro-scale to nano-scale to collect data at the
molecular level. The study in [5] discussed several applications of nano-sensors in SF such
as monitoring fertilizers, herbicides, and crop and grass condition.

These monitoring systems collect heterogeneous data from diverse sources and then
form different types of datasets. According to [35], they are mainly time-series, streaming,
sequential, graph, spatial, and multimedia datasets. In modern-day data science, large datasets
are commonly characterized in the Big Data V’s, and so far, there are six types; Volume-large
in size, Velocity-rapid data generation, Variety-heterogeneity, Veracity-quality, consistency
and trustworthiness, Variability-different rates in the data flow, and Value-diversity in meaning
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[36]. Different studies have, however, considered different number of V’s such as 3Vs, 5Vs
and 6Vs to characterize their data. For example, the study in [6] used the first 5V’s to explain
big data, including the challenges associated with them and possible solutions. Moreover, the
study [27] explored the use of these data types particularly along the first 3 V’s in the smart
dairy farm domain under seven different categories (dairy farm, feed, breed, health, food,
retail, consumer), and each category was further sub-divided as animal, farm, and network
of farms. This study concluded that time-series type animal-based data has been taken into
account at the farm-level in numerous studies followed by multimedia data. Moreover, this
study concluded further that data volume has notably been taken into consideration compared
to Velocity and Variability.

2.2.2 ML Techniques and Models

Various ML models have been proposed for performing different analytical tasks based on
the collected data in order to make decisions. Hidden Markov Models, Regression Models,
Support Vector Machines (SVMs) and Artificial Neural Networks (ANN) are a few examples.
The study in [37] developed the SVM and ANN models for long-term weather prediction
and concluded that the SVM model performs better than the ANN. In another study [38], a
Hidden Markov Model was developed for studying animal mobility and used for detecting
atypical behavioral dynamics in group-living animals. Similarly, fuzzy-logic based models
have been proposed to detect abnormalities (e.g., nutrient deficiencies) in dairy cows based
on the variability in milk properties [39]. Greenhouse gas emission is a critical issue in the
SF sector and the study in [40] proposed a regression model to predict methane emission.
Moreover, multiple linear regression (MLR), adaptive neuro-fuzzy inference system (ANFIS),
and NN have also been proposed to estimate the dairy grassland biomass in [41]. The model
performance analysis confirmed that the ANFIS model performed better in predicting the
biomass compared to the other two models.

The use of Deep Learning (DL) for complex data analytics has recently shown great
potential in achieving state-of-the-art performance compared to the ML models described
above. The review in [36] provided a comprehensive discussion on DL models and their
applications, including the SF-sector. For example, this review reported that a Convolutional
Neural Network (CNN) proposed for plant disease recognition can identify thirteen different
categories of plant diseases with 96% accuracy. This study discussed another CNN model
proposed for obstacle detection in farmlands for automated machine movement. Similarly, a
detailed discussion on the application of different DL models for classification have been
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proposed for various SF applications in [30]. Examples of DL models used for classification
application includes the Long Short-Term Model (LSTM) proposed for crop and plant leaves
classification and the Inception-ResNetCNN model for identifying tomatoes. Although
DL-based techniques are promising solutions for processing large-scale complex data and
achieving high performance, drawbacks such as the need for vast amount of resources
and large datasets for training make their deployment unsuitable, particularly in resource-
constrained SF systems that utilize WSN. However, the study in [36] highlighted techniques
such as network compression that are suitable for resource-limited devices such as IoT sensor
devices.

The combined use of ML models and different data mining techniques has been widely
considered in many applications to overcome limitations when processing complex data. A
number of studies has been conducted to mitigate the challenges raised due to the unprece-
dented volume of data. Many studies presented evidence that the representative learning
methods have widely being used, where they are able to derive a common and meaningful
representation for large-scale complex data by using techniques such as dimension reduction,
compression and feature selection. For example, the study in [42] explained unsupervised
clustering and principal component analysis (PCA)-based dimensionality reduction tech-
niques in combination for reducing the data size to select dairy herds with similar performance
characteristics. Similarly, the Kalman filter-based technique was developed to extract only
meaningful data in [43]. The aim of developing this method was to overcome communication
overhead with data transmission in WSN-based SF applications such as weather prediction
and crop disease prediction. The study in [44] proposed a joint method of discrete wavelet
transform (WT) coupled with a multivariate regression method to analyze large-scale data
effectively and then proved that WT compressed data can achieve similar accuracy as the
original data. Meanwhile, the work discussed in [45] used WT and PCA together to extract
salient features from large image datasets. Moreover, the combined use of DL models with
conventional ML techniques such as PCA and partial least square regression (PLSR) has
been considered for large-scale image processing applications and proved that the combined
use of ML models enhances learning accuracy, mitigating the limitations when these models
are used in isolation [46]. However, there are no evidence that exists to show that the joint
model techniques have been used for SF applications.

Furthermore, data fusion methods have also been used widely for integrating data coming
from different sources to extract insights effectively. Most specifically in SF, sensors in
WSN produce highly redundant and noisy data, and data fusion techniques have been used
to reduce the volume of data by removing redundant data and improving the accuracy of
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learning outcomes. For example, the study in [47] used data fusion models to aggregate
noisy data coming from wireless sensor nodes to explore limitations in sensing coverage.
Based on the data analytic outcomes of this study, data fusion contributed to improving the
coverage of WSN. Meanwhile, to reduce the volume of data sent to the Cloud, the study in
[48] proposed a technique based on data fusion at the data-level and decision-level, which
optimizes the energy consumption. However, fusion techniques are not widely used as they
are signal-specific and developing different techniques for various signal types is not feasible.

In addition, transfer learning, active learning and kernel-based learning are amongst the
numerous learning methods and the study in [6] documented the use of these methods in
terms of overcoming the big data issues associated with Big Data V’s. The study in [27]
also considered the use of different learning methods under four categories as supervised
learning, unsupervised learning, semi-supervised classification, and reinforcement learning.
Supervised learning techniques have been reportedly used to deal with various data analytical
applications, and classification is the most commonly used among the supervised learning
method. However, the ML models and methods have mainly been proposed for various single
farm usage and are mostly application-specific and limited in scalability and reusability.
These drawbacks limit their cooperative applications, while managing their complexity and
flexibility. Therefore, necessary modifications are essential to use them cooperatively in
large-scale SF applications.

2.2.3 Data analytic platforms

In order to perform data analytics for making timely and accurate decisions, various data
analytical platforms have been developed by using the ML models and techniques discussed
above. These platforms are based on the Cloud, Fog, and Edge computing paradigms.

The study in [49] proposed a Cloud-based analytical platform for herd management in
which data collected from multiple farms is aggregated at a central server to derive insights
that can subsequently be used to improve cattle herd management, such as maintaining
optimum animal well-being. However, it is essential to gain more in-depth knowledge about
the inter-relationships between different parameters to optimize farm management [7]. The
study in [50] developed a system based on an ontology model for cattle management and
is more suitable compared to the platform proposed in [49]. That is because it considers
both the environmental and livestock parameters and the ontology model converts such data
into high-level context information that can be used to understand significant relationships
between the parameters used for decision-making.
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The Fog and Edge computing paradigms operates in conjunction with the Cloud and
processes data that are in close proximity to the sources to perform real-time decision-making.
This form of data analytics minimizes the transmission of data to the Cloud and lowers the
energy depletion of the sensors. The study in [10] proposed a Fog computing-based IoT
system (AgriFog) for SF and concluded that it increases the decision-making efficiency
with reduced latency. Since most farmers cannot apply the analytical outcomes produced
by these advanced systems due to lack of understandability and interpretability, authors
in [51] developed a more user-centric analytical framework based on the Fog and Edge
computing paradigms by considering the requirements of the agri-producers. The study
in [52] proposed a novel analytical approach called Future IoT controller in which Edge
computing is used with a Bayesian network in order to generate useful intelligence from
data. Although the use of DL in Fog and Edge computing-based applications is challenging
due to high resource consumption, authors in [53] proposed a distributed deep NN (DDNN)
framework for training a DL model over Fog, Edge, and Cloud devices in a distributed
manner. The DDNN framework can perform learning more effectively, and this is because
a set of layers of the DL model are trained over distributed Fog or Edge devices, while the
remaining layers are trained in the Cloud. Thus, this framework reduces the amount of data
transferred to the Cloud, which in turn, increases the efficiency of the data analytical process.

Moreover, several studies report that WSN-based data analytical platforms integrated with
Cloud, Fog and Edge computing paradigms have been proposed for various SF applications.
For example, the study in [54] proposed a framework that integrates specialized electronic
sensors for autonomous collection of on-site soil and climate data (e.g., humidity, soil
temperature, and rain gauge) in a distributed manner. The system then processes the data to
provide real-time insights to validate various biological and ecological models. Similarly,
authors in [55] also proposed a WSN-based decision support system named iFarm to provide
decisions, aiming to enhance crop productivity. ViSeed is another ML and visualization
framework that was developed for predicting crop yield and the weather [56]. Also, a
multi-sensor node based intelligent decision support systems for irrigation management is
presented in [57]. The ML algorithms developed in these decision support systems use
the real-time data collected from sensors to control the delivery of water, aiming to reduce
wastage of freshwater in farming activities.

A comprehensive discussion on the distributed analytical systems given in the study
[58] outlined that the Fog and Edge computing paradigms based analytical platforms and
their benefit for distributed and real-time data analytics. However, the need for fully de-
centralized analytical platforms has been raised due to concerns from data sharing and the
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lack of guaranteed transparency and validity of learning outcomes. Alternatively, this study
discussed further on the use of FL and BC methods that can contribute to overcoming such
drawbacks while ensuring the decentralized data ownership. For instance, the study in [59]
proposed a FL-based mechanism to predict hospitalizations due to heart disease by securely
incorporating multiple health records sources. A SVM classifier-based approach was used to
build the prediction model and the study concluded that the proposed approach could achieve
similar accuracy as standard CML approaches. This study highlighted further that effective
communication of model updates between clients and the coordination unit play key role in
FL-based systems for improving the efficiency of decision-making. A NN model-based FL
system discussed in [60] proposed two models for improving the communication of model
updates and they are structured model and sketched model. While the structured updating
method considered updating from a low-dimensional data space (e.g., PCA-based learning),
the sketched updating method was based on compressing model updates before sending it to
the coordination unit where the final model refinement is carried out. However, the study
in [61] highlighted that the application of FL-based systems is feasible only when there is
a trustable coordination unit, including some other drawbacks such as security risks, P2P
interaction and functional failure of the coordination node that limits the use of FL-based
systems. An alternative solution is the incorporation of Block Chain (BC) to overcome these
limitations.

Several application domains have taken into account the integration of Cloud, Fog,
and Edge computing-based analytical platforms with BC technology. This is not only
because of its capability in overcoming issues in FL-based systems and improving learning
accuracy but also its flexibility in ensuring several features such as transparency, validity and
traceability, which are essential in employing collaborative decision-making. For example, to
improve the accuracy of medical diagnosis and treatment efficiency, a BC-powered parallel
healthcare system was proposed in [62]. This system has the potential to securely incorporate
information coming from various healthcare communities to enhance treatment efficiency.
The main advantage of this parallel healthcare system compared to the FL-based healthcare
system proposed in [59] is that single point functional failure is completely controlled. The
studies in [63, 64] also proposed BC-enabled systems for the transportation and energy
markets in order to make their services more effective and smart. More applications of
BC-enabled decision-making systems can be found in [65].

Considering the attempts that have been made to develop BC-enabled systems in the SF
domain, the study in [66] proposed a BC and IoT integrated system to make agri-products
traceable. However, this study did not provide any experimental evidence to validate their



2.3 Resource Management for low-powered devices 23

system. Moreover, Nori [67] and Regen [68] are consortium BC-based (collection of BC
networks) platforms mainly proposed for improving the sustainability of the agri-sector.
While Nori was developed for reversing climate change through reducing CO2 emission, the
Regen network enables monitoring ecological degradation and climate change. The study in
[69] also discussed the use of BC technology in the agri-sector terming it as E-agriculture,
where discussions revolved around opportunities, benefits, and challenges of using BC in
agriculture. Moreover, the AgriDigital is an expertise in the use of BC in the agri-sector and
emphasizes the main aim of using BC to improve traceability in agri-food supply chains [70].
However, compared to the attention that has been given for applying BC in other sectors, it is
notably less in the SF sector.

There are several challenges such as security threats and resource scarcity that still
requires further investigations in integrating BC into existing systems. The studies in [71, 72]
discussed these challenges in detail. However, some studies have warned that such BC-
integrated systems could bring negative effects. For instance, the study in [69] warned that
this integration can also lead to unnecessary computational overhead and may not bring any
tangible benefits. Therefore, the studies in [65, 69] recommended that conducting an initial
case study to make sure that integration with BC is necessary by proposing a checklist to
conduct such a feasibility study.

2.3 Resource Management for low-powered devices

Resource scarcity is a critical challenge for distributed data analytical systems, particularly
in resource-limited IoT infrastructures. To optimize the resource utilization in distributed
computing platforms, various in-network computing techniques (e.g., cooperative computing,
parallel computing) and methods of harnessing energy from natural resources (e.g., solar,
wind) have been proposed.

The study in [73] explored the performance limitations in dynamic resource allocation
to achieve the maximum query rate with distributed data processing. The performance
limits taken into account were primarily concerned with data volume and velocity under
the resource-constrained distributed processing environments. In order to overcome these
limitations, an algorithm was proposed that can dynamically allocate computational and
network bandwidth resources. Meanwhile, The work in [74] presented an approach to
optimize total energy consumption cost in mobile WSN. This approach enables optimal
partitioning, offloading and execution of tasks cooperatively with peer nodes. In addition,
a cooperative computing node selection mechanism was also presented with a particular
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emphasis on the fair selection of nodes to avoid each node’s energy being over-used. IoT-
based systems incorporating wireless sensors have not only been proposed for collecting
data but also performing distributed computations to improve the overall efficiency of their
services [75]. The approach proposed in [75] discussed computing in a two-node network,
block computation over multiple nodes, distributed computation with noise, along with
randomized algorithms for distributed computing.

Data redundancy and replication can also increase the amount of transmitted data over
distributed networks, which will demand high bandwidths. To overcome this issue, offloading
data as segments to neighboring devices was taken into account in [76], aiming to improve the
probability of successful data delivery. A probabilistic framework-based heuristic algorithm
was proposed to estimate the probability of data delivery through an opportunistic path
by considering the parameters data size and contact duration. The experimental outcomes
proved that cooperative offloading could improve the probability of data delivery. This study
also proposed a distributed algorithm that aimed to cooperatively offload data in a distributive
manner. Meanwhile, the DDNN framework [53] mentioned earlier trains a DL model as
segments over a distributed Fog computing network and proved that it could achieve 20
times less communication cost compared the standard Cloud-based CML approach. This
study emphasized further that the involvement of remote Cloud in such distributed analytical
processes raises data privacy and ownership issues and limits cooperative computing. As an
alternative to these issues, the study [77], for instance, proposed a design of a cooperative
computing system that includes only mobile devices and there is no involvement of a central
Cloud. This system was termed as Serendipity in which computation tasks are sub-divided
and shared between mobile devices in order to minimize the task completion time.

Although the study in [75] emphasized that WSNs are widely proposed for both data
monitoring as well as performing application specific distributed computing, end users (e.g.,
sensors) mostly suffer from lack of energy since most of the sensors are battery-powered.
As a solution, harvesting energy from natural resources such as wind and solar power has
been widely proposed [78]. However, the uncertainty in natural energy sources limits the
deployment of such energy harvesting devices. To overcome this uncertainty, the study in
[79] proposed a hybrid framework that combines solar power and wireless charging. A
distributed algorithm was proposed for optimally deploying solar-powered cluster heads
and exploring energy balancing in the absence of solar energy, while a polynomial-time
scheduling algorithm combined the solar power and wireless charging methods for mobile
data gathering. The study further claimed that the hybrid framework could reduce battery
depletion by 20%, including the 25% of system cost compared to the previously proposed
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wireless-powered systems. Another study in [80] compared the performance of the energy
harvesting relays against the conventional cooperative relaying in wireless communication,
and found that this architecture has better energy efficiency compared to the conventional
relaying network and could be a promising solution for energy-constrained wireless networks.
A study similar to [80] presented in [81] also discussed the resource management issues
in decode and forward relay based cooperative IoT networks and proposed a mathematical
model that aims to maximize the data communication rates.

2.4 Summary: Challenges and limitations

This chapter primarily considers the research contributions towards the development of ICT
based agri-sector in terms of data collecting, processing, and analyzing, with an emphasis on
their roles in smart dairy farming. With the advances in IoT and ICT technologies along with
data science, more intelligent and effective ML models and data analytical systems have been
introduced into the agri-sector. They have made a immense contribution to the sustainable
intensification of farm productivity to meet the increasing food demand.

However, many studies claim that there remains critical challenges that need further
attention. In particular, the unprecedented volume, high complexity and dynamic nature
of data challenge the processing capabilities of existing ML models and data analytical
systems (C1 and C2). Also, these models and systems are often poorly coupled and reused
due to several reasons such as lack of interoperability, scalability, and accuracy [82] (C3).
Similarly, the study in [83] also highlighted that data ownership and privacy, data quality,
intelligent processing and analysis, sustainable integration of data, business models and
openness of analytic platforms are the most critical issues associated with the development of
harmonized analytical frameworks in the agri-sector (C3 and C4). The study in [84] argued
that sometimes resource scarcity for development, evaluating, and applying agri-models
combined with lack of knowledge on user-centric models creates greater challenges than
these critical issues (C5). All in all, the full potential of the data as well as the modern SF
technologies is significantly underutilized. Therefore, the SF sector urgently requires novel
ML models and analytical frameworks for processing data effectively.

The study in [27] made an overall evaluation considering nearly 1500 different studies
conducted for analyzing big data over the period 1994-2017 for the smart dairy farming. This
evaluation concluded that the majority were related to mitigating issues related to the volume
of data, followed by the variety and then the velocity, while the attention on other V’s was
much less (C1). This study also concluded that the full potential of big data collection in
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the dairy farming sector is not fully utilized. Meanwhile, the study in [7] emphasized that
most state-of-the-art models and systems available today in the dairy farm domain have been
used at the individual farm-level. Hence, more efforts are essential to use them cooperatively
by connecting several farms. As a most viable solution, the work in [6] suggested that ML
models and learning platforms have to be re-shaped based on the application requirements
(C2 and C3). Moreover, authors in [85] emphasized that more integrated data analytical
platforms that can produce more intelligent decisions is still very ambitious (C4). The study
in [4] also outlined that the services of the decision support systems available in the dairy
domain can be enhanced by collectively using them in the farm management process.



Chapter 3

Research Summary

This chapter describes the solutions that have been proposed to address the research RQs,
overcoming the challenges discussed in chapter 1. First, section 3.1 presents the solutions
that have been proposed to answer the research RQs. Second, the tools and experiments used
for validating these solutions are presented in section 3.2, followed by the contribution of the
present study to the data analytics in the SF sector in section 3.3. Finally, section 3.4 presents
the answers for the research questions.

3.1 Research Tasks

In this section, this PhD research addresses the three research question sequentially under
five tasks as illustrated in Figure 3.1, and each task is based on findings from the previous
tasks.

RQ1 - Task 1: Compressed Learning (CL)

This task explores the mechanism of data compression and how it can contribute to simplify-
ing complex data for effective learning. First, this task examines the drawbacks of existing
data compression techniques in addressing the challenges induced by voluminous data and
then propose our solution. In fact, the existing compression techniques such as Lempel-Ziv-

Welch (LZW) [86] are able to perform zero data loss compression and can optimize storage
requirements. However, their main drawback is that the decompression is necessary for
applying data analytics on data and consequently, it restores the original data complexity
during the analysis phase. The reason is because the compression is performed without
minimizing the complexity of the data by removing insignificant and redundant data. As a
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Fig. 3.1 An overview of the research plan and the mappings between the challenges, research
questions and research tasks.

result, this makes their deployment unsuitable, particularly in data-intensive, time-sensitive
and resource-constrained big data analytic applications. To overcome these drawbacks, this
task proposes a solution named Compressed Learning (CL) (Appendix A and B).

CL is a concept whereby learning is conducted in the compressed data domain of the
original data, while preserving the original accuracy. The compressed data can also be
obtained back by using recovery algorithms [87]. There, only the learning outcomes such as
empirical models and their performance coefficients, along with the recovery algorithm, are
sufficient for the processing engine analytics to make decisions. The CL approach encourages
compressing data in proximity to the source using the domain-specific knowledge and then
performing learning on the compressed data. The algorithm also derives optimal compres-
sion parameters and stores them with the recovery algorithms if decompression becomes
necessary for further analysis in the future. Therefore, CL enables data analytics with small
datasets as well as reducing data processing, communication and storage overheads in large
datasets. Furthermore, CL prevents restoring the original complexity of the data during the
learning process, thereby contributing to significant improvements in both computational
and statistical efficiency.

The use of CL for SF is demonstrated by analyzing Mid-Infrared Spectroscopy (MIRS)
of milk for assessing milk quality. Analysis of the quality of milk is crucial as the milk is the
main product of the dairy farming industry and conveys valuable information such as animal
nutrient deficiency and health issues which are helpful for efficient dairy farm management.
Although the transfer of MIRS datasets from farms to a central Cloud leads to collection
of precise information, it is not always feasible due to reasons such as the intermittent
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Fig. 3.2 Compressed Learning pipeline ( Appendix A, Fig. 2 in page 6)

broadband connectivity in rural farms. In this context, CL can be leveraged under the Fog or
Edge computing framework, thereby minimizing the resources required for communication,
computing and storage while improving application latency. Therefore, this task explains the
process of deriving near-lossless compression parameters to transform MIRS data without
impacting the prediction accuracy for a selection of Milk Quality Traits (MQT). They are
Lactose, Fat, Protein, and Urea and are used as the main MQTs to decide the quality of
milk based on their composition. Moreover, this task emphasizes the significance of using
domain-specific knowledge in the CL process.

The CL pipeline is illustrated in Figure 3.2. Initially, a comprehensive pre-analysis is con-
ducted to understand the original characteristics of the dataset and then selected compression
and learning techniques accordingly. This helps in not only preserving the original features
of the dataset but also avoids the use of computationally heavy ML techniques. Based on this,
unnecessary data in the MIRS dataset is identified and then removed. In this PhD research,
we focus on the data corresponding to water in milk. To understand different characteristics
of the dataset, this study explores the various relationships between the feature variables in
the MIRS dataset as well as the feature variables and response variables. The relationship is
multi-collinearity and includes both linear and non-linear correlations (see Figure 3.3). Based
on these characteristics, Principal Component Analysis (PCA) and Wavelet Transforms (WT)
are used as the linear compression techniques, while the Kernel PCA (KPCA) is used as
the non-linear compression. This combination enables compression techniques to integrate
data analytics on the compressed data. In the next stage, two learning techniques which
are the Partial Least Squares Regression (PLSR) and Least Square Support Vector Machine
(LSSVM) are used for linear and non-linear learning.

The MIRS data analysis confirms that MIRS data can be pre-processed and compressed ef-
fectively near the data source without impacting on the prediction accuracy of most measured
milk quality traits. The pre-analysis reveals that the removal of redundant and unnecessary
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(a) (b) (c)
Fig. 3.3 Linear and Non-linear relationships in MIRS data and CL performance; (a) difference
between Linear and Non-linear correlation between feature variables in MIRS dataset, (b)
non-linearity between Fat (first row) and Protein (second row) milk quality parameters with
MIRS dataset, (c) linear and non-linear performances for Protein (Appendix B, (a)-Fig. 3 in
page 5, (b)-Fig. 6 in page 7 and (c)- Fig. 7 in page 7).

data contributes to achieving a 20% compression rate. While the linear compression by PCA
and WT achieve 92% and 91% compression rates, the non-linear compression from KPCA
attains 89% compression rate. At these compression levels, PLSR and LSSVM can achieve
similar accuracy as the original data domain. This justifies how the original learning accuracy
can be achieved with significantly less feature variables using CL. Therefore, transferring
only the compression parameters corresponding to these compression levels along with
recovery algorithms to a central server is sufficient for further analysis or long-term storage
of data. In addition, the comparison of CL performances with advanced Deep Learning
techniques such as ResNet, LeNet-5 and Vgg-19 reveals that the CL performances are com-
parable for certain MQTs, but it is typically less compared to other techniques. However,
the high resource consumption of these Deep Learning models makes their deployments
unsuitable for resource-constrained environments like SF. Therefore, in this context, CL is a
good alternative and can effectively be used for performing real-time data analytics in SF.

RQ1 - Task 2: Deriving Novel Metrics

Recent developments in advanced data monitoring technologies using WSN, facilitate col-
lection of vast amount of data and requires novel techniques to transform data into useful
metrics. This task considers deriving useful and informative metrics from sensor data and
use them for decision-making. As a use case, the social behavioral dynamics of dairy cows
are explored based on their mobility data. In general, cows are gregarious animals and have
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Fig. 3.4 The steps for deriving AIm (in this example we focus on node A); (1) compute the
Nearest-Neighbor (NN) of node A, (2) select the NNs in the interaction region, (3) compute
the weighted centrality of A and then the network entropy based on all node centralities,
(4) AIm of the node A is the difference between the network entropies computed with and
without A in the network (Appendix C, Fig. 1 in page 4 and Fig. 2 in page 5).

complex social interactions that convey valuable information such as animal well-being,
which can be capitalized for optimizing farm management. However, evidence that supports
the significance of their social relationships is considerably under-utilized due to the lack of
metrics that can effectively characterize underlying dynamics in the data [88].

Social Network Analysis (SNA) is a commonly used technique to explore behavioral
dynamics within a social group [89]. An open question in SNA, is whether it is possible to
characterize an individual node level behaviors by using the network level group information.
The reason for extracting this relationship is because it is difficult to keep track of each
individual or small sub-groups as the group size increases. Therefore, identifying individuals
that deviate from the normal group behavior is an effective method for decision-making and
this can be used for generating early alerts for the prevalence of diseases. However, the
existing SNA metrics are capable of only using intermediate-level information (i.e., up to
the 2nd nearest-neighbor interactions of a node [90]), and there are no measures which are
capable of incorporating group-level social interactivity information for deriving node-level
social dynamics. Therefore, in this task the PhD research proposes the Animal Importance
(AIm) metric to compute the importance of a node to a group by incorporating node- and
network-level SNA measures (Appendix C).

A SNA-based graph-theoretical approach is used to derive AIm, including two supportive
metrics, which are the social interaction range (k) and the nearest-neighbor matrix. These
two metrics are used to translate social interactions into a network graph. A network graph
illustrates the structural connectivity of a social group and can integrate various information
that exhibits heterogeneous social interactions. Therefore, including only the most relevant
interactions is crucial for simplifying the network complexity and also to improve the network
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graph representation without missing important information. The metric k stands for the range
that a node can make significant interactions and is derived by using a topological distance-
based method instead of using the traditional metric distance. The topological distance-based
method uses the anisotropy value that represents the effect of interaction among animals and
quantifies to what extent the spatial variation of nearest-neighbor around a reference animal
is anisotropic [91]. This is subsequently used to determine k, regardless of the distance
between the animals. The nearest-neighbor matrix enables identifying preferential members
(i.e., social affiliation) of every node by computing the frequency of each node being in
every other node’s interaction range. Therefore, these two metrics can help to select the most
significant interactions of each member in a social group, and thereby, enhancing the quality
of the structural information acquired for characterizing different social behaviors.

The AIm metric is then derived by combining the node- and the network-level SNA
measures, node centrality and network entropy. The node centrality quantifies to what extent
a node is surrounded by other nodes, while the network entropy depicts the amount of
information encoded within a network and is used to compute the structural connectivity
at the group level. The network entropy of a group G (H(G)) is computed using the node
centrality measure, and is represented as follows:

H(G) = log

[
N

∑Cw(A)

]
−

N

∑
Cw(A)

∑
N Cw(A)

log [Cw(A)] ,

where Cw(A) = ∑
n
i=1 wi is the weighted centrality of a node A, w is the interaction strength

computed as the reciprocal of the distance between two nodes, and N and n are the group
size and number of direct interactions of the node A. Based on this, the influence of the node
A on changing the network entropy is considered as its importance to the network (AIm(A))
and computed as the change in group entropy in response to the disconnection from all
interactions of the node A within the network.

AIm(A) = H(G)−H(GA),

where H(GA) is the network entropy without the node A. A graphical overview of the four
main steps of the AIm derivation process is illustrated in Figure 3.4. Since social behaviors
are highly dynamic due to the time-variant nature of the network topology, we explore the
variability in AIm at the node-level as well as the network-level by computing the probability
distribution function (PDF) of each node as well as joint PDF of AIm. The Gaussian Mixture
Model (GMM)[92] is used for deriving the joint PDF.
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(a) (b) (c)
Fig. 3.5 The application of SNA for determining the number of sick and estrus animals as a
percentage of herd size, (a) variability in group entropy, (b) joint PDF of Animal Importance
(AIm) for sick animals, and (c) joint PDF of Animal Importance(AIm) for estrus animals
(Appendix C, Fig. 11 in page 13).

This study evaluates the performance of AIm and compared it with already existing SNA
measures, which are Weighted Degree centrality and Laplacian centrality [90]. These two
measures use local and intermediate level connectivity information for computing cohesion
of nodes in a social group. In terms of variability of cohesion over a period of time, AIm

demonstrates more stability compared to the two existing measures. In order to explore the
usability of AIm in decision-making, this task demonstrates how AIm can be used to detect
the sick and estrus cows in a dairy herd based on the evolution of the PDF of AIm of each
cow in a herd (the experiment is discussed in the next section). For normal cows, the PDFs of
AIm distribute around a similar mean, but with different variances. Meanwhile, the PDFs of
AIm of sick cows shift towards the left of the mean of the normal cows PDFs and their means
are also not comparable. On the other hand, the PDFs of AIm of estrus cows shift to the right
of the mean of normal cows, but their means do not vary as much as sick cows. At the group
level, we consider the evolution of the joint PDF of AIm of all cows and the herd entropy. As
shown in Figure 3.5, the joint PDF of the herd with the increasing number of sick cows (as a
percentage of herd size) exhibits a bimodal distribution with a left tailored shape, where each
line corresponds to the percentage of the number of sick animals in the herd. The joint PDF
of the herd with increasing cows in estrus is opposite to that of the sick cows. Furthermore,
in comparing the variability in the entropy of normal herd with the increasing number of
sick cows in a herd, the group entropy decreases with larger variances, whereas only the
variance of the entropy decreases with increasing estrus cows. Therefore, this task suggests
that the metrics k, A, and AIm can effectively convert large-scale complex social behavioral
data into valuable insights which can subsequently be used for to generate early alerts of
atypical social behaviors of farm animals which are useful for effective farm management.
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RQ2 - Task 3: Federated Learning Based Distributed Data Analytics

To mitigate the limitations associated with data analytics mentioned in C2 and C3, this task
first proposes a ML model considering the drawbacks of current models and introduce a
framework for training the proposed model by securely incorporating distributed data sources
(Appendix D).

As it was mentioned in section 1.2.1, higher dimensionality, multicollinearity, and non-
linearity are amongst the most common characteristics that limit the use of simple ML
techniques for analyzing large-scale complex datasets. For instance, the use of Least Square
Regression (LSQR) models fails due to multicollinearity for specific data types and this
is because the algorithm assumes independence between the feature variables. The PLSR
method is a promising alternative to manage multicollinearity in the data but can only
capture linear relationships. Neural Network (NN) has the potential of capturing complex
relationships that is not possible in LSQR and PLSR models. However, the use of NN in
resource-constrained applications is challenging since selecting optimal NN configurations
is time and resource-consuming task. Therefore, to overcome these limitations, the present
study proposes a joint ML model by combining the PLSR method with NN (we refer to
this joint model as NNPLS). The basis for deriving this model is because PLSR model is
considered as a single hidden layer feed-forward NN in which the number of PLSR model
parameters (i.e., latent variables) is equal to the number of hidden layer neurons. The output
layer contains a single neuron, while the number of neurons in the input layer is equal to the
number of feature variables feeding into the NN. Therefore, in the NNPLS model, the best
NN settings for the optimum number of hidden layer nodes and initial weights are derived
through the PLSR method, and the NN is used to train and obtain the optimal NN weights.
This relationship is illustrated in Figure 3.6a (more details are provided below).

In the ML frameworks currently in use to perform model training and learning, sharing
data with a third-party service such as remote Cloud is a necessary requirement due to number
of reasons such as limited resources and deployed on-board intelligence on Edge devices in
DML systems. However, data owners are reluctant to do so due to several reasons such as
high communication costs and data privacy and ownership issues. The SF producers will
usually hesitate to share their data with third-parties without knowing the value that they get
in return. This is because large-scale companies (e.g., device manufacturers), which provide
services for analyzing data, get the majority of benefits from data compared to the data
owners. To overcome such challenges, this PhD research uses the Federated Learning (FL)
framework proposed by Google [93] to train our model. FL is a distributed learning approach
used to train a common ML model across geographically distributed data sources (clients)
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(a) (b)
Fig. 3.6 The FL-NNPLS framework and its application in SF; (a) Block diagram of the
NNPLS model derivation and training process, (b) A FL architecture that is applied to smart
dairy farming. The steps for the learning process are as follows: (1) Every farm client service
collects data (e.g., MIRS of milk samples) and trains a ML model and sends the updated
model to the central service unit, (2) The central service unit refines the final model by
aggregating the model updates from client services, (3) Client services download the final
model updates and then update their local ML models to perform inferences (Appendix D,
(a)-Fig. 1 in page 2 and (b)-Fig. 3 in page 6).

without moving data from the source. A coordinating, or central service unit, aggregates
the model updates collected from the clients and then computes the final updated model
which is downloaded by each client for decision-making (see Figure 3.6b). This procedure is
continues based on the availability of data from the clients. This allows the ML model to be
trained in real-time and at the same time all participants can access the updated model after
every training cycle for decision-making. Moreover, this reduces data communication burden
as there is no requirement for clients to be connected to the coordination unit at all times. At
the same time, data privacy, security and ownership issues can be mitigated effectively since
data does not move away from the sources, while only the model updates are transferred over
the communication network.

For a given dataset, the main steps of the NNPLS model derivation and its FL-based
training processes is illustrated in Figure 3.6, and steps are listed as follows:

1 Data pre-processing: Conduct pre-processing on data by using the CL algorithm
described in Task 1 and create an optimally compressed dataset.

2 NN settings: Fit a PLSR model on the compressed data and then derive the optimal
number of latent variables through cross-validation. The optimal number of hidden
layer neurons is equal to the number of latent variables in the PLSR model. Based on
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this, the optimal initial weights of the input and hidden layers are the loading matrices
of the feature and response variables (i.e., X ,Y ) corresponding to the optimal number
of latent variables in the PLSR model.

3 NNPLS training: Start training the NNPLS model with the initial NN weights derived
from step 2 and compute the optimal NN weights (i.e., NNPLS model parameters).
This is the local model updates.

4 NNPLS updating: Final updated global model is computed by taking the arithmetic
mean of the local model updates. We perform parallel and sequential FL updating
procedures following the steps given under Figure 3.6b to compute the final model.

– Parallel: All clients compute their local model updates in parallel, and then the
coordination unit aggregates them to derive the global model.

– Sequential: All clients contribute to computing the global model sequentially.
This process will have one client send its local updates to the coordination unit,
while another client that is ready to perform model training, will downloads the
global model to trains the local model.

There are advantages as well as disadvantages of using these two approaches. The
effectiveness of the parallel FL depends on the slowest client as all clients have to
finish their local model updating to derive the final global model. The possibility of
the global model being bias to the clients which have higher data generation frequency
is higher in sequential FL. However, in this PhD research, we assume that all clients
have similar data processing power and contribute equally, but in reality their selection
may depend on the application requirements.

The performance of the NNPLS model based FL framework (FL-NNPLS) is demon-
strated for the milk quality prediction using the MIRS data. The analysis takes into account
how well the proposed model can predict the milk quality (i.e., the composition of selected
MQTs Fat, Protein, and Lactose). Under the CML approach, the MIRS data analysis confirms
that the replacement of the LSQR model by the PLSR model and then the NNPLS model
contributes to improving the predictive performances of MQTs, and the NNPLS model
represents comparable performances to a state-of-the-art Deep Learning model. Under both
the sequential and parallel FL methods, higher predictive accuracy can also be achieved by
increasing the number of federation steps (see Figure 3.7). Our analysis confirms further
that FL-based approaches can achieve comparable performance to the CML approach in
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Fig. 3.7 NNPLS model-based FL performance for different milk quality parameters under
the sequential and parallel updating approaches (Appendix D, Fig. 8 in page 9).

few federation steps (R2 values of the three lactose, fat and protein MQTs from the CML
approach are 93.39%, 91.12% and 83.09%, respectively).

Additionally, the MIRS data analysis also proves that predictive performances can be
improved further by increasing the number of clients who contribute to training the model.
However, increasing the clients can lead to a serious issue known as data imbalance. This
will happen when there are significantly differing sample frequencies amongst the clients and
the learning outcomes tend to be biased towards those who have higher sample frequencies.
This in turn will ignore the significance of information coming from clients who produce
small samples. The existing solutions primarily suggest that re-sampling (over-, under-, and
hybrid-sampling) is a promising way to overcome this issue [94]. However, an additional
issue arises due to data imbalance associated with the FL-NNPLS framework. The number
of LVs required for the optimal PLSR model varies with the sample size, and as a result, the
local NNPLS model configurations can differ among the clients. Therefore, the derivation
of the global model by taking the arithmetic mean of local models becomes problematic.
To overcome the data imbalance issue, this PhD research proposes a re-sampling and zero-
padding based joint approach. While re-sampling equalizes the different sample sizes,
zero-padding is used to manage the local model aggregation issue. The joint approach is
applied to manage the data imbalance issue and then asses the FL predictive accuracy.
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RQ2 - Task 4: Blockchain-based Fully Distributed Data Analytic Frame-
work

Although the FL-based data analytic system has good potential in performing privacy-
preserved DML, there are some circumstances that FL may not be the best option, and they
are listed as follows:

• Direct interactivity: Since data sources (i.e., clients) are identified, authenticated,
connected and then communicated through the coordination device, the FL-NNPLS
system does not support end-to-end communication. However, end-to-end commu-
nication is the key to automating distributed data analytics for producing timely and
accurate insights.

• Single point failure: Functional failure of the coordination unit can cause the func-
tionality of the entire FL system to collapse.

• FL Transparency and trustability: As there is no mechanism to check the credibility
of FL clients, their misbehavior can impact the validity of the learning outcomes. For
example, the coordination unit could be biased to certain clients and can also ignore
or modify data coming from other clients. Similarly, certain clients may pretend that
they have sufficient or valid data to contribute to the model updating process and can
share invalid information. Therefore, transparency and credibility of the FL process
can potentially be challenges that needs to be addressed.

• Data privacy: There is still a risk of leaking sensitive data due to the possibility of
extracting specific data during the model updates [61].

Based on these challenges, this PhD research considers incorporating Block Chain (BC)
technology to develop a fully distributed analytical system. BC is a distributed ledger
technology that maintains a shared ledger across distributed data sources or clients. It
also allows peer-to-peer(P2P) interaction without involving any central entity to control the
system. The ledger consists of a chain of blocks (see Figure 3.8) that store data and are linked
in chronological order by using cryptographic keys. These features ensure the data stored
in the ledger is secure, transparent and traceable along with no risk of single-point failure.
Thus, the integration of distributed analytical systems with the BC technology can contribute
towards fully distributed decision-making systems with improved data privacy, security,
auditability and transparency. Moreover, advances in nanotechnology can provide further
opportunities to improve reliability as well as facilitate new applications. That is because the
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Fig. 3.8 The BC-powered Internet of Nano-Things (BC-IoNT) architecture for detecting level
of chemicals in farmlands (Appendix E, Fig. 1 in page 5).

miniature devices that are constructed from nano-materials will be able to sense molecules
at fine granular scale, which in turn provides a new spectrum of data that can be analyzed.
However, the integration of such devices with the BC-powered decision-making systems in
any application domain has not yet been investigated. Therefore, this PhD research proposes
a BC system integrated with IoNT (BC-IoNT) to employ fully distributed decision-making
in the context of farm management (Appendix E).

The proposed BC-IoNT system, illustrated in Figure 3.8, consists of three components;
IoNT sensors, IoT devices (transaction nodes-TN) and functional nodes (FN). All the devices
will facilitate a set of farms to operate collectively in order to make decisions that can
subsequently be used to optimize farm management practices effectively. While IoNT
sensors monitor data at molecular-scale, the TNs will collect the information and apply
initial pre-processing to reduce the data volume before transmitting it to the FNs. FNs
are authorized entities (e.g., regional agri-authorities) that execute a smart contract and
perform block mining. A smart contract is a set of rules written for executing certain decision
actions when a specific set of conditions are met. The smart contract used here is a ML
model formed by integrating the Langmuir molecular binding model [95] with the sequential
Bayesian updating model. The Langmuir model is used to extract valuable insights from the
IoNT sensor data. The sequential Bayesian updating model is used to derive a probability
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distribution of the information derived through the Langmuir model, and this will contribute
towards the decision making process. Moreover, the space required for storing historical data
is reduced since it uses the prior probability distribution that represents historical data. This
is a great advantage because the space required for storing BC ledger is a critical issue since
the BC systems stores all information in the ledger. Moreover, the proposed approach also
incorporates a credit system to determine the credibility of decisions. Finally, the FN creates
two blocks as the system maintains two ledgers for the TN and FN networks, and this will be
explained further in the subsequent sections.

Furthermore, to prevent any unauthorized access of data communicated between the TNs
and the FNs as well as the data stored in the BC system, data is encrypted by using the
Advanced Encryption Standard Galois Mode (AES-GCM) method [96]. The AES-GCM is a
symmetric encryption method that enables encryption and decryption of data using the same
key, which is generated by using the Diffie-Hellman (D-H) key exchange service [97]. The
D-H service allows sharing a common secret key (SK) between two or more parties without
sending their private keys. The AES-GCM encryption method also generates compressed
data in plain-text which contains a key value used for integrity protection and authentication
during the decryption phase. Hence, any FN that contains the encrypted key can verify the
integrity of the encrypted data and perform an authenticated decryption. Before any TN
passes its data to a selected FN, the TN’s private key and FN’s public key are fed to the
D-H method to generate a SK that is used to encrypt the data. TN then sends the encrypted
data to the FN and this includes the TN’s public key. The FN generates the SK by using its
private key and the public key of TN to decrypt the data. The FNs follow the same encryption
procedure when sending blocks back to the TN network. Since the private keys stay within
the devices where they are generated, this data encryption approach prevents the risk of
accessing data by an unauthorized party, thereby protecting data privacy as well as integrity.

In this task, the PhD research demonstrates the use of the proposed system with an
application of detecting the level of chemicals used on the farms. This is a critical application
for SF that aims to increase sustainable farm productivity coupled with controlled delivery of
chemicals such as synthetic fertilizers and herbicides in order to maintain optimal soil quality
and minimize the environmental and economic cost. This will also have benefits from the
consumer point of view, who are always concerned with food contamination that results from
excessive use of chemicals.

The IoNT sensors used here are the affinity-based nanosensors, which can detect the
range of chemicals used on farms at the molecular-level (Figure 3.8). The IoT device in each
farm collects and then categorizes the IoNT sensor data into five different classes, A to E.
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(a) (b) (c)
Fig. 3.9 Selected outcomes of the BC-IoNT system in detecting the level of chemicals on
farmlands; (a) Color token for 10 farms, (b) Amount of credits rewarded or penalized with
RCs, (c) Variability in the number of samples required for detecting the RC having p≤ 10−3

accuracy with time window sizes for different chemical concentrations (Appendix E, (a)- Fig.
7(b) in page 13, (b)- Fig. 10(a) in page 13, and (c)- Fig. 5 in page 11).

Each of these class corresponds to specified ranges of chemical concentrations named as
response classes (RCs). For a time period, the frequency of each farm being in the five RCs
are computed during the pre-processing phase, and then sent to the FN where block mining
is carried out. The smart contract is then executed to compute the probability distribution
of the level of a chemicals in each farm belonging to one of the five RCs categories. The
probability distribution of each farm is represented as a color token as illustrated in Figure
3.9a, and this is then used to decide the RC that each farm belongs to (the RC which has
≥ 80% probability). The study on detecting the RC of a set of farms proves that the proposed
BC-IoNT system improves the performance compared to the centralized approach.

In addition, given a particular concentration range as the optimal range that every farm
should maintain (i.e., an optimal RC), the system then decides whether a selected farm is
compliant with the optimal RC. Accordingly, each farm is rewarded or penalized a certain
amount of credits either belonging or not part of the optimal RC. The amount of credits
being rewarded or penalized to a farm is exponentially increased based on the frequency of
its compliance with the optimal chemical standard (see Figure 3.9b). This means that the
more a farm follows the optimal chemical standard, the more rewarded credits it will obtain.
Therefore, the amount of credits held by each farm is an indicator of its credibility of being
compliant with the optimal level of chemicals. Thereafter, two blocks are created for the TN
and FN networks. The block for the FN network contains all information (i.e., color token
and credit transaction of all farms) which is required for performing future block mining,
while the block for the TN only needs the color token and the available credits in each farm.
Finally, these two blocks are securely shared over the BC networks. Therefore, every FN can
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see the variability in the level of a chemical in all farms and each TN can see their current
level of chemicals and amount of credits.

This study also examines the optimal data sample frequency that the system requires for
detecting the precise levels of chemical and this includes the impact of several parameters
such as the variability in field conditions, which can impact on the accuracy of detecting
the level of chemicals. For instance, Figure 3.9c depicts variability in the optimal number
of samples during a time window for different levels of a particular type of chemical. We
explore the variability in farm credits over a period of time for a number of farms and we
could easily detect the farms which are compliant with the optimal chemical level. Therefore,
the agri-authorities (i.e., FNs) can alert farms which do not maintain the optimal level of a
chemicals. On the other hand, they can also share this data with other stakeholders in the
food supply chain such as the consumers to check the quality of food that they buy based
on the use of chemicals during the production process. For example, in the market, there
is a growing trend in buying organic food and this system would be a good fit to facilitate
appropriate food selection.

RQ3 - Task 5: Energy Management in Distributed Data Analytics

Although fully distributed computing platforms have the potential to perform data analytics
for making decisions effectively, determining the energy required for executing analytical
tasks is challenging, and specially in resource-constrained settings. The SF sector is mostly
based on battery-powered wireless sensor devices that have limited energy to accomplish
different tasks such as sensing, transferring, storing and processing. Therefore, this PhD
research proposes cooperative computing process via computation offloading in a dis-
tributed computing environment for optimizing the use of in-network computational resources
(Appendix F). In some devices, particular computational tasks can be executed in parallel.
Such tasks are partially offloaded to neighboring devices that have sufficient resources to
complete them within a given deadline to optimally utilize available resources within the
system. The devices which offload computations partially to neighboring devices are called
the Initiation Node (IN) and neighboring devices are named as the cooperative Node (CN).

This task first explores the computational and communication cost associated with device-
to-device communications and computations. Second, this energy cost for a cooperative
computing environment is modeled, including the micro-solar energy harvesting capacity
of sensor devices. Third, this study discusses optimum task partitioning to minimize the
total energy consumption based on the energy harvesting status of the sensor nodes for
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different scenarios. Moreover, this task addresses four different scenarios for how IN and CN
devices manage harvested energy for performing energy-aware cooperative tasks, namely,
shadow-shadow, shadow-light, light-shadow, and light-light. This cooperative computing
allows for enhancements of the computational capability and delivery of timely analytic
outcomes for time-sensitive applications, while also reducing the total energy cost. This
energy balance is a vital factor for minimizing the energy waste and long-term operation of
devices with minimal maintenance. The Lagrange Multiplier optimization method is used for
solving these constrained energy optimization problems. Selecting CN is also a challenging
task in a massively distributed environment like SF. Therefore, this research also explores
the selection of CNs based on energy-aware and utility-based factors aiming to minimize
their over-utilization, while balancing the fairness of selection. The proposed approaches
are evaluated using the SmartGrid simulator and the outcomes exhibit reduced energy
consumption of the distributed data analytic network along with improved effectiveness of
the operational tasks of sensor devices.

3.2 Validation

In order to validate the solutions proposed under the five tasks to address our research
questions, this PhD research conducts data analysis using both real and simulated datasets.
The application of these datasets under each task is listed below. This research study mainly
uses Python tools for the data analysis tasks.

1. A MIRS dataset is used for exploring the performance of the CL and FL-NNPLS
techniques proposed in Task 1 and Task 3, respectively. This dataset was collected at
the TEAGASC research dairy farm, Moorepark, Ireland, and contains the MIR spectra
of 712 different milk samples in the wavenumber region 925-5005 cm−1 (1060 wave
numbers), along with the composition of several milk quality traits (MQTs) that are
used to asses the quality of milk based on their composition in milk.

The experiments conducted to validate the CL approach examine the optimal com-
pression level that can achieve a similar performance and meaning to the original
data. In order to achieve this, the data compression rate is varied while assessing the
predictive performance of a set of selected MQTs. Subsequently, the optimal compres-
sion parameters that are required to be transferred to the location where the data is
processed or stored are selected. Moreover, to emphasize the significance of preserving
the original characteristics of the dataset in the CL process, the CL performance is
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computed by preserving non-linearity in the MIRS data and then compared it to the
CL performance obtained without preserving non-linearity during the CL process. The
experiment conducted for validating the FL-NNPLS approach initially examine the
predictive performance of the proposed NNPLS model along with the LSQR and PLSR
models for a set of MQTs under the CML settings. Following this, the MIRS dataset
is equally divided into a few subsets (i.e., clients) to evaluate FL-NNPLS predictive
performance for three selected MQTs. Moreover, the predictive performance of the
CML and FL-NNPLS methods with Deep Learning models is also compared to justify
their performance compared to state-of-the-art algorithms.

2. In the study of deriving novel metrics under Task 2, a Global Positioning System
(GPS) mobility dataset of a dairy herd of 30 cows collected for five consecutive days
at the same location as the MIRS dataset (location of each cow was recorded every 4
minutes) is used. The GPS data is used to compare the performance of the proposed
AIm metric in computing the cohesion of dairy cows with the two already existing
SNA measures. In doing so, this study examines the variability in the cohesion of 33
cows computed from these three metrics. Moreover, simulated mobility data is also
used to demonstrate an application of the insights extracted using the AIm metric for
characterizing social behaviors in dairy herds. The Random Wayponit model developed
in the Pymobility [98] python package is used to generate a simulated mobility dataset.
The Random Waypoint model is commonly used to simulate mobility data based on
the velocity, mobility region, and waiting time parameters at a point before making the
next movement. This study also explores how the information from the behaviors of
sick and estrus cows can be extracted from large-scale complex mobility data by using
the AIm metric.

3. In Task 4, this PhD research investigates how the BC enabled distributed learning
framework can collectively monitor the level of chemicals in farmlands based on
simulated chemical level data. The Gaussian and Uniform probability distributions
based random number generation Python packages are used to simulate the level of
chemicals. This task then experiments on how accurately the BC-IoNT system can
detect the level of chemicals over a set of farms compared to the standard CML-based
approach, including the impact of several factors such as the sampling frequency in
detecting the level of chemicals. The experiment is extended further to study the
variability in the credibility of farms in order to determine if they are compliant with
the chemical standards during the production process.
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4. In the cooperative computing via computation offloading for energy management study
undertaken in Task 5, a prototype-based analysis is performed by using the SimGrid
simulator [99]. Simgrid is an open-source simulator that contains packages to explore
the behavior of large-scale distributed analytical platforms. An analysis is conducted
to explain how the proposed approach can improve overall energy utilization, while
minimizing the energy losses and waste.

3.3 The Contribution

This PhD research considers distributed data processing and learning in the context of smart
dairy farming. The thesis shows that the five research tasks have made significant contribution
towards advancing the future distributed learning systems. This section summarizes the key
achievements of the research, while Figure 3.10 illustrates how current challenges in the
SF data analytics and the research questions align with the achievement in each task. The
achievements 1, 2, and 3 (A1, A2, and A3) are findings of the study carried out under the
first research question (RQ1) for developing data processing techniques to enable effective
learning from complex and large data set. The A1 and A2 relate to the CL for dealing
with simplifying large-scale complex data for efficient mining and A3 proposes a metric
that enables extracting insights from complex data. As part of the RQ2, A4 presents a
distributed learning framework integrated with a hybrid ML model (FL-NNPLS) which
facilitates performing real-time data analytics by incorporating distributed data. Since the
FL has limitations in application under some circumstances, a fully distributed analytical
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framework is developed in association with BC technology as the 5th achievement (A5).
Finally, A6 emanated from the study conducted under RQ3 and discusses the optimization
of energy for performing cooperative data analytics in a distributed environment. Detailed
information about the achievements under the corresponding research questions is provided
below.

• RQ1: Data Simplification

– A1: This PhD research proposed a CL method to mitigate the complexity in
large-scale data processing and learning through data compression (Appendix A).
CL allows learning to be performed on the compressed data, and thereby avoids
restoring the original data complexity during the learning process. Moreover,
CL contributes to optimizing resource cost, and facilitates the storage of only
the compression parameters and recovery algorithms for long-term data storage.
Our analysis shows that the MIRS dataset can be compressed by 90% without
impacting the predictive accuracy for a selection of MQTs. Thus, performing CL
in proximity to the data source facilitates the performance of data analytics on
small datasets as well as reducing data processing, communication and storage
overheads in big data analytics. Therefore, CL is a promising alternative for data-
intensive, time-sensitive and resource-constrained data analytics applications.

– A2: This is an extension of A1 and emphasizes the significance of exploring
domain-specific knowledge for improving the CL performance (Appendix B). The
MIRS data analysis shows that preserving non-linear characteristics in the MIRS
dataset improves the CL predictive performance of certain MQTs. Therefore, this
highlights the fact that acquiring detailed knowledge on the characteristics of data
is essential in selecting proper compression and learning techniques for improving
CL performances. Specifically, the way in which CL is executed is critically
important. This requires that both the compression and learning take place within
the same device. This will ensure that preserving the original characteristics
of data during the compression is an application-specific requirement. On the
other hand, if the compression and learning takes place at two different locations,
then preserving the original characteristics of data is very important as there
is no information about the learning tasks that will be carried out. Therefore,
the use of domain-specific knowledge in CL minimizes the loss in the original
characteristics of data in the compression phase and avoids the unnecessary use
of heavy computational techniques, while preserving the CL performances.
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– A3: This thesis proposed a novel metric in combination with other existing met-
rics to demonstrate an application for explaining underlying dynamics in large-
scale complex data (Appendix C). The metrics are social interaction range and
social affiliation matrix, and when combined can transform complex and hetero-
geneous social interactions into a social network graph that can express the most
significant social interactions. This simplifies the presentation of complex social
interaction data, which in turn improves the representation of social interactions
using a network graph. The AIm metric then incorporates network (group)-level
information for characterizing node (individual)-level behaviors. This expands
the range of information taken into account for characterizing individual behavior
compared to the already existing measures that use intermediate-level information
only. The data analysis conducted for performance evaluation confirms that the
AIm metric has greater stability in computing cohesion of animals herd compared
to the already existing SNA measures. Besides, the study for identifying sick and
estrus animals by using the AIm metric emphasizes that atypical social behaviors
can be identified effectively by exploring the evolution of AIm at node-level as
well as group-level. Therefore, AIm metric along with social interaction range
and social affiliation matrix simplify a large amount of social behavioral data and
enable effective extraction of valuable insights into the social relationships which
can be used to determine the health conditions of the cows.

• RQ2: Distributed Learning

– A4: The present study proposed a FL-based distributed learning framework com-
bined with a hybrid NNPLS model, and this is known as FL-NNPLS (Appendix
D). While the NNPLS model overcomes several issues that limit the use of cur-
rent ML models, the FL enables collaborative training of the NNPLS model by
integrating distributed data sources without moving data out from data sources.
This framework realizes real-time data analytics, alleviating critical challenges
that found in numerous DML models such as data ownership, privacy and security
and optimizing resource utilization effectively. The FL-NNPLS performance
analysis confirms that the framework can achieve comparable performance to
the CML approach. Moreover, the re-sampling and zero padding based joint
approach mitigates the data imbalance issue in DML. Therefore, the FL-NNPLS
data analytics has strong potential to address issues that lie in environments
containing privately-held data.
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– A5: As an extension of A4, this PhD research proposed a fully distributed analytic
framework by integrating IoNT with the BC technology (BC-IoNT) (Appendix
E). This is a new direction in distributed data analytics systems since there has
been no attempt in combining the IoNT paradigm to BC-based systems. This
combined system enables monitoring of data at the molecular-level and enhances
the potential of operating fully distributed data analytics for decision-making,
allowing direct interaction between distributed data sources that was not possible
in A4. The contribution in this thesis lies in compliance levels of chemical usage
on farms. The thesis proposes a ML model formed by joining the Langmuir
molecular binding model with the sequential Bayesian updating method to detect
the level of the chemicals, and the model outcome is categorized into color
token. In addition, a token-based credit transaction mechanism is introduced
to quantify the credibility of farms being compliant with chemical standards.
The system shares the color token and the amount of credit that each farm holds
over the BC network to ensure the transparency, traceability and credibility of
farms in order to determine if they are compliant with the chemical standards.
These are the essential features that are lacking in current food production and
supply chains. Therefore, the BC-IoNT system can provide opportunities not only
for employing sustainable farming practices but also for managing an efficient
supply chain. Our simulation experiments showed that the BC-IoNT system has
greater performance compared to the centralized approach in detecting the level
of chemicals. Specifically, the accuracy of the BC-IoNT was ≥ 90% and the
centralized approach was≤ 80%. The study found that the efficiency of detecting
the level of chemicals depends on the sampling frequency and the variability in
chemical level on farms.

• RQ3: Energy management

– A6: This thesis proposed a theoretical framework for cooperative computing in
distributed data analytics environment via computation offloading for micro-solar
powered heterogeneous WSN (Appendix F). This research discussed optimum
data partitioning to minimize the total energy consumption in computation and
communication based on the energy harvesting status of sensor nodes for dif-
ferent scenarios. Based on evaluations conducted using the theoretical models
proposed in this study, the results show that there is a reduction of both the energy
losses and waste in response to energy conversion and overflows compared to a
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data partitioning algorithm that offloads computation tasks without taking the
energy harvesting status of nodes into consideration. The proposed approach
also improves the energy balance of distributed sensor devices for long-term
sustainable operation. Aiming to minimize the over-utilization of devices, this
study also considered energy-aware node selection for executing cooperative
computing based on a utility function.

As part of this research, these achievements have been published as research articles.
They are the outcomes of the research tasks that are carried under three RQs (see Figure
3.10) and the output consist of five journal articles and one conference paper; four of them
are accepted and the remaining two (A4 and A5) papers are under review. The articles are
listed below and their original copies are included in the Appendix A to F.

A1. D. Vimalajeewa, C. Kulatunga, and D. P. Berry, Learning in the compressed data
domain: Application to milk quality prediction , Information Sciences, vol. 459, no.
2, pp. 149-167, May. 2018 (Appendix A).

A2. D. Vimalajeewa, E. Robson, D. P. Berry, and C. Kulatunga, Evaluation of Non-
linearity in MIR Spectroscopic data for Compressed Learning, High Dimensional
Data Mining (HDM) Workshop, IEEE Conference on Data Mining , New Orleans,
USA, (ICDM 2017), pp. 545-553, Nov. 2017 (Appendix B).

A3. D. Vimalajeewa, S. Balasubramaniam, B. O’Brian, and D. P. Berry, Leveraging Social
Network Analysis for Evaluating Animal Cohesion, IEEE Transactions on Computa-
tional Social Systems, vol. 6, no. 2, pp. 323-337, Mar. 2019 (Appendix C).

A4. D. Vimalajeewa, C. Kulatunga, D. P. Berry, and S. Balasubramaniam, A Service-based
Joint Model Used for Distributed Learning: Application for Smart Agriculture, sub-
mitted to IEEE Transactions on Services Computing, (under review, submitted July
2019) (Appendix D).

A5. D. Vimalajeewa, S. Thakur, J. Breslin, D. P. Berry, and S. Balasubramaniam, Blockchain-
Powered IoT system integrated with IoNT for Smart Farming, submitted to IEEE
Transactions on Internet of Things, (under review, submitted Nov. 2019) (Appendix
E).

A6. C. Kulatunga, K. Bhargava, D. Vimalajeewa, and S. Ivanov, Cooperative in-network
computation in energy harvesting device clouds, Sustainable Computing: Informatics
and Systems, vol. 16, pp 106-116, Dec. 2017 (Appendix F).
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3.4 Answers for the Research Questions

This section presents the answers to the research questions described in section 1.2.2.

• RQ1-Simplifying Data: What are the optimal techniques and metrics for simplifying

and explaining complex data with minimal loss of information?

This research has shown that the CL approach enables applying data analytics on the
compressed version of the original data and can achieve similar learning performance
to cases when only the original data were used (A1- Appendix A). The study also found
that the incorporation of domain-specific knowledge into the CL process also enhances
the CL performances, and most importantly, enables selecting the best fit compression
and learning methods, preventing the unnecessary use of resource intensive methods
such as DL (A2-Appendix B). Since CL allows the use of a compressed version of the
original data for applying data analytics and it avoids the need for decompression of
data prior to applying data analytics unlike conventional data compression approaches.
Thereby, it removes the need to restore the original data complexity in the learning
stage, allowing the data analytics to be conducted effectively. At the same time, storing
only the optimal compression parameters along with recovery algorithms helps to
reduce the need for transferring large volumes of data and the space required for long-
term data storage. The research has also proved that the AIm metric along with the
social interaction range and the social affiliation matrix can simplify complex social
behavioral data to characterize underlying dynamics effectively (A3-Appendix C).
Moreover, exploring the variability in AIm can be used in SF applications for detecting
atypical social behaviors which can be used to make early warnings when the animal’s
health condition has deteriorated.

Therefore, the CL approach and the AIm metric can be capitalized to extract the most
meaningful information from large-scale complex datasets, thereby supporting efficient
data processing, transferring and storing. These characteristics makes the CL approach
an ideal solutions in SF applications, which in particular have limited resources for
processing large volumes of complex data.
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• RQ2-Distributed Learning: What frameworks can be designed to make data analyt-

ics effective by securely incorporating distributed data sources?

The PhD research has proposed two distributed data analytics approaches, which are
FL-NNPLS (A4-Appendix D) and BC-IoNT (A5-Appendix E) to enable timely and
accurate analysis of data using distributed data sources.

The FL-NNPLS approach allows the combined use of NN and PLSR models to over-
come the drawbacks that limit their application in data analytics when the algorithms
are utilized on their own, and enables cooperative training for the joint NNPLS model
in real-time manner for distributed data sources. The performance evaluation showed
that the join model can achieve similar learning performances as the standard CML
approach, mitigating several limitations in distributed data analytic systems such as
data sharing, ownership, and privacy found in typical DML frameworks. However, The
FL-NNPLS framework relies highly on the central service unit where the final updated
model is refined and updated. This means that the stability as well as the credibility of
the learning process can mainly be affected due to functional failure or misbehavior of
the central service unit. The approach also lacks a mechanism to validate the quality
of data that the clients will use for training the model and also the validity of their
local model updates. The PhD research found that the limitation on the validity of the
data and preservation of data privacy can be maintained when the BC-IoNT system
is incorporated. This integration facilitates secure storage of valid information and
subsequent sharing of it over distributed clients. This also ensures the traceability and
credibility of the information stored in the ledger as well as the decisions made by
the system. By incorporating nanosensors through the IoNT paradigm, the BC-IoNT
system allows monitoring of data at molecular-level, and the Langmuir molecular
binding model combined with the Bayesian theory-based smart contract is used for
data processing and decision-making. The research demonstrated the use of this system
for detecting the level of chemicals in farmlands and found that it can detect the level
of chemicals with higher accuracy compared to the centralized data analytics approach.

Therefore, these two learning frameworks are promising solutions for performing
distributed data analytics for systems with distributed data sources. These learning
frameworks will be ideal for SF, where owners can be comfortable with data located
locally in private repositories as farmers and stakeholders are reluctant to share their
data.
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• RQ3-Energy Management: How can energy be flexibly managed for systems that

require distributed data analytics?

The PhD research has considered performing cooperative data analytics by partitioning
tasks and offloading them to neighboring devices for optimizing computational and
communication resources (A6-Appendix F). The theoretical models developed for
solar energy harvesting in WSN shows that the computation offloading to peer nodes
that have sufficient resources, can significantly reduce the total energy consumption
with improved energy balance across the network. Besides, the data simplification
techniques and distributed computing frameworks proposed in the present study can
also effectively reduce the energy consumption in distributed data processing and
analytics. This means that the CL and the FL-NNPLS framework can minimize the
need for transferring large volumes of data over the distributed network, which in turn,
saves the energy required for computing and communication and increases the data
processing and analytic efficiency.

As illustrated in Figure 3.10, each of these achievements addresses the challenges associ-
ated with current data processing and learning at different stages in the SF process. They
are, however, not limited to SF only and can be applied to diverse application domains. The
achievements resulting from RQ1 (A1, A2, and A3) lays the foundation for preparing the
data that can be processed during the learning process, mitigating the challenges that arise
due to complex and voluminous data (C1). The CL enables performing learning through
small and meaningful data which is particularly beneficial in applications where there is
limited computing, communication, and storage resources. Moreover, the AIm metric is a
novel concept that emphasizes the significance of using SNA in the SF sector and creates
opportunities for extracting valuable information from large-scale complex social behavioral
data. Another milestone of this research is the distributed learning frameworks (A4 and
A5) that allows data analytics to be conducted over distributed environments, mitigating the
challenges mentioned in C2 as well as C3. In particular, the BC-powered IoT system inte-
grated with IoNT (A5) unlocks the opportunities for practicing peer-to-peer interactions with
improved guarantee of data security, transparency and auditability of information traversing
across a distributed learning platform (C4). Finally, the last key milestone of this research is
obtained via addressing C5. The research designed an analytical framework for cooperative
computing via computation offloading aiming to optimize the energy consumption in a
distributed environment (A6).
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3.5 Summary

This chapter briefly discussed the research conducted to address the three research questions
defined in chapter 1; (1) simplifying large-scale complex data, (2) performing distributed
data analytics and (3) resource management of low-powered communication networks in
distributed data analytics. The present PhD research mainly focused on developing novel
data analytics techniques using state-of-the-art machine learning methods and utilizing them
to analyze data in the smart dairy farming environments in order to address the research
questions.

Firstly, this study addressed the RQs under five research tasks and proposed novel data
analytic techniques. These techniques include Compressed Learning (CL) and Animal
Importance (AIm) metric to minimize the complexity for processing large-scale complex
data, a hybrid ML model integrated with the federated learning (FL-NNPLS) system and
Block chain integrated with IoNT (BC-IoNT) system for performing distributed learning
by incorporating distributed data sources. This is followed by a cooperative computing via
computation offloading method to optimally utilize the available energy in distributed data
analytics. Secondly, the PhD research discussed the tools and data analysis used to validate
the proposed techniques. The research considered both real and simulated datasets to validate
the proposed algorithms and models to prove that they have state-of-the-art performance.
Thirdly, the proposed solutions are briefly discussed as research achievements that has
resulted in six research articles. Finally, the chapter maps the achievements to address each
of the research questions.



Chapter 4

Conclusion and Future Work

This chapter presents the conclusion in section 4.1 that focuses on addressing the three
research questions, and this is followed by the future work in section 4.2.

4.1 Conclusion

The advances in modern IoT and ICT technologies has resulted in new technologies that can
be applied to SF. One specific element in SF is the collection of data that are produced and
transmitted from these technologies. However, as we increase the number of these sensing
devices on the farm, the collected data becomes high and can be complex. These data have
to be processed, transformed and stored, utilizing available resources effectively to make
decisions in order to optimize the SF management process. The primary goal of this research
was, therefore, to address some key challenges in distributed data processing and learning
using state-of-the-art computational techniques in the context of smart dairy farming. The
research formulated those challenges into three research questions and then addressed them
under five tasks to propose solutions.

Initially, the thesis explores effective data compression techniques that can be used to
simplify large-scale complex data in order to perform data analytics effectively. Based
on this, the thesis proposes the compressed learning method that allows learning from
compressed data. By compressing the data, this can minimize the cost of transmission. Most
importantly the results from the compressed learning resulted in minimum performance
loss compared to learning from using only the original data. The thesis also considers
the challenge from high complexity nature of the collected data that is limited from using
existing metrics that defines underlying dynamics of data. Based on this, the thesis proposes
a novel metric known as Animal importance (AIm), which is used for understanding the
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dynamics in large-scale complex data emanating from animal group behaviour. Secondly,
the thesis derived novel ML models and performed distributed data analytics considering
the limitations of existing ML models in distributed environments. The research proposed
a hybrid ML model combining the ML models NN and PLSR (NNPLS) to mitigate the
drawbacks that limit their individual use in data analytics. Subsequently, a FL-based DML
framework (FL-NNPLS) was used to train the hybrid model for performing distributed
data analytics. Considering the limitations in the FL-NNPLS framework along with other
prevailing concerns in existing DML systems such as direct interactivity, traceability and
transparency, the research proposed a fully distributed learning framework by integrating the
BC technology with IoNT (BC-IoNT). Finally, the thesis presents a solution for optimizing
the available energy in distributed computing systems based on energy-aware cooperative data
analytics via computation offloading. Each of these solutions will advance SF by enabling
various factors to be considered, ranging from heterogeneous and scale of sensors, including
their computational capabilities, as well as techniques to efficiently manage privacy of data
in a distributed farm environments. Each of these solutions will result in new generation and
novel ICT technologies that will result in efficient, cooperative and intelligent distributed
data processing and learning platforms.

4.2 Future Work

The data processing and learning methods proposed in this PhD research will open several
future research directions to further improve SF performance as well as flexibility to address
any changes that cannot be foreseen in the future. This section lists a number of potential
research directions that can be taken forward into the future.

• Enhancing the performance of existing systems: In distributed computing systems,
the selection of data processing nodes is vital in terms of improving decision-making
efficiency as well as the optimal utilization of available resources. The AIm metric that
was used to define the condition of the animals can be used to identify the most and
least connected devices in a distributed computing network. Subsequently, devices with
high AIm values can be used as the coordination device in the FL-NNPLS framework
to improve the effectiveness of data communication in the network in order to minimize
energy cost from transmission. This is because their greater connectivity with peers can
assist in communication options that can result in network efficiency, and in particular
for wireless systems. Meanwhile, devices that have low AIm are suitable for offloading
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computations, sharing resource requirements, and for mining nodes in the BC-IoNT
system. Mining is an important function in BC and requires devices with very high
computational capabilities. Thus, incorporating the AIm metric and the cooperative
computation offloading method with the FL-NNPLS and BC-IoNT systems can further
improve the overall performance of the system. An example improvement is the
NNPLS model updating speed and block propagation speed over the BC networks in
the FL-NNPLS and BC-IoNT systems. Therefore, this is an interesting direction to
continue this research to enhance the effectiveness of the FL-NNPLS and BC-IoNT.

In addition, the effectiveness of the BC-IoNT can be enhanced further by strengthening
the effectiveness of the smart contract in detecting the level of chemicals. The smart
contract used in the BC-IoNT system considered only the dynamics of molecules of a
certain chemical in a medium. However, in reality, there can be other chemicals such
as contaminants which can have an impact on the functionality of the affinity-based
nanosensors. Hence, the accuracy of the smart contract’s outcomes can be enhanced
further by considering the dynamics of these factors (e.g., disruption of contaminants)
in deriving the ML model to determine the level of chemicals. Moreover, integrating the
proposed BC-IoNT system with the existing BC networks (i.e., building consortium
BC) can also be an interesting extension of this study. This can facilitate various
stakeholders to join the BC network and also expand the range of parameters that BC
can be taken into account to develop an efficient food supply chain. For example,
developing advanced decision-making systems by integrating with BC-based systems
such as Nori and Regen. While Nori [67] was developed for reversing the climate
change through reducing CO2 emission, Regen Network [68], the mechanism can be
further extended to monitor ecological degradation and climate change. Integrating
these two technologies with the BC-IoNT system can bring factors of climate change
into new sustainable practices for future agri-food production and supply chain.

• Exploration of the inter-relationships: Introducing more meaningful variables into
the ML models proposed in this study and then making them adaptive to time-variant dy-
namics is essential for producing meaningful and timely accurate insights for decision-
making. This is essential to expand the range of dynamics that they can take into
account and then make more context-sensitive decisions. Exploring inter-relationships
between diverse parameters and formulating mathematical and statistical approaches to
represent their relationships are essential in future research to improve the capabilities
of all the proposed models investigated in this thesis. For example, in the context of
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milk quality analysis, incorporating variables such as systematic environmental effects
such as prevailing weather factors, feed intake, and herd dynamics into the milk quality
predictive models can enhance the capability of producing more meaningful decisions
for better farm management. At the same time, incorporating information coming
from different stakeholders such as consumer buying behavior and market demand
into the process of quantifying the credibility of farms being compliant with chemical
standards.

• Autonomous analytic systems: WSN are increasingly being proposed for various
SF applications. In the future, the design of more powerful and energy-harvesting
capable sensors along with novel communication systems will facilitate increased data
analytics at the edge of the network. This will enhance the capability of real-time
analytics and also controlling or adjusting the entire network autonomously. The
set of ML techniques proposed in this study has strong potential to perform data
analytics by incorporating such devices with low-energy footprint. However, further
works such as exploring computational complexity, flexibility, and accuracy based on
different objective functions are essential to make them essential for WNS-based SF
environments.
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a b s t r a c t 

Smart dairy farming has become one of the most exciting and challenging area in cloud- 

based data analytics. Transfer of raw data from all farms to a central cloud is currently 

not feasible as applications are generating more data while internet connectivity is lack- 

ing in rural farms. As a solution, Fog computing has become a key factor to process data 

near the farm and derive farm insights by exchanging data between on-farm applications 

and transferring some data to the cloud. In this context, learning in the compressed data 

domain, where de-compression is not necessary, is highly desirable as it minimizes the 

energy used for communication/computation, reduces required memory/storage, and im- 

proves application latency. Mid-infrared spectroscopy (MIRS) is used globally to predict 

several milk quality parameters as well as deriving many animal-level phenotypes. There- 

fore, compressed learning on MIRS data is beneficial both in terms of data processing in 

the Fog, as well as storing large data sets in the cloud. In this paper, we used principal 

component analysis and wavelet transform as two techniques for compressed learning to 

convert MIRS data into a compressed data domain. The study derives near lossless com- 

pression parameters for both techniques to transform MIRS data without impacting the 

prediction accuracy for a selection of milk quality traits. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Even though smart farming is advancing with the recent developments of Internet of Things (IoT), cloud-based com- 

puting, and deep learning, it has become one of the most challenging industrial sectors in big data analytics due to the 

limitations of ICT infrastructures [47] . However, according to the statistics from the Food and Agriculture Organization of 

the United Nations (FAO), smart farming will be a key contributor to sustainable intensification in agriculture to feed the 

9.2 billion human population by 2050 [1] . There is also a growing interest in pasture-based smart dairy farming in the 

countries like New Zealand and Ireland, which tend to be in less direct competition with human edible protein and energy 

sources. Therefore, more harmonized research is needed to optimally utilize ICT infrastructures in precision dairy farming 

to minimize consumed storage space, communication and computations to facilitate contemporary analytics providing near 

real-time insights on-farm [37] . This is where the notion of effective data compression approaches are important. 
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Most sensor-based technologies and IoT platforms are designed today to collate and store vast quantities of raw data 

readings from different sources in geographically distributed farms. Many computational facilities for data analytic appli- 

cations such as MyAgCentral 1 are now seeking computational resources in cluster-based servers in large centralized data 

centres. At same the time, the Agricultural Information Management Standards of FAO (AIMS) has already started develop- 

ing standards and maintaining interoperable trans-national databases for open agricultural data. Therefore farm data will be 

aggregated as big datasets and there is a requirement to store these data for long-term analytical purposes. This is beneficial 

since aggregation of data, which extracts a large number of descriptive features in temporally and spatially diverse domains, 

contributes to an improved learning accuracy. Therefore, compression of such data without a loss of accuracy is vital in 

terms of the storage requirement. 

Dissemination of data in its raw format (i.e., in the measurement domain) into large cloud-based data centres is generally 

not feasible for most farms due to high energy consumption, time criticality of the applications, and the poor/costly rural 

internet connectivity. For example, if a disease detection system is centralized, it may slow down the farmers’ response 

because of the necessity to transfer vast quantity of data readings to a remote cloud and wait for the outcome to return. 

Therefore, compression of data is also important in terms of the communication efficiency. 

However, the key challenge today is whether the centralized storage and computational technologies (with communi- 

cation networks) contributing to smart dairy farming will still not be sufficient to deliver the future demand without an 

advanced data analytic infrastructure closer to remote farm management systems. Therefore, a scalable computational infras- 

tructure under constrained resources (proximate to the farm) is essential. In such a constrained infrastructure, compression 

is a key performance factor also for computational efficiency in addition to storage and communication. 

Emergence of Fog Computing: With the increase in the amount of data generated from connected sensors, there is a 

demand to move processing capabilities closer to the data sources, which is in contrast to centralizing raw data in a large 

data centre. This phenomenon of distributing computations towards the data was first termed as data gravity by Dave Mc- 

Crory in 2010 and is now being realized with new technologies such as Fog (i.e., edge) computing [3] and cloudlets [22] . 

Fog computing can enable datasets to be processed at the extreme edge of the internet. This computational infrastructure 

may collectively be formed by low computational proximate devices located near or within the farm. Therefore Fog com- 

puting will be a key enabler for many farm analytics to run using scalable in-memory data processing platforms like Spark, 2 

Flink, 3 Storm 

4 and H20 5 with in-memory databases like Ignite 6 and SAP HANA. Therefore raw-data compression near the 

data source is a desirable requirement for near future. 

As a result, machine learning models, which have targeted highly-provisioned cloud infrastructures, must be re-designed 

for these resource-constrained infrastructures to minimize storage, communication and computational requirements. New 

distributed machine learning paradigms like compressed learning [4] and attribute-distributed learning [50] have signifi- 

cant potential to develop effective learning models [49] rather than centralizing all raw datasets from the farms. The main 

motivation of the present paper is to validate a compressed learning approach [4] for milk quality analysis based on Mid- 

infrared spectroscopy (MIRS) technology, which can effectively overcome those three challenges in Fog computing. With 

compressed learning, any machine learning algorithm can be used in a low-dimensional (i.e. latent) space without decom- 

pressing data, while optimizing the resource requirement as well as learning efficiency and accuracy of outcomes. Even 

though the compressed learning approach has been widely used in many fields for learning from complex data sources, 

such as high-resolution image and video processing and text analysis [26,31] , its applicability is new to the MIRS based milk 

quality analysis. 

MIRS is the most economical technology used for assessing milk quality. Therefore, MIRS spectra in predictive models 

are frequently used to develop farm decision-support tools for efficient milk data processing. For instance, the OptiMIR 

project has used MIRS of milk recordings in an innovative way to observe different characteristics of cows such as energy 

balance and early detection of diseases. Also, the routinely obtained MIRS of milk can be used for deriving novel models 

to quantify milk composition on both an animal basis and on bulk tank samples as well as derive milk related herd-level 

phenotypes [29] . In addition, variation in MIRS of milk can be used as an indicator in predicting animal characteristics such 

as the physiological state of an animal and its feed efficiency. The collaborative use of MIRS milk data from different farms 

can also improve the accuracy of the predictions. Therefore processing vast quantities of milk samples with Fog computing 

is highly desirable for MIRS milk quality analysis in the future smart dairy farming. 

Conventional MIRS analysis [42,43] has been conducted based on co-located data processing by a single computational 

facility. As shown in Fig. 1 , the raw data are directly collated into a repository, mostly by non-experts of data science, and 

later analysed by the domain-specific data science experts. This significantly increases the computation and power resource 

requirement on the cloud using raw MIRS data. In modern distributed processing infrastructures, data pre-processing such 

as de-noising and dimensionality reduction can be carried out closer to data sources. It would, in turn, improve three forms 

of resource efficiency of the system and reduce the input cost compared to the conventional approach. Water absorbance 

1 https://myagcentral.com/ . 
2 http://apache.org . 
3 http://www.h2o.ai . 
4 https://www.keep.eu/keep/project-ext/21114/OptiMIR . 
5 http://succinct.cs.berkeley.edu . 
6 http://CRAN.R-project.org/package=wavelets . 
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Fig. 1. PCA and WT for MIRS have been applied to avoid overfitting and de-noising in the conventional spectrometry analysis. The two techniques can be 

used for data compression in future distributed analytics platforms with compressed learning. 

data collected using MIRS technology, for instance, hampers the accuracy of milk quality prediction. Removal of these data 

using distributed computing, prior to sending to the cloud would potentially improve the model accuracy as well as reduce 

the amount of data in the cloud. Therefore, interpretation of biological data on the edge, using domain-specific knowledge 

of MIRS, would optimize resource utilization both in big data analytics as well as Fog computing [3] . 

Compression techniques such as Principal Component Analysis (PCA) [20] , Wavelet Transform (WT) [44] , manifold and 

deep learning methods [15] have been widely used for learning from compressed data. The present study investigates the 

linear learnability of MIRS milk quality data for a selection of milk quality traits in a compressed data domain. We examine 

in detail PCA and WT as two compression techniques, which have been widely used for MIRS data analysis [42] . The two 

compression techniques will provide a near lossless compression for many of the currently investigated milk quality pa- 

rameters. The study concludes with the generalized/harmonized compression parameters required for the two compression 

techniques to perform compressed learning, i.e. the number of principal components ( l ) in PCA and the number of wavelet 

coefficients ( r ) in WT. We also discuss the additional factors to be required for de-compression, if needed. The impact on the 

MIRS prediction accuracy at different compression levels was investigated using Partial Least Squares (PLS) linear regression 

modelling, which has frequently been used in milk MIRS-based predictions [43] . We discuss the importance of sample size 

in PCA and WT-based compressions and the benefits of supervised compression in compressed learning. Furthermore, we 

compare our PCA and WT-based compressed learning approaches with state-of-the-art neural network based deep learn- 

ing techniques such as auto-encoder, GoogleNet and ResNet. While the root mean square error obtained for our approach 

is comparable for certain features, it is typically higher compared to these techniques. However, the use of deep learn- 

ing techniques requires a large amount of resources that makes their deployment unsuitable for our resource constrained 

environments. 

Section 1 introduces the paper by discussing the importance of learning in the compressed data domain for MIRS-based 

analytics from the perspective of Fog computing and big data analytics. Section 2 presents the related works in compressed 

domain machine learning approaches and applications. Section 3 describes the MIRS techniques used in predicting milk 

quality traits. Compressibility analysis of MIRS data using PCA and WT is given in Section 4 . Section 5 presents the per- 

formance statistics of applying the PLS on compressed MIRS data. Section 6 discusses generated results, applicability and a 

comparison with a state-of-the-art techniques while Section 7 concludes the paper. 

2. Related works 

The concept of learning in the compressed data domain has been used in a vast range of applications such as hyper- 

spectral image analysis in neuro-science [7] and geo-sciences [41] , feature selection in video processing [15,26] , machine 

learning applications in mobile computing [12] , distributed data fusions in sensor networks [31,33] , as well as classification 

of complex and big data structures (e.g. text and images) [11,32] . Generally, the primary purpose of using machine learn- 
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ing in the compressed data domain (in the rest of the paper we refer to simply as compressed learning) was based on a 

few main reasons: (1) efficient access to large data volumes in big data computations, (2) energy-efficient communications 

between constrained devices, and (3) computations in resource limited Fog computing environments. In general, the main 

categories of compressed learning techniques comprise of the PCA, WT, and deep neural networks as compression methods 

and the learning methods such as regression and classification. The related works presented here have shown that com- 

pressed learning has effectively minimized communications, memory, and data storage, while also reducing the learning 

complexity and hence the processing time of the applications. 

A universal framework for compressed learning, in association with compressed sensing, has been presented periodi- 

cally in the literature [7] . Dimensionality reduction and data compression have been applied on measurement data based 

on different basis functions mainly using Fourier and Wavelet. To avoid complete reconstruction of time domain signal of 

electroencephalograms based on random projections, Shoabi et al. [36] provided a comprehensive analysis of a methodology 

and mathematical framework for compressed learning with data sparsity. Additionally, Lu et al. [27] explained a compressed 

signal processing approach to adequately preserve the similarity metric of pattern recognition in electroencephalograms. The 

generality of random projections on Nyquist-domain data enables significant reductions in computation. 

In order to accurately reconstruct a signal from the Nyquist-domain, the highest frequency of a signal should be less than 

half of the sampling rate [38] . However, Donoho in 2004 proposed a compressed sensing approach, stating that with the 

knowledge of signal’s sparsity, a signal can be recovered even with fewer samples [6] . This compressed sensing approach 

combines signal acquisition and compression into one step (i.e. compression at the time of sampling) instead of perform- 

ing in two steps (traditional sampling) [38] . Hence, compressed sensing reduces potentially the computational, storage, and 

communication in higher dimensional data processing compared to the traditional data sampling and compression. There- 

fore, compressed sensing has gained much attention in the recent past for compressed learning with higher dimensional 

data such as photography, holography and facial recognition [34] . 

The requirement of dimensionality reduction of big data for subsequent use in machine learning were discussed and 

classical PCA has failed as a strategy when the number of observations is very large. This has resulted in issues of memory 

and storage limitations for single processor computers. As an alternative, Zhang et al. [49] proposed a new PCA approach 

based on scanning data by rows. The study [8] outlined compressed linear algebra (CLA) for in-memory operations such 

as matrix-vector multiplication in compressed data domain. Also Elgohary [8] documented the drawbacks of heavy weight 

compression algorithms due to computational complexity in decompressing and lightweight algorithms because of poor 

compression ratios while making a clear case for the operation of linear algebra directly using matrices with compressed 

data. 

Learning from feature extraction has been extensively used in image and video analysis. A novel technique for construct- 

ing high resolution images from low resolution images and recognition of such images using a singular value decomposition 

(SVD) based PCA approach have been investigated in [15] . Moreover, a SVD-based approach to extract potential global fea- 

tures from facial images given in [16] used special properties of singular values of an image to devise a compact, global 

feature for image-representation. Also the authors of Jian et al. [16] theoretically proved that leading singular values can be 

used as rotation-shift-scale-invariant global features of an image. Texture image retrieval and classification based on SVD was 

investigated in [18] , while Guo et al. [11] proposed a texture-based image classification approach based on cross-covariance 

matrix of image textures. The authors of Guo et al. [11] claim to have reduced the processing time of image classifications 

by using the compressed domain cross-covariance vectors of the original image data. Sometimes PCA and WT have been 

jointly used in compressed learning. For instance, PCA has been used to accelerate WT and eye location verification based 

on the features extracted from facial images using WT-salient maps in [17] . Moreover, a WT-based salient feature extrac- 

tion approach has been presented in [14] . Another approach to mimic the human visual system’s salient detection in images 

using wavelet-based salient patch detection is given in [19] . 

High resolution space-borne optical images were analysed when proposing an efficient ship detection approach using 

compressed learning with a Deep Neural Network (DNN) algorithm [41] . Only the relevant information was extracted using 

WT from space-borne optical images to observe ship positions with less detection time. Similarly, Perera and Mo [33] pro- 

posed an energy-efficient ship navigation method based on compressed domain learning. A large amount of sensor-based 

ship navigation data was compressed on-board using PCA. Also Perera and Mo [33] applied regression analysis in an on- 

shore located data centre to derive optimal navigation paths based on the compressed data. A lossless dictionary-based 

compressed learning approach for unsupervised feature learning for text data was discussed in [32] as well as also the 

applicability of k-grams based compressed data for many tasks in text processing. 

Compressed learning has been used extensively in feature learning applications in sequential video frames. The method 

presented in [26] can separate (as background and foreground of a sequence of video frames) a large set of raw data using a 

small amount of information based on prior knowledge. The authors of Loung [26] named the protocol Compressive Online 

Robust Principal Component Analysis (CORPCA) and stated that it can be used to extract only significant features from high 

dimensional data of time-variant processes by taking a single instance at a time (i.e., a frame). In CORPCA, compression is 

performed recursively using the compressive information that is extracted from its previous stage. In [31] , PCA was applied 

in compressed domain for re-enforcement learning. This approach reduced the table sizes of state space and action space 

thereby minimizing the memory spaces and learning times. The study [31] also showed that PCA reduced communications 

in multi-agent distributed learning environment. 
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Compressed learning and models are becoming more popular in big data and mobile computing platforms. DNN models 

are commonly used in mobile applications. However, such applications are too large to fit into constrained mobile comput- 

ing resources. Therefore, compressed versions of DNN models were introduced in [12] , which have the same properties as 

their corresponding original models and provide an energy-efficient platform to run those models. In addition, distributed 

computing frameworks such as Apache Spark have been combined with a compressed data representation framework de- 

veloped by the Saccinct project. This framework enables to query data stores in a compressed data domain, so that Spark 

users benefit in searching point queries directly on a compressed representation of the input data. Deep learning techniques 

have achieved higher classification accuracy than the traditional compression techniques. An application of auto-encoder 

technique for hyper-spherical image classification has been provided in [48] . 

Different spectrometric analyses have benefited from compression techniques to perform further learning. The 

study [28] discussed a general overview of MIRS applications as a phenotyping tool for deriving milk quality traits, 

while Gunrdeniz and Ozen [10] explained the use of MIRS with WT and PCA in a quantification of the extra-virgin olive 

oil adulteration process. MIR (and NIR) spectroscopic techniques were used in [24] to determine the dry matter content of 

tea; WT and PLS chemometric techniques were performed to determine the tea dry matter content. 

In general, compressed learning has been used extensively in a vast range of spectrometry applications. However, spec- 

trometry analysis towards a generalized (harmonized) compressed learning process for MIRS-based milk quality monitoring 

has not been thoroughly investigated. Even though the two compression algorithms, PCA and WT, have been used [42] , ap- 

plication of data compression where data are generated (near sensing) has not been thoroughly studied for use in future 

analytics platforms. 

3. MIRS for predicting milk quality traits 

Fourier Transform (FT)-MIRS is the prominent MIRS approach currently used in routine milk testing. Globally, milk sam- 

ples from individual dairy cows and bulk samples are routinely taken to assess milk quality which can be subsequently 

used by dairy producers and processors in making management decisions but also by breeders to identify genetically elite 

candidate parents of the next generation. The milk quality information originates from predictions from the transmittance 

of light in the mid-infrared region (i.e. 250 0–250 0 0 nm; 90 0–50 0 0 cm 

−1 ) of the electromagnetic spectrum. The outcome 

of the MIRS analysis is a spectrum for each sample and this transmittance value is available for each wavelength irrespec- 

tive of its information content [29] . Milk protein, fat, lactose, urea, minerals, acetone, ketone bodies, casein are some of the 

most reported milk quality parameters predicted from MIRS [29] , which are used in deriving many priori and posteriori 

phenotypes by the stakeholders. 

Some compression algorithms like Lempel–Ziv–Welch (LZW) deliver the objective of data compression (i.e., data are 

compressed without losing information), but de-compression is still necessary to convert the data into its original (mea- 

surement) domain because statistical learning cannot be applied to compressed data. This type of compression method help 

in optimizing issues such as storage and communication difficulties. However, de-compression brings back the original data 

dimensionality with irrelevant and redundant MIRS data. Thus, the complexity of learning from the original data remains 

unchanged. Therefore, such lossless compression algorithms increase only the computational cost of de-compression with- 

out making any contribution to the learning process. In conventional cloud systems, decompression happens in high-end 

servers where energy and computational power are generally not a constraint. However, in Fog computing, decompression 

may be performed at a resource constrained Fog node [3] . Therefore, compared to the general compression-decompression 

approaches, the compressed learning concept in MIRS using PCA and WT offers an effective methodology in a resource 

constrained infrastructure. 

The quality and the dimensionality of MIRS data are crucial factors for machine learning. High dimensionality and multi- 

collinearity (i.e. correlated data) also limits the use of multiple linear regression. As an early approach to compressed learn- 

ing, Cands and Wakin [5] proposed a better lossless data compression technique using only a few and potentially disjoint 

sets of highly significant WT coefficients in an orthonormal basis. In addition to using WT, in the present study, we at- 

tempted to compare compression performances with PCA as a widely used technique in MIRS. There are many well-defined 

pre-treatment techniques (e.g. scaling, scatter correction, etc.) in MIRS analytics to undertake quality control of data which 

we need to apply before the compression process. For example, the spectrum contains dissolved water absorbance ( O = H

bonds) in the 150 0–180 0 cm 

−1 and 290 0–380 0 cm 

−1 ranges, and these regions are not useful in the prediction of milk 

quality traits. 

In compressed learning, the original data can be recovered with the recovery algorithm of PCA and WT only if it is 

needed. However, by performing all analytical processes in the compressed domain, we can eliminate the additional cost 

of de-compression, which is in contrast with some other user-interacted data compression applications like in multimedia. 

Since WT uses a known basis ( Daubechie − 4 at scale q in Fig. 2 ), no additional information is needed to decompress. How- 

ever, in PCA, the loading matrix and the column averages ( a and P in Fig. 2 ) of the original data matrix are required for the 

decompression as we explain later in the paper. 

The compression level of a MIR spectrum ( X ) depends on the target response variable ( γ ) of the learning algorithm. For 

example, an analytical engine for animal health status can be run in one computational sub-system while another analytical 

algorithm for milk quality may be run in another sub-system. In the present study we investigate a generalization approach 

of compression of MIRS data only using X ( Fig. 2 ), which is the important research question in compressed learning for MIRS 
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Fig. 2. Pipeline of the Compressed Learning framework: Data pre-processing/aggregation is performed at a very early stage. Compression of MIRS data is 

carried out using PCA or WT irrespective of the intended milk quality trait (unsupervised). Data in the compressed domain (i.e. scores in PCA or indexed 

WCs in WT) will be used by different machine learning applications. 

milk quality monitoring. However, we briefly discuss the possibility of further compression based on a known γ within the 

discussion section. 

The data used in the paper originated from the Teagasc research dairy farm at Moorepark, Ireland where MIR spectra 

were collected and the composition of milk was determined using FOSS MilkScan prediction equations. The input data ma- 

trix contained the spectra of 712 different milk samples in the wavenumber region 925–5005 cm 

−1 with a resolution of 

3.853 cm 

−1 ; wavenumbers were rounded to the nearest integer. As a result, the given spectrum contained 1060 transmit- 

tance data points. Therefore, the original MIRS spectra used (called gold standard) to develop linear prediction models was 

a (712 × 1060) size matrix and denoted by X org . We converted them to absorbance values by taking log 10 of the reciprocal of 

the given transmittance values. Absorbance indicates the amount of absorption of electromagnetic radiation when the MIR 

light penetrates through the milk sample. Higher absorbance values indicate that the MIR light penetrates less at certain 

wavenumbers according to the molecular bonds. In addition, percentages of the selected milk nutrient components; lactose, 

fat, protein and urea, corresponding to each sample were stored in a column matrix ( γ n × k , where n = 712 and k = 5 ). PLS 

model calibration and validation were applied on to these gold standard data ( γ ) to derive our generalized compression 

parameters. 

4. Compressibility of MIRS milk quality data 

This section will discuss the compressibility (unsupervised or general) of MIRS dataset using PCA and WT. First, we 

will investigate the data redundancy of the available MIR spectra and hence the compressibility of such data, which can 

be improved using PCA and WT without noticeable information loss. Second, we will discuss the selection of main input 

(or compression) parameters required for the PCA compression (number of principal components ( l )) and WT compression 

methods (number of wavelet coefficients ( r )). Since there is no prior information regarding the learning purposes (e.g. re- 

gression, classification) which the compressed data will be used for, the compression should be performed by preserving the 

original properties of the MIRS data as much as possible. Therefore, the selection of compression parameters is important 

and should be performed carefully. In order to select reliable values for l and r , their impact on the quality of compression 

was examined. The variance explained by the principal components and the reconstruction error were used to quantify the 

quality of compression. We have used compression ratio as the final evaluation metric of our approach as it indicates com- 

putation, communication and storage performance of the analytics infrastructure. The notations used to represent different 

matrices, vectors, and values in MIRS dataset, PCA, WT and PLS algorithms are given in Table 1 . 

4.1. Pre-processing of the MIRS data 

In spectrometry analysis, dissolved water adds unnecessary variability to the MIR spectra and could affect the resulting 

prediction accuracy. Most possibly, this effect is a random fluctuation or a systematic shift of the spectra. For instance, milk 

spectrum indicates two random sharp fluctuation regions, which occur in the wavenumber regions 150 0–180 0 cm 

−1 and 

290 0–380 0 cm 

−1 per visual observation. Those regions are the water absorbance regions according to the pure water spec- 

trum at 25 °C. In distributed analytics, we precisely identify those two regions based on PLS model calibration on our gold 

standard data and suggest these regions should be removed in the pre-processing stage before the compression. Therefore, 

based on our systematic identification of the two water regions, the corresponding wavenumbers can be removed from all 

raw MIR spectra in the measurement data domain. 

In order to identify the water regions, we selected visually observable bare minimum water regions as 1464–1849 cm 

−1 

and 2890–3814 cm 

−1 and removed these from X org . Then we progressively recaptured one wavenumber at a time from 

the discarded regions to our predictors. In each step, the impact of the addition was quantified based on cross-validated 

root mean squared error ( RMSE CV ) of the PLS predictive algorithm (explained in Section 5 ). The predictive error indicated 

a noticeable increase as the water absorbance regions began to be included in the prediction. Our finalised wave regions 

removed were 1607–1734 cm 

−1 and 3021–3707 cm 

−1 . By removing the wavenumbers which were in the water absorbance 
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Table 1 

Mathematical notations used in the paper to represent MIRS dataset and 

PCA, WT, PLS algorithms. 

Notation Description 

X org Original MIR spectra with values in absorbance 

X Water removed MIR spectra 

n Number of samples in the gold standard 

m Number of wavenumbers in X after removing water 

γ Target variables of milk quality components in % 

k Number of selected milk quality components 

( x, y ) A sample (a row) of X and γ in the gold standard 

l Number of PCs selected using PCA 

G Scores matrix of PCA in compressed domain 

P PCA loadings matrix for data recovery 

a Averages of selected l columns 

r Number of WCs selected using WT compression 

C WT after thresholding in compressed domain 

q Level of scale in WT 

X ′ Reconstructed MIR spectra from the compressed domain 

u Number of Latent Variables in PLS 

Fig. 3. Water-free MIR spectra ( X ) of 712 milk samples in the wave region 925–5005 cm 

−1 . Pre-processing has reduced the feature-space dimensionality 

from 1060 wavenumbers to 847 due to removal of water absorption. 

regions, the dimensionality of water free spectrum ( X ) became 712 × 847 (i.e., m = 847 ), which reduced the amount of un- 

wanted MIRS data by 20.1% and Fig. 3 represents the water absorbance regions removed spectra. The pre-processing stage 

could precisely remove the wavenumbers from the original spectra to obtain X , which is then fed into the compression 

stage. 

In order to reliably develop our prediction model, we applied pre-treatment processes to the gold standard data. We 

mean-centred and scaled the values of X so that the mean and the standard deviation (SD) of each wavelength was 0 and 

1, respectively. Scaling was not a compulsory approach in MIRS data since all the features were in the units of absorptions. 

However, this standardization could avoid confusion when using widely available machine learning libraries. We verified the 

normality of each response variable using Shapiro similarity check as a pre-requirement for applying PLS regression [35] . 

Outliers in γ , which were identified as when the difference between the value and its mean is more than three times the 

SD of a target variable, were removed from the data. Gold standard data (i.e., γ ) were not available for all the samples 

and were therefore not considered if missing. After applying these pre-treatments, the final number of samples used for fat 

prediction was 701 and for lactose, protein and urea was 704. 

4.2. Compression with principal component analysis 

The existence of strong correlations among the feature vectors makes MIRS predictions unamenable to simple analytic 

techniques like multiple linear regression due to matrix singularity ( n = 712 < m = 847) and multi-collinearity (correlations 

among feature variables), which could contribute to over-fitting. To overcome these issues, mostly PCA has been used for 

dimensionality reduction in MIRS, while WT has been used for de-noising [39] . However, both techniques can also be used 

for de-noising as well as for dimensionality reduction. In addition, PCA can particularly be useful as a data visualization tool 

and for feature extraction while WT can be used as an accelerating tool for efficient feature extraction by PCA. Therefore, 

the order of applying the techniques in a resource-constrained distributed computational infrastructure is important, but 

this has not been a concern for users of MIR spectroscopic analytics in the past. 
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Fig. 4. Cumulative variance explained and the reconstruction error at different number of PCs of the original ( X org ) and water removed ( X ) spectra. 

Application of PCA in most of the higher dimensional data studies was variance based [45] . Feature vectors, which explain 

a significant portion of the variance in the original data (motive to capture only significant information as possible), are 

extracted based on the correlations among the different predictive variables (columns of X ). Once a certain number of PCs 

are selected, this forms a low dimensional subspace of data such that every selected component is orthogonal to the other 

with minimum loss of information. Because of neglecting components, which contribute little to explaining the variability in 

the data, this concept has been used for dimensionality reduction of multi-dimensional data in a vast range of applications 

[20] . 

From a mathematical point of view, suppose n < m in the feature matrix X n × m 

, where n and m are integers. PCA com- 

putes a new set of transformed variables called principal components (PCs) as linear combinations of the original variables. 

The first PC ( PC 1) accounts for the largest possible variance in X while the second PC ( PC 2), which explains the second 

largest variance in X , is computed to be orthogonal to PC 1. The third PC ( PC 3) is derived to be orthogonal to both PC 1 and 

PC 2. The remaining PCs are computed in the same way and the transformed values of these PCs are called scores. The total 

number of PCs that can be generated from X is the minimum of n and m . In our MIRS data, PC 1, PC 2 and PC 3 respectively 

explained 6.9%, 5.6% and 4.8% of the variability in X org , and 68.5%, 23.0% and 4.9% of the variability in X . The Singular Value 

Decomposition (SVD) technique was used in the present study to compute PCs [20] . 

The new feature space of X ( G n × l - compressed domain data) is formed by selecting the columns from G which cor- 

respond to the first l largest singular values in D . The value of l is decided upon based on a threshold of the cumulative 

variance of PCs. The coefficients of the linear combinations are contained in P l × l , which we need to transform G n × l back to 

the original domain X 

′ (i.e. when the column average vector a of length l is provided). 

We used the R package pls 2.6-0 [30] which was developed to calculate the PCs from our MIRS dataset. PCA of X org 

and X gives 712 PCs, which is the minimum of n = 712 for both 1060 or m = 847 . The proportion of variance accounted 

by the different number of PCs were studied and also the loss of information from recovering the original data from those 

PCs were quantified by using the reconstruction error for both X org and X . Fig. 4 (left) shows the cumulative percentage 

of variance from 99% onwards explained by PCs of both X org and X . Fig. 4 (right) also shows the reconstruction error 

( 
∑ n 

i =1 ( 
√ ∑ m 

j=1 (δx 2 
i, j 

) /m ) /n ) at different PCs, where δx i, j is the difference between the original value ( X ) and the recon- 

structed value ( X 
′ 
) of a data point for i = 1 , 2 , · · · , n and j = 1 , 2 , · · · , m . For example, the number of PCs needed to explain 

99.9% of total variance were 145 and 20 for the original and water removed spectra, respectively. Then the dimensions of 

the compressed domain data of X can be reduced to 712 × 15 providing a compression ratio (defined as c 
m 

× 100 , where 

c = l, r, for the rest of the paper) of 98.2% having a reconstruction error of 3 . 05 × 10 −4 . The cumulative variance explained 

by the PCs of X was above 99.99% and its increment was less than 10 −3 after the first 100 PCs. Therefore, the optimal value 

for l was selected as 100 with minimum loss of information (0.01%) in our analysis. The reconstruction error corresponding 

to the first 100 PCs of X was 6 . 28 × 10 −5 which guaranteed that the amount of information loss was small (the compression 

ratio was 85.96%). 

Fig. 4 shows that PCA can significantly reduce the dimensionality of the MIRS data at different accuracy levels. The 

results also show that the water-related wavelengths contribute a significant amount of variability in the dataset, which 

should be removed based on our concluded wavenumber regions prior to compression. Hence, a significant amount of com- 

munication and computation energy can be saved for the benefit of future Fog and big data analytics. PCA-compressed data 

also minimizes over-fitting where the compressed domain data ( G n × l ) can directly be used in subsequent linear regression 

models. 
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However, our presented PCA compressed data may not have removed high frequency noise, while Wavelet compression 

in the next section can remove such noise in MIRS data. Since PCA is an unsupervised learning approach, it only accounted 

for collinearity among feature variables. However, in most of the real-world datasets, including our MIRS data, collinearity 

between response and feature variables also exist. In such situations, supervised dimension reduction techniques can be 

used and the optimal number of PCs required to generate a stable prediction model might be further reduced as shown in 

Section 6 . 

4.3. Compression with wavelet transformation 

WT can be applied to a single or any finite group of spectra and analysed on any scale with orthogonal basis func- 

tions [44] . Every basis function consists of two types of functions : (1) wavelet function (mother wavelet), which is a high- 

pass filter capturing sharp behaviours (called details), and (2) scaling function (father wavelet), which is a collection of scal- 

ing functions capturing more general behaviours (called approximations) and act as a low-pass filter. In general, the data 

passes through these two filters and then generates approximate and detailed signals at a certain scale ( q ). The outcome 

of the high-pass filter is taken as Wavelet Coefficients (WCs), representing high frequency components. When the scale is 

higher, WCs are increased while the Scaling Coefficients (SC) are reduced. The number of filtering steps might deteriorate 

the transformed signal and may affect reconstruction (de-compression) after a certain scale [24] , which we need to select 

for our MIRS data compression. 

When selecting a basis function, the important properties to be considered are orthogonality of basis, preservation of 

data sparsity, independence between wavelet coefficients, and easiness in the reconstruction of the signal. Since there are 

different types of basis functions such as Haar, Symmetric and Daubechie, selecting an optimal basis is an important factor 

in WT. For instance, Haar wavelet is not suitable for the description of smooth functions; instead we used Daubechie-4 in 

our evaluations with the most commonly used WT, which is Discrete Wavelet Transform (DWT) [42] . 

Let x be a signal (e.g. a spectra) from X of length m . First we apply zero padding (which may sometime cause a con- 

siderable edge effect which linear padding minimizes [2] ) to extend the array of n = 847 to 1024, which is the nearest 

2 10 format of our dataset (to apply WT, the signal length must be of the form 2 b , where b ∈ Z 

+ ). DWT was applied on a 

Daubechies-4 wavelet basis for different number of scales where the maximum was 10. The elements which are less than a 

selected threshold ( λ) were regarded as noise (insignificant information) and removed from the transformed signal. Accord- 

ing to Artime [2] , there are many thresholding methods such as universal, hard, and soft, but we used the soft thresholding 

approach. We then obtained our compressed domain data matrix C n × r . The indexes of the selected components are required 

to reconstruct the original data. In reconstructing the original signal x , we replaced all the removed positions with zero and 

applied the Inverse DWT for the same numbers of q . We used Multi Resolution Analysis (MRA) [43] , which is a simple, fast 

and easily illustratable DWT method. 

In general, MIR spectra contain high and low frequency signal components. The signals that have frequencies above a 

certain level are considered as noise components. We used the R package wavelets 0.3 in our MRA based DWT . Wavelet 

transform was applied on X and the coefficients were retained, which has the dimensions of 712 × 1024. The number of 

SCs and WCs are shown at the 4 th scale in Fig. 5 for a single spectrum. We used a threshold ( λ) of 0.01 to compress the 

spectrum at this level discarding insignificant components. According to this threshold, scaling and wavelet coefficients of 

53 and 74, respectively can be selected. These components need to be stored as key-value pairs at the compression stage to 

use in compressed learning. 

The optimal number of scale levels ( q ) and threshold ( λ) are the main parameters required for selecting the most sig- 

nificant WCs in WT. Therefore, the behaviour of the number of significant WCs were experimented with by changing the 

values of q and λ. The first graph of Fig. 6 shows the variability in the number of WCs at different scales under different 

threshold values (exponentially selected between 0.0012 and 0.02). For simplicity, we refer to the number of WCs as the 

sum of both scaling and wavelet coefficients at a certain threshold in the rest of the paper. According to Fig. 6 , the number 

of coefficients is high (but with lower reconstruction error) for small thresholds. Increasing q up to the maximum possible 

scale is not required. Fig. 6 shows a saturation behaviour at the number of WCs after the 6 th scale, which we will use in 

Section 5 . Therefore, WT does not capture any high or low frequencies of spectra after this point in our MIRS data. For 

example, at a threshold of 0.01, our data can be compressed to 127 coefficients with a 1 . 9 × 10 −3 reconstruction error. To 

select an optimal value for r , the reconstruction error was computed for different WCs using the scale and threshold values 

of 6 and 0.0025. The second graph in Fig. 6 represents the behaviour of reconstruction error. The reconstruction error of X 

was almost saturated (the error change was less than 10 −3 ) after 200 WCs. Therefore, the optimal r value was selected as 

200 with the reconstruction error of 8 . 2 × 10 −4 and a compression ratio of 71.91%. 

Our MIR spectra can be considerably compressed while keeping most of the critical information and discarding most of 

the unnecessary information both using PCA or WT techniques. This concludes therefore that spectra can be transformed 

into their compressed domain and can be recovered with minimal error, if necessary. However, our results show that PCA 

required a fewer number of components than the required number of coefficients in WT to achieve a similar reconstruction 

error. The next section will investigate the impact of our compression on the PLS prediction accuracy of four different milk 

traits and hence derive our generalized/harmonized compression parameters ( l and r ) for compressed learning. 
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Fig. 5. Distribution of SCs and WCs at the 4 th scaling ( q = 4 ) of a single water-free spectrum of our MIRS data using ’Daubechies-4’. Threshold ( λ) of 0.01 

indicate that the spectrum compresses to 127 components. 

Fig. 6. Number of significant WCs at different thresholds ( λ) and different scales ( q ). The number of coefficients saturate at scale 6. Reconstruction errors 

in WT are higher when compared to PCA. 

5. Impact on prediction accuracy by compressed learning 

This section investigates the impact of compression parameters on compressed learning performances. First, we study the 

impact of l and r on the learning performances derived from a supervised compressed learning approach and second, we 

select optimal parameter values based on their impact on the learning performances. We apply PLS, which is commonly used 

for analysing MIRS data [1,10,28] , on the compressed MIRS data (i.e. PCA scores G n × l and Wavelet-transformed data C n × r ) 

to quantify how much the predictive accuracy is impacted by PCA and WT based compressions. At different compression 
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Fig. 7. Overview of the PLS learning procedure from PCA and WT and selection of LVs from PLS calibration for building predictive models. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

levels (i.e., varying l and r ), prediction performance in model calibration and external validation using compressed data is 

compared with the data in the uncompressed measurement domain ( X ). The following indexes for the regression model 

have been used to evaluate the compressed learning performances. 

The root mean-square error ( RMSE ) quantifies the standard deviation of the residuals (between the real and the predicted 

response variable γ ) and is shown in the units of absorbance. The coefficient of determination ( R 2 ) depicts the proportion of 

variance in the response variable γ explained by the predictor variables in X . These measures are computed by the following 

two equations (subscript i - real response value and p - predicted value). 

RMSE = 

√ ∑ N 
i =1 (y i − y p ) 2 

N − 1 

, R 

2 = 1 −
∑ N 

i =1 (y i − y p ) 2 ∑ N 
i =1 (y i − ȳ ) 2 

The Ratio Performance Deviation (RPD) represents the practical utility of the model, and is calculated as (1 − R 2 ) −1 / 2 . As a 

rule of thumb, if RPD > 3, then the model can be used for practical analytical purposes. 

All performance indexes are calculated for both the calibration ( c ) and external validation (prediction) ( p ) data segments 

of our gold standard MIRS data. Based on these evaluations, near lossless compression parameters l and r for PCA and WT, 

respectively are derived for each milk trait. We have selected four of the most used milk quality parameters: lactose, fat, 

protein and urea, all derived from milk MIRS [28] . 

5.1. Partial Least Squares (PLS) regression 

PLS is a projection method that models the relationship between the predictors X and responses γ (a.k.a. Projection 

on Latent Structures) [9] . The PLS method considers not only the correlations among the predictor variables in X , but also 

the correlations each predictor in X and the response in γ . The general procedure of PLS is somewhat similar to when 

dimensionality reduction of PCA is combined with Least Squares Regression (LSQ), which is called as PCR. However, PLS and 

PCR differs mainly in the methods used in extracting factor scores. PCR produces a loading matrix P reflecting the covariance 

structure among the predictor variables. PLS produces a loading matrix P reflecting the covariance structure between the 

predictor and the response variables [9] . The set of significant components in PLS is called the Latent Variables (LV). PLS 

decomposes both X and γ using SVD. 

Fig. 7 (a) shows the logical overview of the essential steps that we have followed in this section to derive l and r . The 

sub-sampled training dataset (model calibration) is selected randomly having 80% of the total n samples. The remaining 

set of samples is used for testing the model (external validation). To increase the validity of model performance, we repeat 

the above process for 10 different data selections while keeping the same ratio for training and test data partitions. We 

have selected samples randomly (from n = 712 ) under each iteration and the average of performance measures has been 

calculated. 

5.2. PLS accuracy using uncompressed MIRS data 

First, we calculated PLS accuracy with the MIRS data in the measurement domain ( X ). This accuracy ( RMSE CV = η) was 

used as the reference to estimate our near lossless compression parameters. Different compression parameters; l x and r x 
where x ∈ { lactose, fat, protein, urea }, were derived by fitting a PLS model on the compressed data for the four selected 

milk parameters. We achieved the prediction performance using compressed data to be comparative with the reference 
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Table 2 

PLS model performance on the original ( X ). Our near lossless PCA and WT compressions find optimum 

number for l and r according to these reference values. 

Milk trait Reference values Calibration External validation 

# LVs ( u ) RMSE CV ( η) RMSE c R 2 c RPD c RMSE p R 2 p RPD p 
Lactose ( X org ) 5 0.0173 90.25 3.2152 0.0190 88.53 3.0379 

PLS model performance for water removed Spectra ( X ) 

Lactose ( X ) 12 0.0154 0.0151 92.60 3.6929 0.0167 91.17 3.4578 

Fat 5 0.0892 0.0865 88.49 2.9540 0.0919 87.35 2.8607 

Protein 4 0.0601 0.0574 76.12 2.0570 0.0625 73.61 2.0461 

Urea 15 0.3443 0.3098 81.55 2.3350 0.3523 77.64 2.1428 

model performance ( ηx ). The selection procedure of the compression parameters is explained only for lactose but the same 

procedure was followed for fat, protein and urea and the summary is given. 

First, a PLS regression model was fitted to the training data in the uncompressed domain ( X ) and we obtained the cross- 

validated mean of RMSE CV by changing the number of LVs in the PLS model to select the minimum error at an optimal 

number of LVs ( u ). However, in this process, u was selected as the LV corresponding to the RMSE CV , which did not make 

a considerable difference ( p -value ≤ 0.001) to the global minimum of RMSE CV (i.e., LV corresponds to the selected RMSE CV 

such that the difference between the selected and the global minimum RMSE CV is not greater than the p -value). u has been 

selected (as explained above) in our evaluations according to a permutation model explained in [30] and a 10-fold cross 

validation, followed 10 0 0 iterations, for selecting each LV. 

According to Fig. 7 (b), the optimal RMSE CV of 0.0154, is achieved with 12 LVs for lactose ( u lactose = 12 ), when the water- 

removed spectra ( X ) were used. Twelve LVs were selected as the optimal number of LVs even though the absolute minimum 

of RMSE CV occurred at 17 LVs. The graph on the right of Fig. 7 (b) provides performance statistics of the PLS model with 

a comparison of calibration and external validation statistics based on R 2 . In Fig 7 (b), the performance indexes of the cal- 

ibration and external validation values do not change much beyond the selected optimal LV point (after the dashed line). 

Therefore, the optimal PLS model can reliably be derived with 12 LVs for lactose. 

Table 2 presents the optimal RMSE CV and minimum LVs we can achieve with the measurement domain data for all the 

four different milk traits we have selected. Statistics in Table 2 indicate a well performed regression models for lactose 

and fat, because the R 2 were > 87% for both models and the RPD was ≥ 3 for lactose and close to three for fat in both 

the calibration and validation. The regression models of protein and urea content were not as good as the lactose and fat 

regression models, because R 2 and RPD values were only > 73% and ≥ 2 in the both the calibration and external validation. 

Table 2 also shows that we can achieve a 12.7% improvement in RMSE CV concurrent with a 20.1% compression by just 

removing the water-related wavelengths of the spectrum during the pre-processing stage of our compressed learning. Then 

we conducted the same PLS procedure using PCA and WT compressed data by changing compressed dimension parameters 

l and r . 

5.3. Impact on PLS accuracy with PCA compression 

The performances of the PLS model were computed by changing the number of PCs, l = 5 , · · · , 100 with a step of 5 PCs. 

The results on predicting lactose are given in Fig. 8 (a). During the evaluations, the score matrix ( G n × l ) at different selected 

number of PCs was applied as the compressed domain input to the PLS model. RMSE CV of cross-validation were compared 

with the reference accuracy of lactose ( ηlactose ), which is given in the Table 2 . 

PLS calibration and validation accuracies using PCA compressed data decreased as the number of PCs increased. With 

45 PCs, it shows a similar minimum RMSE CV compared to the reference PLS accuracy of 0.0154. Adding more PCs after 45 

PCs into to the model did not make a significant contribution to improve the model performance (i.e. the impact of l on 

lactose predictive model is up to a certain value only). Thus, the results reveal that the PCA compression with at least 45 

PCs is stable. Therefore, we conclude that the optimal compression level can be achieved with 45 PCs for lactose prediction 

( l lactose = 45 ) resulting in a compression ratio of 94.7%. 

Results in Table 3 shows the optimal number of PCs required to predict all the milk traits using PLS. These models were 

derived in the similar way to as described for lactose. Moreover, different milk traits have their own optimum number of 

PCs; l lactose = 45 , l fat = 30 , l protein = 37 and l urea = 65 . Therefore, with respect to each trait, the water-removed spectra can be 

compressed by 94.7%, 96.5%, 95.6% and 92.3% for lactose, fat, protein and urea, respectively using PCA at the compression 

stage. 

5.4. PLS accuracy with WT compressed data 

The same procedure of PLS regression as explained in the previous section for PCA compression was applied for the 

WT compressed data. In this case, the PLS was applied to the WT coefficient matrix C n × r by changing the number of WCs, 

r = 5 , · · · , 200 with a step of 5 WCs. Fig. 8 (b) shows PLS prediction performance for lactose and the regression model with 
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Fig. 8. Compressed domain PLS performance at different number of PCs and WTs for lactose. The dashed line represents the optimal PCA (a) and WT (b). 

Table 3 

PLS model accuracies for the selected milk traits at optimal PCA compressed points. Optimal number of PCs has been 

selected based on 0.01 RMSE CV threshold from the absolute minimum. Optimal RMSE CV has been tallied to reference η. 

Milk trait # PCs ( l ) # LVs ( u ) Calibration External validation Reconstruction error 

RMSE c R 2 c RPD c RMSE p R 2 p RPD p 

Lactose 45 12 0.1580 91.85 3.5152 0.0175 90.16 3.3018 1 . 266 × 10 −4 

Fat 30 5 0.0871 88.30 2.9386 0.0918 87.41 2.8537 1 . 860 × 10 −4 

Protein 37 4 0.0577 75.91 2.0474 0.0627 73.50 2.0448 1 . 554 × 10 −4 

Urea 65 15 0.3334 78.63 2.1687 0.3705 75.07 2.0351 0 . 928 × 10 −4 

Table 4 

PLS model performance for different milk traits for Wavelet compressed data. Optimal number of PCs has been selected 

based on 0.01 RESE CV threshold from the absolute minimum. Optimal RMSE CV has been tallied to reference η. 

Milk trait # WCs ( r ) # LVs ( u ) Calibration External validation Reconstruction error 

RMSE c R 2 c RPD c RMSE p R 2 p RPD p 

Lactose 70 12 0.1650 91.31 3.3803 0.0178 89.86 3.2284 4 . 8 × 10 −3 

Fat 40 5 0.0864 88.49 2.9682 0.0920 87.37 2.8455 4 . 3 × 10 −3 

Protein 45 5 0.0575 76.08 2.0549 0.0625 73.72 2.0432 9 . 5 × 10 −3 

Urea 75 15 0.3333 78.64 2.1700 0.3730 74.95 2.0239 3 . 9 × 10 −3 

100 WCs indicates an RMSE CV close to the data domain accuracy of ηlactose . Therefore, the optimal compression was achieved 

using 100 WCs for the prediction of lactose ( r lactose = 70 ). In addition, the behaviour of the impact of r was also similar to 

the behaviour which was obtained with PCs in Fig. 8 (a). 

Table 4 shows the prediction performance in the WT compressed domain for all the selected milk traits. Different milk 

traits had their own optimum number of WCs; r lactose = 70 , r fat = 40 , r protein = 45 and r urea = 75 . WT can compress MIRS 

data by 91.7%, 95.3%, 94.7% and 91.1% for lactose, fat, protein and urea, respectively. 

PLS regression models focused on finding an optimum level of compression (optimal l and r ) for our MIRS data based on 

either PCA or WT. We validated the near lossless compression using its impact on PLS regression-based learning accuracies 

for the different milk traits. Therefore, transformed data can be used to learn in their compressed domain. Both PCA and 

WT compressions had similar compression performance. Based on the four milk quality traits we selected, the number 

of PCs in a general PCA compression ( l ) and the number of WCs in a general WT compression ( r ) should have at least 

l = 65 and r = 75 components (i.e., 92.3% and 91.1% compression can be achieved from PCA and WT, respectively). Therefore, 

selection of the largest number of PCs and WCs is the requirement to preserve the predictability of urea without losing any 

information on the investigated milk traits. 
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Fig. 9. Compressed Learning with sample-size sensitivity and supervised compression. 

6. Discussion 

6.1. Sample size selection of PCA and WT 

Real-time data transfer always consumes greater energy and is not used in many agricultural infrastructures. Instead 

delay-tolerant networks and data logging systems are mostly used [21] . Therefore, the MIRS source can collect a certain 

number of spectra before data compression and transmission takes place (e. g. in robotic milking cows are milked in every 

7–10 minutes by a single machine). If the delay is large, some extra memory space is needed to store the spectra until data 

are compressed and later transmitted. However, there can also be cases where in-situ milk quality (online) monitoring is 

used by the dairy industry. In this case, time becomes a critical factor and WT should be used for compression instead of 

PCA. 

The sample size ( n ) plays an important role in PCA-based compression since fewer samples create instability in PCA. 

The general understanding is that the larger the sample size, the better the stability. Selecting an adequate sample size for 

our MIRS data is a compromise for timeliness of decision making. There are no simple rules to determine the appropriate 

sample size for PCA. The variability in reconstruction error with respect to sample size was examined with PCA and WT 

compressions for our MIRS data X . According to Fig. 9 (a), WT using our recommended number of WCs, does not improve 

reconstruction error as the number of spectra available increase. PCA using the recommended number of components can 

improve reconstruction error by increasing the number of samples. At a certain point beyond 190 samples, PCA has less 

reconstruction error than WT. 

6.2. Customization using supervised compression 

Standard PCA does not know what portion of variance in each variable is important and should be preserved. Sufficient 

application knowledge with intended milk traits (supervisory learning) can further optimize our compression performance. 

PLS can be used in supervised compression only using LVs (compressed domain) or using significant wave indexes in a 

linear model (measurement domain). We analysed the composition of each milk quality trait within the spectrum using PLS 

( Fig. 9 (b)). The results show that a customized approach can be applied at the compression stage or on top of our generally 

compressed data using PCA or WT to further improve our compression performance. 

As an example, a farm decision support tool may need to identify only the fat and protein content of certain milk samples 

[29] to quantify cow-level energy balance in the herd. Such a customized system can further compress MIRS data beyond 

our unsupervised compression techniques, when data are transferred between the Fog nodes or into the big data systems. 

6.3. Impact on advanced analytics 

Linear PCA assumes that the original data can be converted into a single scale and the relationship between the orthog- 

onal PCs are linear. However, these assumptions are not always true with real data. For instance, categorical data consists 

of ordinal and nominal variables, which is not easy to convert onto a single scale. Hence, PCA compression could possi- 

bly lose significant information, due to multi-scale data with non-linear behaviour and correlations. If data have non-linear 

behaviours, linear PCA may inadequately capture significant variances. According to Linting [25] , non-linear PCA overcomes 

not only these issues, but also facilitates the application of PCA without changing the existing scales. Even though some 
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Fig. 10. Network architectures of four state-of-the art deep learning techniques LeNet-5, Vgg-19, GoogLeNet, and ResNet. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of this article.) 

PCs capture very little variance from the data, those PCs may represent substantial information. Therefore, PCA variants 

such as kernel PCA may solve some of these difficulties in linear PCA, where compressed learning with MIRS needs further 

investigation. 

PCR and PLS predictive methods are commonly used for statistical learning processes in spectrometric analytics. However, 

these methods fit a linear regression model. If compressed domain data presents a non-linear behaviour, those linear models 

would not contribute to derive best fit stable predictive models. Use of linear models may create a negative impact on 

the robustness and accuracy of the learning process. Therefore, advanced methods such as Support Vector Machine (SVM) 

[39] and Artificial Neural Network (ANN) [23] are available (with the improvement of pervasive computational capabilities) 

and can be used to address non-linear behaviours in MIRS data subjected to the fact that we have preserved non-linearity 

in the compressed domain data. 

6.4. A comparison with state-of-the-art techniques 

We have compared PCA and WT compressed learning performances with deep auto-encoder (DEA) [48] , LeNet-5, Vgg- 

19 , GoogLeNet, and ResNet [13,40] , using our MIRS data, all of which are emerging deep learning techniques. The LeNet-5, 

Vgg-19, ResNet, and GoogLeNet can be considered as the extensions of the LeNet model. These techniques are un-supervised 

and different forms of convolution neural network (CNN) models, which can also be considered as lossy compression tech- 

niques yet differ from the engineered compression techniques (e. g. JPEG, LZW). The PCA and WT are faster, simpler, and 

require less computational power, but considered only linear properties in the data. Whereas the deep learning techniques 

are much flexible and able to achieve more precise outcomes than PCA and WT based learning approaches by accounting 

for the non-linearity in the data. However, for instance, higher model complexity and computational requirements are the 
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Fig. 11. Comparison of compressed learning performances of PCA and WT with four state-of-the-art deep learning methods LeNet-5, Vgg-19, GoogLeNet, 

and ResNet. 

main implementation constraints in the deep learning approach. To overcome these issues, more advanced versions of CNN 

approaches have been proposed and the techniques mentioned above are a few of them. 

The water-removed MIRS data was used for deep learning. Three encoding layers were used in the deep auto-encoder 

(DAE) model. The number of decoding layers was same as the number of encoding layers. PLS-based learning procedure was 

followed to quantify compressed learning performances as in Section 5 . The compressed dimension was set to 70 as a middle 

compressed dimension to the highest feature variables (65- Table 3 and 75- Table 4 ), which were observed from PCA and WT 

based compression, respectively. Fig. 10 shows the LeNet-5, Vgg-19, ResNet, and GoogLeNet network models, and to apply 

these models to our data, each sample was re-sized as a 32 × 32 × 1 matrix, applying zero padding. The convolution layers 

mostly have 1 × 1 and 3 × 3 filters and 2 × 2 Maxpooling filters. The convolution and pooling operations were performed in 

the intermediate layer (purple colour box) and pooling was applied after the convolution. The red colour box was removed 

from the intermediate layer when the same convolution was not repeated. We did not use a dropout layer before making 

the fully connected layers. Each model has two fully connected layers (second fully connected layer has 70 neurons) and 

the last dense layer is a regression layer. The network architectures given in [13] were followed to configure the Vgg −19 

and ResNet models. Although the same convolution was repeated for six times in the ResNet model in [13] , we did it only 

for four times. The solid and dashed lines in the ResNet model represent the shortcut connection with same and increased 

dimensions, respectively. When the dimension was increased with stride 2, zero padding and 1 × 1 convolution were used to 

match dimensions. Three inception modules (the inception module with dimension reduction [40] ) were stacked together 

to form the GoogLeNet model (for more details about these network configurations, please follow [13,40] ). Each model 

was trained for up to 10 0 0 iterations using the ADAM optimizer and mean squared error loss function. Also, we used a 

fixed learning rate of 0.01 and the rectified activation function. Finally, to compare the performance of these deep learning 

techniques with our compressed learning outcomes, the RMSE P was computed, applying all these techniques to each milk 

quality parameter. 

The Fig. 11 shows the predictive learning accuracies from each deep learning model, including PCA and WT. The learning 

performances from all methods were approximately similar for lactose and an improvement was observed for fat, protein, 

and urea. This can be due to the existence of non-linear associations in the MIRS data, which has an impact on predicting 

fat, protein, and urea in milk [46] . The predictive accuracy also increased with the increasing depth of network models so 

that the ResNet model achieved the greatest accuracy. Due to the small data size, selecting a sufficient number of features 

in convolution, and over-fitting were the major issues when training these models. Therefore, learning performances may 

even improve further by using larger datasets with a comprehensive study of different factors such as data pre-processing, 

proper constraints, optimizers, and network design. 

These state-of-the-art techniques can also be used for the compressed learning which we have discussed in this study 

and performed well compared to the traditional methods. However, employing them under some circumstances such as with 

low complexity and under limited computational resources may not be feasible for applications such as distributed data 

processing using Fog computing, which is one of our main concern in the smart farming industry. These limitations would 

be minimized by using the ResNet and GoogLeNet. The GoogLeNet model has the potential to control the computational 

cost required with deep networks so that, it can be used even with limited resources and low-memory requirements [40] . 
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The ResNet model is easy to optimize and gain accuracy by increasing the depth and width of the network [13] . Although 

more reliable outcomes can be derived efficiently from these deep learning methods, further studies are essential to study 

the feasibility in employing these techniques in the smart dairy industry because the resources, such as computational 

infrastructure, energy, and lack of data might still be the major constraints to run these advanced algorithms. As we can see 

in Fig. 11 , the learning performances from all methods are approximately similar for lactose, it may not necessary to apply 

deep learning for deriving a predictive model for lactose. Thus, performing an initial study to get an overall idea about the 

general characteristics such as non-linear associations in the original data would help to select the most suitable compressed 

learning approach. Consequently, we can optimize the utilization of available resources and obtain reliable outcomes in 

resource constraint environment such as Fog Computing. 

7. Conclusions 

In this paper, we have shown that MIRS data can be pre-processed and compressed effectively near the data source 

without impacting the prediction accuracy of most measured milk quality traits. PCA can generally be compressed to 65 

principal components and WT can be compressed to 75 wavelet coefficients, which leads to compression ratios of 92.3% 

and 91.1%, respectively. At these compression levels, PLS using PCA and WT compressed data (i.e. 65 significant scores in 

PCA and 75 significant coefficients in WT) can achieve the same accuracy, as PLS can achieve using the pre-processed data 

in the original measurement domain. Therefore, the results show that the compressed learning with MIRS is highly advanta- 

geous both in Fog and big data processing, which can preserve communication and computation energy, minimize required 

memory and storage spaces, reduce application latency and preserve scarce rural network bandwidths. 

Acknowledgement 

This research was supported by Teagasc (grant no. 13/1A/1977 ) and Science Foundation Ireland (SFI) (grant no. 

13/1A/1977 ) through the project ”PrecisionDairy- Using Precision Technologies, Technology Platforms and Computational Biology 

to increase the Economic and Environmental Sustainability of Pasture-based Production Systems (ID: 13/1A/1977)”. 

References 

[1] N. Alexandratos , J. Bruinsma , World agriculture towards 2030/2050, in: Food and Agriculture Organization in the United Nations, EAS, 2012, pp. 12–21 . 

working Paper No 12-03 
[2] C.E.C. Artime, On-line estimation of fresh milk composition by means of vsi-nir spectrometry and partial least squares method (pls), in: IEEE Instru- 

mentation and Measurement Technology Conference, 2016, pp. 1471–1475, doi: 10.1109/IMTC.2008.4547275 . 
[3] R. Buyya, C. Mahapatra, V. Leung, M. Chen, P. Sahu, Fog computing: internet of things realize its potential, IEEE Comput. Mag. 49 (8) (2016) 12–116, 

doi: 10.1109/MC.2016.245 . 
[4] R. Calrebank, S. Jafarpor, R. Schapier, Compressed learning: universal dimensionality reduction and learning in the measurement domain, 2009. 

[5] E.J. Cand ȿ s, M.B. Wakin, Introduction to compressive sampling, IEEE Signal Process. Mag. 25 (2) (2008) 21–30, doi: 10.1109/MSP.2007.914731 . 

[6] D.L. Donoho, Compressed sensing, IEEE Inf. Theory 52 (4) (2006) 1289–1306, doi: 10.1109/TIT.2006.871582 . 
[7] M.F. Duarte, Y.C. Eldar, Structured compress sensing: from theory to application, IEEE Trans. Signal Process. 59 (9) (2011) 4053–4085, doi: 10.1109/TSP. 

2011.2161982 . 
[8] A. Elgohary, Compressed linear algebra for large-scale machine learning, VLDB Endowment 9 (12) (2016) 960–971, doi: 10.14778/2994509.2994515 . 

[9] P.H. Garthwaite, An interpretation of partial least squares, Am. Stat. Assoc. 89 (425) (1994) 122–127, doi: 10.2307/2291207 . 
[10] G. Gunrdeniz, B. Ozen, Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data, Food Chem. 116 (2) 

(2009) 519–525, doi: 10.1016/j.foodchem.2009.02.068 . 

[11] J. Guo, B. Song, F. Jian, H. Qin, Texture classification with cross-covariance matrices in compressive measurement domain, Signal Image Video Process. 
10 (8) (2015) 1377–1384, doi: 10.1007/s11760- 016- 0902- 9 . 

[12] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: Inter- 
national Conference on Learning Representations, 2016 . arXiv: 1510.00149v5 . 

[13] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, 
pp. 770–778, doi: 10.1109/CVPR.2016.90 . 

[14] M. Jian, K.-M. Lam, J. Dong, Image retrieval using wavelet-based salient regions, Imaging Sci. J. 59 (4) (2011), doi: 10.1179/136821910X12867873897355 . 

[15] M. Jian, K.-M. Lam, J. Dong, A novel face-hallucination scheme based on singular value decomposition, Pattern Recognit. 46 (11) (2013) 3091–3102, 
doi: 10.1016/j.patcog.2013.03.020 . 

[16] M. Jian, K.-M. Lam, J. Dong, Face-image retrieval based on singular values and potential-field representation, Signal Process. 100 (2014) 9–15, doi: 10. 
1016/j.sigpro.2014.01.004 . 

[17] M. Jian, K.-M. Lam, J. Dong, Facial-feature detection and localization based on a hierarchical scheme, Inf. Sci. 262 (2014) 1–14, doi: 10.1016/j.ins.2013. 
12.001 . 

[18] M. Jian, K.-M. Lam, J. Dong, Illumination-insensitive texture discrimination based on illumination compensation and enhancement, Inf. Sci. 269 (2014) 

60–72, doi: 10.1016/j.ins.2014.01.019 . 
[19] M. Jian, K.-M. Lam, J. Dong, Visual-patch-attention-aware saliency detection, IEEE Trans. Cybern. 45 (8) (2015), doi: 10.1109/TCYB.2014.2356200 . 

[20] V. Klema, The singular value decomposition: its computation and some applications, IEEE Trans. Autom. Control 25 (2) (1980) 164–176, doi: 10.1109/ 
TAC.1980.1102314 . 

[21] C. Kulatunga, Opportunistic wireless networking for smart dairy farming, IEEE IT Prof. Mag. 19 (2) (2017) 16–23, doi: 10.1109/MITP.2017.28 . 
[22] C. Kulatunga , K. Bhargava , D. Vimalajeewa , S. Ivanov , Cooperative in-network computation in energy harvesting device clouds, Elsevier J. Sustainable 

Comput. (2017) . 

[23] L.J. Lancashire, C. Lemetre, G.R. Ball, An introduction to artificial neural networks in bioinformatics - application to complex microarray and mass 
spectrometry datasets in cancer studies, Briefing Bioinf. 10 (3) (2008) 315–329, doi: 10.1093/bib/bbp012 . 

[24] X. Li, L. Luo, Y. He, N. Xu., Determination of dry matter content of tea by near and middle infrared spectroscopy coupled with wavelet-based data 
mining algorithms, Comput. Electron. Agric. 98 (2013) 46–53, doi: 10.1016/j.compag.2013.07.014 . 

[25] M. Linting, Nonlinear principal components analysis: introduction and application, J. Psychol. Methods 12 (3) (2007) 336–358, doi: 10.1037/1082-989X. 
12.3.336 . 



166 D. Vimalajeewa et al. / Information Sciences 459 (2018) 149–167 

[26] H.V. Loung, Incorporating prior information in compressive online robust principal component analysis, in: arXiv: 1701.06852 , 2017. 
[27] J. Lu, N. Verma, N.K. Jha, Compressed signal processing on nyquist-sampled signals, IEEE Trans. Comput. 65 (11) (2016) 3293–3303, doi: 10.1109/TC. 

2016.2532861 . 
[28] M.D. Marchi, V. Toffanin, M. Cassandro, Invited review: mid-infrared spectroscopy as phenotyping for milk quality traits, Dairy Sci. 97 (3) (2014) 

1171–1186, doi: 10.3168/jds.2013-6799 . 
[29] S. McParland, D.P. Berry, The potential of fourier transform infrared spectroscopy of milk samples to predict energy intake and efficiency in dairy 

cows, Dairy Sci. 99 (5) (2016) 40564070, doi: 10.3168/jds.2015-10051 . 

[30] B. Mevik, R. Wehrens, Introduction to the pls package, R Project, 2016 . http://cran.r-project.org 
[31] A. Notsu, Information compression effect based on pca for reinforcement learning agents’ communication, International Symposium on Advanced 

Intelligent Systems, 2012, doi: 10.1109/SCIS-ISIS.2012.6504999 . 
[32] H.S. Paskov , R. West , J.C. Mitchell , T.J. Hastie , Compressive feature learning, Advances in Neural Information Processing Systems 26 (NIPS 2013), 2013 . 

[33] L.P. Perera, S. Mo, Machine intelligence for energy efficient ships: abig data solution, in: International Conference on Maritime Technology and Engi- 
neering, 2016, pp. 143–150, doi: 10.1201/b21890-21 . 

[34] S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, Compressive sensing: from theory to applications, a survey, Commun. Netw. 15 (5) (2013) 443–456, 
doi: 10.1109/JCN.2013.0 0 0 083 . 

[35] N.M. Razali , Y.B. Yah , Power comparison of shapiro-wilk, kolmogorow-smirnov, lilliefors and anderson-darling test, Stat. Modell. Anal. 2 (1) (2011) 

23–33 . 
[36] M. Shoabi, N.K. Jha, N. Verma, Signal processing with direct computations on compressively sensed data, IEEE Trans. Very Early Scale Integr.(VLSI) 

Syst. 23 (1) (2015) 30–43, doi: 10.1109/TVLSI.2014.2301733 . 
[37] J. Steenveld, H. Hogeveen, Characterization of dutch dairy farms using sensor systems for cow management, Dairy Sci. 98 (1) (2015) 709–717, doi: 10. 

3168/jds.2014-8595 . 
[38] T. Strohmer, Measure what should be measured : progress and challenges in compressive sensing, IEEE Singal Process. Lett. 19 (12) (2012), doi: 10. 

1109/LSP.2012.2224518 . 

[39] A. Subasi, M.I. Gurosy, Eeg signal classification using pca, ica, lda and support vector machine, Expert Syst. Appl. 37 (12) (2010) 8659–8666, doi: 10. 
1016/j.eswa.2010.06.065 . 

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, D.A. S. Reed, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 2015, doi: 10.1109/CVPR.2015.7298594 . 

[41] J. Tang, C. Deng, G. Hung, B. Zhao, Compressed-domain ship detection an spaceborne optical image using deep neural network and extreme learning 
machine, IEEE Trans. Geosci. Remote Sens. 53 (3) (2015) 1174–1185, doi: 10.1109/TGRS.2014.2335751 . 

[42] J. Trygg, N. Kettaneh-Wold, L. Wallba, 2d wavelet analysis and compression of on-line industrial process data, Chemometrics 15 (4) (2001) 299–319, 

doi: 10.1002/cem.681 . 
[43] J. Trygg, S. Wold, Pls regression on wavelet compressed nir spectra, Chemom. Intell. Lab. Syst. 42 (1–2) (1998) 209–220, doi: 10.1016/S0169-7439(98) 

0 0 013-6 . 
[44] D. Valencia, J. Salazar, J. Valencia, Comparison analysis between rigrsure, sqtwolog, heursure and minimaxi techniques using hard and soft thresholding 

methods, in: XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), 2016, pp. 1–5, doi: 10.1109/STSIVA.2016.7743309 . 
[45] X. Vang, K.K. Palival, Feature extraction and dimensionality reduction algorithms and their applications, Pattern Recognit. 30 (10) (2013) 2429–2439, 

doi: 10.1016/S0 031-3203(03)0 0 044-X . 

[46] D. Vimalajeewa , E. Robson , D.P. Berry , C. Kulatunga , Evaluation of non-linearity in mir spectroscopic data for compressed learning, in: IEEE International 
Conference in Data Mining, 2017 . 

[47] S. Wolfert, C. Verdouw, M.J. Bogaard, Big data in smart farming - a review, Agric. Syst. 153 (5) (2017) 69–80, doi: 10.1145/2677046.2677052 . 
[48] C. Xing, L. Ma, X. Yang, Stacked denoise autoencoder based feature extraction and classification for hyperspectral images, J. Sens. 2016 (2016), doi: 10. 

1155/2016/3632943 . 
[49] J. Zhang, M. Wang, Z. Li, Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures, IEEE Sel. Top. Appl. 

Earth Obs. Remote Sens. 9 (6) (2015) 2270–2278, doi: 10.1109/JSTARS.2016.2542193 . 

[50] S. Zheng, S.R. Kulkarni, H.V. Poor, Attribute-distributed learning: models, limits, and algorithms, IEEE Trans. Signal Process. 59 (1) (2011) 386–398, 
doi: 10.1109/TSP.2010.2088393 . 



D. Vimalajeewa et al. / Information Sciences 459 (2018) 149–167 167 

Dixon Vimalajeewa is a PhD student at Telecommunications Software and Systems Group (TSSG) at Waterford Institute of Technology (WIT). His research 
interests include data analytics, sensor-based animal phenotypes and distributed learning algorithms (dvimalajeewa@tssg.org) 

Chamil Kulatunga is a postdoctoral researcher in the Telecommunications Software and Systems Group (TSSG) at Waterford Institute of Technology (WIT). 

His research interests include distributed analytics, fog computing and smart agriculture (ckulatunga@tssg.org). 

Donagh P. Berry is a quantitative geneticist at the Animal and Grassland Research and Innovation Centre at Teagasc. His research interests include genomic 
analysis, predictive modelling, chemometrics, breeding objectives and production indexes, decision support tools (donagh.berry@teagasc.ie). 



Appendix B

Evaluation of Non-linearity in MIR
Spectroscopic data for Compressed
Learning

Conference Title: High Dimensional Data Mining (HDM) Workshop, IEEE Confer-
ence on Data Mining , New Orleans, USA, (ICDM 2017)

Article Type Regular Paper
Complete Author List Dixon Vimalajeewa, Eric Robson, Donagh P. Berry, and Chamil

Kulatunga
Status Published: Nov. 2017



Evaluation of Non-linearity in MIR Spectroscopic
Data for Compressed Learning

Dixon Vimalajeewa, Donagh Berry, Eric Robson, Chamil Kulatunga
Telecommunications Software and Systems Group, Waterford Institute of Technology, Waterford, Ireland
Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland

Email: dvimalajeewa@tssg.org, Donagh.Berry@teagasc.ie, {erobson, ckulatunga}@tssg.org

Abstract—Mid-Infrared (MIR) spectroscopy has emerged as
the most economically viable technology to determine milk
values as well as to identify a set of animal phenotypes
related to health, feeding, well-being and environment.
However, Fourier transform-MIR spectra incurs a significant
amount of redundant data. This creates critical issues such
as increased learning complexity while performing Fog and
Cloud based data analytics in smart farming. These issues
can be resolved through data compression using unsuper-
visory techniques like PCA, and perform analytics in the
compressed-domain i.e. without de-compressing. Compres-
sion algorithms should preserve non-linearity of MIRS data
(if exists), since emerging advanced learning algorithms
can improve their prediction accuracy. This study has in-
vestigated the non-linearity between the feature variables
in the measurement-domain as well as in two compressed
domains using standard Linear PCA and Kernel PCA. Also
the non-linearity between the feature variables and the
commonly used target milk quality parameters (Protein,
Lactose, Fat) has been analyzed. The study evaluates the
prediction accuracy using PLS and LS-SVM respectively as
linear and non-linear predictive models.

1. Introduction
Advances in pervasive computation and communi-

cation technologies with IoT systems result in rapid
adoption of Fog/Edge computing based data analytics
to discover near real-time insights in smart farming [1].
The opportunity of collecting and analyzing millions
of high-resolution data demands distributed analytics
across the resource-constrained Fog devices rather than
centralizing raw data. Therefore efficient data storage,
communication and processing techniques are vital [2]
in Distributed Learning (DL) [6] compared to learning
by centralizing data of such applications. This is not
only because of scalability, but also due to significant
contributions towards energy optimization [3], [12].
Instead of aggregating raw data, DL aggregates rich
features from each data source to discover high quality
global knowledge. The success of DL depends on the
accuracy of knowledge aggregation at the same level
where centralized learning could achieve. Therefore,
one of the important task in DL is to prepare data in
a compressed feature space that enables to maximize
information extraction while minimizing computation,
communication and storage resource consumption [2],
[4].

Pasture-based dairy farming is one of the industries,
which has distributed data sources in a large terrain

and essentially requires such optimized systems to ac-
celerate current farming strategies [7]. In smart dairy
farming, farms are being adopted with the new tech-
nologies such as per-animal based milk yield and qual-
ity monitoring, sensor-based animal behaviour track-
ing [5] and robotic milking etc. to improve the quality
and efficiency of dairy production. Among them Mid-
Infrared Spectroscopic (MIRS) milk quality monitoring
and its association analysis with other factors is vital
for milk value analysis and for identifying associated
phenotypes [8]. To apply DL on these datasets, a Com-
pressed Learning (CL) approach (explain in Section 2) is
commonly used to extract descriptive features from the
raw data. Prior knowledge of the general characteristics
of data is essential for a lossy CL approach to retain the
precision of learning.

According to the literature [13], [14], [15], the
linear/non-linear behaviour of data has a considerable
impact on the accuracy of the final learning outcomes.
The purpose of most of these studies were very generic
because they were based on the fact that non-linear
machine learning algorithms have better performances
than linear techniques regardless of their complexity
and the required computational power. However, linear
approaches could achieve the same precision as non-
linear techniques with lesser computation. However, re-
cent data analytics, which are capable of doing complex
learning with modern computational power, pay atten-
tion to employ the most accurate learning approach.
Therefore, understanding the original characteristics of
the data in particular, non-linearity in CL is vital.

In this study, we investigated the linear and non-
linear behaviours of MIRS dataset (Fig. 1) in the con-
text of milk quality predictions. First, pre-processing
removed the impact of water absorbances from our
dataset. Then non-linearity between the features in
measurement-domain as well as in the compressed-
domain were investigated for different milk quality
parameters. Then the CL approach was used to per-
form learning from the compressed data, which re-
duced learning complexity. The impact of non-linearity
were taken into account during the data compression
based on linear (standard) principal component analy-
sis (LPCA) and Kernel PCA (KPCA) techniques. The
learning accuracy of using compressed-domain data
was explored with a linear and a non-linear statistical
predictive models; partial least square (PLS) and least
squares support vector machine (LS-SVM). Section 1
has provided an introduction to the paper with its
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Fig. 1. Water-removed MIR spectra (X) of 712 milk samples in the
wave region 925− 5005cm−1. Water removal pre-process has reduced
the feature-space dimensionality from 1060 wavenumbers to 847.

motivation. The remainder of the paper has been struc-
tured as follows. Section 2 discusses the significance
of non-linearity in MIRS data and its importance in
CL. Section 3 provides the methodologies we used to
analyze non-linearity in MIRS milk quality predictions.
Section 4 provides the analytical results based on our
MIRS data followed by the conclusions in the Section 5.

2. Non-linearity and CL in MIRS
The main objective of the traditional data compres-

sion techniques is to reduce data storage and commu-
nication requirements as much as possible while min-
imizing information losses. These compression tech-
niques do not contribute much to reduce learning com-
plexity as de-compression was performed to a similar
complexity prior to the learning process. The chal-
lenge of performing efficient data analytics with higher
dimensions with highly redundant data remains un-
changed. CL concept can be used to overcome this
issue in Fog/Edge computing and in big data ana-
lytics. In CL, the original data (measurement-domain)
is compressed while preserving the original learning
accuracy. De-compression can be postponed until only
if it is necessary. Thus, CL significantly reduces learning
complexity. The data reduction techniques such as PCA
and Wavelet Transformation (WT) has been used for
CL [21].

Fig. 2 illustrates the CL process with unsupervised
PCA compression where the measurement-domain and
the compressed-domain data can either be in the same
or different processing entities. Suppose matrix Yn×p
contains data for p response variables and need to
build a regression model for those in Y (e.g. Lactose,
Protein, Fat milk quality parameters) using Xn×m with
m feature variables and n data samples. In order to pre-
serve the original information and improve the learning
performance in the compressed-domain, (l, G, P) from
the compression should represent the original charac-
teristics of X as much as possible.

In general, CL can be performed either in a sin-
gle processing entity or in many geo-distributed pro-
cessing entities. In a single processing scenario, both
compression and learning can be supervisory since the
compression unit is aware of what the compressed
data is used for. Therefore, an optimal compression
can be performed and continue to the learning process.
In distributed scenario, compression and learning may

Fig. 2. The matrices of SVD used in classical PCA for deriving our
compressed-domain data, which later be used in CL to predict MQPs.

be performed independently at two different locations.
Unsupervised compression and a supervised learning
should be employed since the compression unit may
not know what will be the learning purpose. Therefore
the compression entity will not aware of the most spe-
cific and relevant information required for the learning.
It may neglect generally the least significant informa-
tion according to the properties of the compression
algorithm (e.g. variants in PCA). In order to achieve a
robust analytic outcome by extracting the most accurate
information, a proper understanding of X with Y is
important because it helps to form well-represented
compressed data and then perform learning in CL [24].

Performing a comprehensive pre-analysis with care-
ful attention at all possible characteristics such as non-
linearity, redundancy (including co-linearity), scaling
and normalization of data helps to understand the data
before applying CL. Therefore, such analysis overcomes
the most decisive challenge in CL to select suitable com-
pression and learning techniques based on the under-
lying behaviour of data. Understanding non-linearity
between the feature variables and with the response
variables can make a significant impact on the accuracy
of CL. If a linear compression technique is used on
the dataset without knowing that data has non-linear
behaviours, compression may loose non-linear property
of the original data. The information losses can be
minimized by first understanding the behaviour though
a pre-analysis and using a non-linear compression to
preserve both linear and non-linear characteristics.

Most of the past studies in MIR spectrometry have
followed the centralized analytics. Y. M. Chen et al. [13]
studied non-invasive determination of sorghum species
with different dimensionality reduction techniques and
non-linear predictive models. Their study proved that
the concern about non-linearity of MIRS sorghum data
contributed for dimensionality reduction as well as
improving the robustness of learning outcomes. The
authors in [14] also considered non-linear associations
between melamine content and MIRS spectra of dairy
products (liquid milk, milk powder and infant for-
mula). The generalization performance of linear and
non-linear dimensionality reduction with a non-linear
learning technique (SVM) has been studied by L. J.
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Cao et al. [15]. They explored non-linear dimensionality
reduction methods (KPCA and ICA) to capture higher
order information of the input signal than linear meth-
ods (PCA). As a result, they were able to improve the
generalization performance of their predictive models.
In this study, we looked at non-linearity of MIRS data
used in DL scenarios using CL.

3. Evaluation Methodologies
In this study, we first analyzed linear and non-linear

associations between the measurement-domain vari-
ables in X and then between each compressed-domain
significant feature variables (G) for three selected target
variables Y (Protein, Fat and Lactose). The linear/non-
linear correlation coefficients, PCA reconstruction error
and non-linearity rate (NLR) measures were used with
unsupervised CL (only needed X). Partial residual plots
(PRP) and Durbin-Wotsan (DW) test were used with
supervised approach (needed both X and Y) to describe
the impact of non-linearity using LPCA and KPCA. PLS
and LS-SVM learning approaches were used to examine
the quality of compression based on non-linearity of the
compressed data.

3.1. Linear/Non-linearity Evaluation Measures
Correlation Coefficients: There are different types

of correlation measures such as Pearson’s correlation (cor)
and Maximal correlation (mcor), which are used for dif-
ferent purposes. cor captures only the linear correla-
tion between random variables (generally called as the
correlation coefficient), which is a statistical measure
used to quantify association between random variables
Xi, Xj ∈ R,

cor(Xi, Xj) =
cov(Xi, Xj)

√
var(Xi)

√
var(Xj)

(1)

cor(Xi, Xj) = 0 does not mean that there is no
association because cor cannot detect if there is a non-
linear association. mcor enables measuring non-linear
correlations by transforming the data, where associa-
tions are not detectable in the original data space and
is defined as;

mcor(Xi, Xj) = max f ,gcor( f (Xi), g(Xj)) ≥ 0 (2)

where f , g ∈ R → R are two functions selected so
that they maximize the correlation of Xi and Xj. If
there are non-linear associations, mcor ≥ cor and
otherwise mcor = |cor|. The Alternating Conditional
Expectation (ACE) algorithm was used to compute
mcor in our evaluations. In this study, cor and mcor
measures [16] were used to recognize linear and
non-linear associations in our MIRS data X.

NLR: NLR is a quantitative measure for the degree
of non-linearity in data. Most of the measures of non-
linearity are based on the residuals from linear and
non-linear regression fittings. The residual difference
between two fittings gives an idea about the non-
linearity. According to [11], NLR can be defined
assuming that non-linear techniques fit perfectly to

the data (i.e. non-linear fitting residual error is nearly
zero).

NLR =
1

nσ

n

∑
i=1

(||Li − Xi||2 − ||Hi − Xi||2)

� 1
nσ

n

∑
i=1
||Li − Xi||2

(3)

where n number of data points (Xi), Li and Hi are
supporting points of linear and non-linear regression
fittings, respectively. σ = 1

n ∑n
i=1 ||Xi − μ||2 is the vari-

ance of data X and μ is the mean of X. The Equation
(3) indicates the amount of residuals from linear fitting.
Higher NLR will result in higher non-linearity and vise-
versa. Suppose the linear fitting is LPCA, then NLR can
be derived as follows.

NLR = 1− ∑l
i=1 λi

∑m
i=1 λi

(4)

where λ is the ith eigenvalue computed form the
covariance matrix of X and l is the selected dimension
for l = 1, 2, · · · , m. The proof of this formula can be
found in [11].

PRP: A plot obtained using Least Squares Regression
(LSR) fitting can be used to understand the usefulness
of the LSR model parameters and their unknown
functional forms (e.g. non-linearity). According to
[23], partial residuals (component+residuals) are
the residuals of a LSR model fitting added to the
mis-specified part of the model. PRPs are the plots
of partial residuals against the mis-specified part.
Suppose a LSR model in the form;

y = β0 + β1x1 + · · ·+ βmxm + f (xk) + ε (5)

where f (xk), k = 1, · · · , m is an unknown function
to be identified (mis-specified part), βi’s are the LSR
model parameters of the predictor variable xi’s for
i = 1, · · · , m (β0 is intercept) and ε is the random
error. PRP of f gives an graphical overview regarding
the effect of f to y when the effect of all other xis
are controlled. This concept was used to check the
relationship of each feature to their corresponding
response.

DW Test: This statistical test is used as a measure
of auto-correlation (ρ) of residuals from a LSR fitting
to check whether there is a correlation between the
successive residuals. Since, residual ρ indicates the
goodness of LSR fit, this can be used as a technique
to identify the relationship (linear/non-linear) of
response variables to its feature variables. The null
hypothesis states H0 : ρ = 0 and alternative hypothesis
states H1 : ρ > 0. The test statistic d is computed by,

d =
∑n−1

i=1 (ei − ei−1)
2

∑n
i=1 e2

i
(6)

where e and n reflect a residual and the number
of samples. If d < dL, H0 is accepted (residuals are
uncorrelated and normality exists in the model). H0 is
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rejected, if d > dU , which reflects that there exists a
correlation in residuals and linearity in the model. The
test is inconclusive, if dL < d < dU . The dL and dU are
lower and upper critical values for the test [19].

3.2. Data Compression and Regression Methods
PCA is used for dimensionality reduction,

visualizations, compression (with loss), de-noising
(removing small variance in the data) and whitening
(de-correlation so that features have unit covariance).
PCA is a variance-based statistical dimensionality
reduction technique. It draws a low dimensional space
and represents each data point by its projection along
the orthogonal directions, which represents maximal
variance of the data. The low dimensional space
is called compressed-domain feature space and the
projections along the directions are called principal
components (PCs). We used LPCA and KPCA [10] in
our evaluations of CL.

LPCA: Fig. 2 shows the process of LPCA with
singular value decomposition (SVD) within the
measurement-domain entity. Given the mean-centered
data set (Xn×m), SVD decomposes X in the form
X = UDVT , where U, V are respectively upper and
lower triangular matrices where UTU = I = VTV (I is
an identity matrix). D is a diagonal matrix in which
elements follow the condition d11 ≤ d22 ≤ · · · ≤ dmm
(eigen values of the co-variance matrix of X). Then
the score matrix G = UD (compressed feature space)
and the loading matrix P = V are derived. Finally,
the data is transformed into its compressed-domain
by selecting the scores of the significant l (< m) PCs,
which minimizes the reconstruction error. LPCA is
based on the assumption that correlations are linear.

KPCA: When data has complex non-linear
associations, which is more realistic in practical
datasets such as MIRS data, KPCA like non-linear
feature extraction methods have to be used for data
compression in CL [10], [15], [20]. It has been proved
in many studies that non-linear methods perform
well in dimensionality reduction by capturing global
characteristics in data [15]. In KPCA, the original data
matrix Xn×m ∈ Rm is mapped into a new higher
dimensional space (feature space) FM by a non-linear
function φ such that,

φ : Rm → FM (7)

For a certain selection of φ, FM has arbitrarily large
dimension and then LPCA is performed using “kernel
trick”. According to the Mercer’s theorem, non-linear
mapping function φ and the kernel function K are
associated by the equation K(xi, xj) = φ(xi)T · φ(xj).
Given the kernel function K, the normalized kernel
matrix K̂m×m of the data Xn×m is computed as follows.

K̂ = K− 2I1/nK + I1/nKI1/n (8)

where I1/n is a matrix with all elements 1/n.
Then LPCA is applied on K̂ in the feature space,

which is equivalent to non-linear PCA in the
original data domain. There are different types of
kernel functions such as Gaussian (radial basis -
RBF) and polynomial [15] where the RBF kernel;
K(x, xi) = exp(−||x − xi||2/σ2) was used with
σ2 = 0.25 × m × mean(var(X)) in our MIRS data
compression.

PLS: The ordinary LSR derives a relationship between
X and Y with the assumption that X variables are
uncorrelated. However, since some data such as MIRS
data violates this assumption, PLS builds regression
models by considering correlations of variables in X
itself as well as between X and Y. Therefore PLS is
considered as a bilinear modelling method in which
X data is projected into a feature space (or latent
variables, LVs) and then simplify relationship between
X and Y to predict Y selecting least number of LVs via
cross-validation. First, decompose both X and Y as the
decomposition was performed in LPCA;

X = TPT + H Y = RQT + L (9)

where, T and R are the score matrices and P and Q
are the loading matrices. H and L are respectively the
error matrices, which come from the process of PLS
regression of X and Y. Then, LSR is applied for scores
T and R such that R = WT + e, where W and e are
respectively the weight matrix (to be estimated) and
the error term, which fits a LSR model for X and Y [9].

LS-SVM: As same as the process explained in
KPCA, when data has complex non-linear associations,
linear models cannot capture them properly. Therefore,
LS-SVM is used to form a regression model in the
feature space {φ(xi)}n

i=1. The regression model in
LS-SVM is given by,

y(x) = WTφ(x) + b (10)

where W ∈ Rn is the weight vector and b is the bias. LS-
SVM is an optimized algorithm based on the standard
SVM [18]. The optimization problem is formulated as
follows.

minJ(W, e) =
1
2

WTW +
1
2

γ
n

∑
i=1

e2
i

where γ is the regularization parameter and ei is the
random error. The Lagrange multiplier method is used to
solve the optimization task in the LS-SVM algorithm.

L(W, b, e, α) = J(W, e)−
n

∑
i=1

αi{WTφ(xi) + b + ek − yk}
(11)

where αi is Lagrange multipliers. The above Equation
(11) is solved by partial differentiation with respect to
each variable. Then estimation function of y can be
obtained as,

y(x) =
n

∑
i=1

αkK(x, xk) + b; i, j = 1, 2, 3, · · · , n (12)
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where K is the kernel function. The selection of the
parameter values γ and σ (RBF kernel parameter) is im-
portant. This is because γ improves the generalization
performance of the model and σ controls the regression
error and also reflects the sensitivity of LS-SVM model
due to noise in input variables [17]. Thus, large γ and
σ reflect respectively more non-linear model and global
properties. There are different techniques to set param-
eter values in LS-SVM model such as cross-validation,
grid search, Bayesian optimizer [22].

4. Evaluation Results
4.1. MIR Spectroscopic Milk Quality Data

The data used in this paper has been obtained
from Teagasc research dairy farm at Moorepark, Ireland
where MIR spectra was collected (in 35 days starting
from August 2013 and ending in August 2014) using
605 different dairy cattle. The composition of milk was
determined using FOSS MilkScan prediction equations
using FT-MIR technology. The input data matrix con-
tained the spectra of 712 different milk samples in the
wavenumber region 925− 5005cm−1 with a resolution
of 3.853cm−1. When the wavenumbers were rounded
to the nearest integer, a given spectrum contained 1060
transmittance data points. Therefore, the original MIRS
spectra used (called the gold standard) to apply com-
pression algorithms was a (712 × 1060) dimensional
matrix.
Since spectral values were given in transmittance, we
converted them to absorbance by taking log10 of the
reciprocal of given transmittance values. According to
the impact of water absorption in MIRS at 25◦C, two
corresponding wave regions were removed as 1607−
1734cm−1 and 3021− 3707cm−1. This reduced our spec-
tra to 847 wavenumbers, which we used as the input
data matrix X (Fig. 1) in our analysis. In addition,
the percentages of the selected MQPs corresponding to
each sample were stored in a matrix (Y). Among them
three most commonly used MQPs; Lactose, Protein and
Fat were taken into the evaluations. Then our data com-
pression and regression model calibration/validation
were applied on this gold standard data. R-software
was used for non-linearity analysis and MATLAB was
used for PLS and LS-SVM model building and evalua-
tions.

4.2. Non-linearity in Measurement-domain Data
To emphasize that there are linear and non-linear

correlations in X, the cor and mcor were computed
for all every pairs of wavenumbers in X. The results
are shown in Fig. 3 with their absolute differences.
According to the variations of color intensity, there are
high and low variations respectively in the regions 925-
3025cm−1 and 3025-5005cm−1. The figure shows both
linear and non-linear correlations in the region 925-
3025cm−1 due to strong mcors values. Even though
mcor ≥ cor among the wavenumbers in both re-
gions 925-3025cm−1 and 3025-5005cm−1, the region 925-
3025cm−1 shows a higher variation. Both correlations
seem to be similar (linear/no correlation) among the

Fig. 3. The absolute difference of Maximal (mcor) and Pearson’s (cor)
correlation coefficients (|mcor− cor|) between feature variables in X.

wavenumbers in the region 3025-5005cm−1 and some in
952-3025cm−1 since there are no much color variations
(red regions). Within the region of 925-3025cm−1, at
some points the correlation difference is even greater
than 0.6. Maximum of 0.96 was observed between the
wavenumbers 1387cm−1 and 1152cm−1 (the strongest
mcor).
In general, there are both linear and non-linear as-

sociations in X and in particular, more non-linear
correlations exist among the wavenumbers up to the
3025cm−1. The correlations between the wavenumbers
above 3025cm−1 are not much stronger in terms of non-
linearity.

To explore the importance of the linear/non-linear
correlations of the feature variables in X, PLS regression
was applied and the regression coefficients (βs) were
derived for each MQP. Then the correlations of the
wavenumber at significant βs (e.g. β ≥ 3σβ) with the
other features were computed for each MQP. Fig. 4
shows the βs of each MQP and the absolute correla-
tions (mcors and cors) of wevenumbers at the highest
significant β (Lactose - 1745cm−1, Fat - 1734cm−1 and
Protein - 1541cm−1) with other coefficients.
In each plot, mcor ≥ cor for all βs and most of the
correlations are high and fluctuated sharply within the
region 925-3012cm−1 compared to the correlations of
the βs above the wavenumber 3710cm−1. The plot for
Protein are clearly non-linear because the differences
between mcor and cor are higher for many βs. Even
though there is no much non-linearity in the plots for
Lactose and Fat compared to Protein, correlations in
the region 2730-2817cm−1 show a clear non-linearity.
Thus these plots reveal that the correlations associated
with the most significant β are non-linear for Protein
compared to the correlations associated with the most
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Fig. 4. PLS regression coefficients and the absolute values of mcor and cor correlations for Lactose, Fat and Protein. The shown correlation
coefficients are between the wavenumber at the most significant regression coefficient with the rest of the wavenumbers.

significant βs of Lactose and Fat.
With regard to βs of each MQP, the highest signifi-
cant βs lie in the regions where both mcor and cor
are more or less similar (linear correlation) in each
plot. There are many coefficients those lie where the
correlations are non-linear. For instance, correlations of
βs of Protein in the regions 925-1250cm−1 and 2034-
2370cm−1 contain most of the significant coefficients.
If data is compressed with LPCA, then the wavenum-
bers in these regions will likely to be removed due
to lesser cor correlations. As a consequence, a high
information loss can happen. Non-linear KPCA may
be able to capture those non-linear as well as linear
associations. Therefore, KPCA compressed data may
retain more characteristics from the original data than
LPCA. Therefore, it is important to understand the non-
linearity as a prior knowledge before applying CL.

4.3. Performance of Linear/Non-linear PCA
After analyzing the behaviour of correlations in the

dataset X, its impact on the PCA compression was
investigated. The amount of information captured by
LPCA and KPCA algorithms were considered by com-
puting REs for the first 100 PCs. The results are shown
in Fig. 5 (left). According to the figure, REs of KPCA is
less than that of LPCA. It turns out that KPCA incurs
lesser REs with a lower number of PCs than in the
LPCA. According to KPCA, this is due to existence
of non-linearity in X. For instance, REs of LPCA and
KPCA with 20 PCs are respectively 5.9 × 10−4 and
8.6× 10−7. Therefore, LPCA needs more PCs to achieve

Fig. 5. Reconstruction Error and NLR of LPCA and KPCA at different
numbers of selected PCs.

the same RE where KPCA can achieve with a lesser
number of PCs. It confirms that the nature of associ-
ations among the variables in data directly affect the
compression.

To further investigate the existence of non-linearity
in X and its impact on compression, the degree of
NLR was computed with LPCA and KPCA at different
number of PCs. Fig. 5 (right) shows the variation of
NLR which represents the linear fitting residual error.
LPCA incurs a higher degree of NLR than KPCA,
which means that non-linear fitting produces lower
residual errors than linear fitting, which confirms the
outcomes of REs. For instance, NLR with 20 PCs is
2.99 × 10−4 of LPCA, which is twice higher that in
KPCA (5.59 × 10−8). It confirms that there is a non-
linearity between feature variables in X. KPCA captures
non-linearity better than LPCA. Further, the degree of
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Fig. 6. PRPs for PC1 (Fat) and PC2 (Protein) to detect non-linearity
in MIRS data with the first 10 PCs of LPCA (left) and KPCA (right).

NLR decreases with increasing number of PCs. This
shows that extraction of higher dimensional feature
space from the original data has lower degree of non-
linearity.

4.4. Non-linearity between the Features and Tar-
get Variables

DW test was conducted to investigate the non-
linearity between feature variables in X and the re-
sponse variables based on LSR modeling. The scores of
the first 10 PCs derived from LPCA and KPCA were
used to compute LSR residuals to evaluate DW test
statistics for each MQP. The test statistics and corre-
sponding critical values are given in the Table 1. The
results reveal that Protein and Fat predictions have non-
linear behaviors and Lactose has a linear relationship
in the MIRS dataset X.
To make a visual interpretation of non-linearity in Fat

and Protein predictions, which was evidenced by DW
test, their PRPs were drawn using the scores of the first
10 PCs. To get an idea about non-linearity of Fat and
Protein, only the PRP of PC1 and PC2 are shown in
Fig. 6 (LPCA-left and KPCA-right). The divergence of
the non-parametric fit from the fitted LSR line indicates
a degree of non-linearity and the type of non-linear
relationship. The PRPs from the compressed-domain
of LPCA represent higher divergence from the LSR fit
than those using compressed-domain of KPCA. This
confirms that Protein and Fat predictions have non-
linear relationships to X.

Table 1: DW TEST for the SELECTED MQPs WITH FIRST 10PCs
DERIVED FROM LPCA AND KPCA (dL = 1.8498 and dU = 1.9019).

MQP
DW test statistic (d) Decision

(linear/non-linear)LCPA KPCA

Lactose 1.6559 1.6391 d < dL linear
Fat 1.9680 1.9505 d > dU non-linear

Protein 1.9805 1.9779 d > dU non-linear

Fig. 7. Prediction accuracy of PLS and LS-SVM based on LPCA and
KPCA compressed data for Protein.

4.5. Learning Accuracy of PLS and LS-SVM
To study the learning performance of the regression

models based on LPCA and KPCA compressed data,
the learning accuracy was computed from PLS and LS-
SVM. First, the dataset was divided into two subsets
as calibration (80% of the samples) and validation (the
remaining samples) by using Kernard-stone sampling
method. Calibrations and validations were performed
for the first 100 PCs and computed the validation R2

P
(coefficient of determination) as the learning accuracy.
The number of latent variables (LVs) in PLS was se-
lected employing 10-fold cross-validation. We used the
Bayesian optimization approach to select LS-SVM model
parameters; γ and σ.
Fig. 7 shows the learning accuracy computed from PLS
and LS-SVM models for Protein with different PCs
derived from LPCA and KPCA. Almost the same max-
imum learning accuracy of nearly 74% was achieved
with KPCA compressed data using first 45 and 70
PCs respectively from PLS and LS-SVM. The learning
accuracy was higher with LPCA compressed data than
in KPCA only for lower number of PCs (around ≤
20 PCs). The number of PCs where the maximum
learning accuracy was achieved is higher with KPCA
than LPCA. In general, comparing all the values, it
turns out that non-linear compression and learning has
improved the leaning accuracy although the feature
space is higher compared to the linear approach.
The same procedure was repeated for Fat and Lac-
tose and the results are shown in Table 2. The ob-
served highest learning accuracies from the original
and LPCA/KPCA compressed data with the corre-
sponding PLS and LS-SVM model parameters (includ-
ing Protein). The number of PCs of with those accura-
cies were observed are also given. All the learning out-
comes show that CL gives higher leaning accuracy than
that was obtained from the original data. Further, the
performance of CL from KPCA compression is better
than that of LPCA except Lactose. The learning per-
formances of LS-SVM models are always higher than
PLS models regardless of the compression technique.
The results show that the learning accuracy from LPCA
compressed data is higher than KPCA. This turns out
that there is a linear relationship between MIRS data
for Lactose prediction.
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Table 2: COMPRESSED-DOMAIN LEARNING ACCURACY (R2) of PLS AND LS-SVM PREDICTIONS for LACTOSE,FAT AND PROTEIN

MQP
Original Data LPCA KPCA

PLS LS-SVM PLS LS-SVM PLS LS-SVM
R2

P(LVs) R2
P(σ, γ) #PCs R2

P #PCs R2
P (σ, γ) #PCs R2

P #PCs R2
P (σ, γ)

Lactose
83.51
(12)

87.59
(26.57, 58.48) 55 83.49 45

88.03
(12.25, 66.91) 95 78.13 95

79.32
(2.28,12.18)

Fat
88.04

(5)
89.35

(35.66, 69.56) 65 88.20 45
88.82

(17.56, 50.5) 55 88.17 75
88.89

(14.2, 63.5)

Protein
70.3
(15)

72.2
(5.01, 7.4× 104) 40 70.41 55

71.63
(42.35, 1.58× 103) 45 73.67 70

73.9
(39.66,64.47)

LS-SVM model parameters confirm a non-linearity for
Protein and Fat predictions and a linearity for Lactose
within the MIRS dataset. This is because the highest
γ values were observed for Protein with both LPCA
and KPCA. γ for Fat was higher than Lactose. Further,
these values verify the results given in Fig. 7 and Table
1. The behaviour of σ values was same as γ, which
means Protein predictions have more global behaviour
than Fat and Lactose.

5. Conclusions
First we investigated non-linear behaviours between

the wavenumbers (features) of the MIRS data. Our
investigation has shown that there is a considerable
non-linearity exists and should be captured by the
compression algorithms. Then we have compressed the
original data using both LPCA/KPCA and investigated
non-linearity between the compressed-domain feature
variables and with three selected response variables
(Fat, Protein and Lactose). According to this analysis,
we conclude that Fat and Protein predictions show non-
linear behaviours, which we need to capture in com-
pressed learning. Finally we applied PLS and LS-SVM
regression models on the two compressed-domain data
to show that there is an improvement in accuracies us-
ing non-linear predictions. Therefore, we conclude that
use of a linear unsupervised compression technique has
negative impacts on the prediction accuracy of different
MQPs. Use of non-linear compression techniques such
as KPCA at the compression entity is highly desirable
in compressed learning approach. Otherwise, the ad-
vantages of using complex non-linear predictive models
will not be useful in MIRS based milk quality analytics.
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Leveraging Social Network Analysis
for Characterizing Cohesion of

Human-Managed Animals
Dixon Vimalajeewa , Sasitharan Balasubramaniam, Bernadette O’Brien, Chamil Kulatunga, and Donagh P. Berry

Abstract— Social network analysis (SNA) is a technique to
study behavioral dynamics within a social group. In SNA,
it is an open question whether it is possible to characterize
animal-level behaviors by using group-level information. Also,
it was believed that the combined use of SNA would provide a
more comprehensive understanding of social dynamics. In light
of these two factors, here we explain an approach to evaluate
animal importance to a group by considering the variability
in group-level structural information, which is computed by
joining the animal- and group-level SNA measures node centrality
and network entropy, respectively. Moreover, two other metrics,
animal social interaction range and nearest-neighbor frequency
matrix, which represent a social affiliation of each animal within
the group, are computed to help address the general challenges in
graph-based SNA and, thereby, improve the precision of animal
importance measures. Finally, we derive the joint distribution
of animal importance of the group in detecting atypical social
behaviors. The approach is tested using tracking data of dairy
cows. The reliability of the derived animal importance was
superior to the already existing animal importance measures.
To illustrate the usability of the animal importance metric,
a simulation study was conducted to identify sick and estrus
animals in a group. The social affiliation of sick cows was
less when compared to healthy cows. Also, their individual
distributions of animal importance were shifted toward the left
of the mean of the animal importance distributions of healthy
cows. Consequently, the joint distribution of animal importance
of the group exhibited a bimodal distribution with a left tailored
shape. The behavior of cows in estrus was opposite to that of sick
cows. Moreover, with the increasing number of sick and estrus
cows in the group, respectively, the group entropy decreased
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with larger variance and slightly increased with less variance.
Therefore, the entropy-based animal importance metric has
superior performances when evaluating animal importance to
the group compared to the existing metrics. It can be used
for generating alerts for the early detection of atypical social
behaviors associated with, for instance, animal health, veterinary,
and welfare.

Index Terms— Animal importance, social affiliation, social
interaction range, social network analysis (SNA).

I. INTRODUCTION

FARM animals are usually gregarious animals and their
social interactions could greatly be capitalized on improv-

ing farm management operations such as improving animal
well-being [1]. Evidence that supports the significance of
their social relationships is considerably underutilized [2]. The
growing interest in social network analysis (SNA), which
is a popular method to study the behaviors social groups,
confirms that it can offer great advantages by exploring
individual social affiliations [3]. Also, recent advancement in
animal monitoring systems which enable the collection of vast
amount of data, such as wireless sensor networks (WSNs),
facilitates large-scale SNA in broader perspectives [4]. Con-
sequently, this necessitates the investigation of novel strategies
for SNA to transform animal social relationships into useful
metrics, which can subsequently be used to support better farm
management practices.

Modern-day animal production systems routinely exploit
state-of-the-art technologies to support decision making by
generating valuable insights from data collected by sensors.
Most pervasive sensor technology is the global position-
ing system (GPS), which determines geolocation [4], and
therefore, the movements of individual instrumented animals.
Other energy-efficient techniques such as Wi-Fi, bluetooth,
and Long Range wireless signal strength-based positioning
technologies are also becoming increasingly popular [5], [6].
Therefore, opportunities exist to define novel and informative
insights (e.g., phenotypes) from such geolocation data. How-
ever, the necessary descriptive metrics need to be defined [7]
from which deviations can be identified and subsequent alerts
generated. Such metrics should be informative to characterize
not only the animal itself but also the group or subgroup level
behaviors. Once the behaviors of an individual animal are
characterized relative to the group, any deviations from the
norm can be used as early and real-time alerts for producers
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to identify, for instance, atypical behaviors of animals that may
require particular attention.

Animals living in groups are generally social animals
and have complex relationships and social behaviors [8]. For
instance, cows are social animals [9] and prefer to stay in
groups, synchronizing their activities mostly based on neigh-
boring (or dominant) animals. Although external stimuli can
perturb normal group behaviors of such animals, there is a
tendency for the animals to revert to normal status as soon
as possible [10]. This is because of animal cohesion, which
is a phenomenon that describes how strongly animals are
connected to each other and is used to understand behavioral
dynamics based on their heterogeneous social relationships in
the group [9]. Changing such dynamics is mostly influenced
by a small set of group members generally identified as the
most important (or highly cohesive/interactive) animals to the
group [11]. Hence, understanding the individual’s importance
to the group would be useful for exploring different behaviors
of groups as well as individuals such as group synchronization,
spreading dynamics, and cascading reactions [12].

SNA provides a comprehensive understanding of social
dynamics among animals and also facilitates quantifying
them [12], [13]. Graph theoretical concepts are commonly
used for SNA. A group is depicted as a graph in which
nodes represent individual animals and an edge represents
the interaction between two animals (Fig. 1). This model is,
therefore, capable of representing the complex structure of
interactions among individuals, also called a sociogram [12].
The heterogeneous nature of interactions is then used to
determine the importance of each animal. The importance of
an animal to the group is recognized as its involvement in
forming a complex network structure, i.e., to what extent that
animal is connected to the others in the network, and quantified
as the centrality. Importance is generally derived by exploiting
an individual’s local level structural information (only within
the social interaction range) such as degree (i.e., the number of
direct edges on each node) and closeness (i.e., the shortest path
length between a particular edge with all other edges) [12].
Therefore, the temporal evolution of centrality of group living
animals is considered as one of the relevant characteristics for
defining metrics which can subsequently be used to describe
different behavioral patterns in SNA [14].

Different ideas have been highlighted in order to assist
in developing novel metrics for SNA. Among those ideas,
Wey et al. [12] stated that the combined use of local, inter-
mediate, and global measures would provide a more compre-
hensive understanding of the network dynamics in a broader
view, based on the level of information used to quantify dif-
ferent social characteristics where graph measures are divided
into three categories as local, intermediate, and global (or
graph). In addition, Qi et al. [15] unveiled that using a
broader range of information in quantifying network properties
would provide superior performances than being limited to the
domain that they have been defined for. Therefore, it is an
open question whether it is possible to derive local (animal)-
level measures based on the global (group)-level structural
variability of social dynamics [16]. Therefore, this paper is
an attempt to apply all these concepts together in order to

derive a metric to evaluate animal importance (or sociality) to
a group (AIm) based on the dairy cattle mobility observations.
An additional aim is to explore the possible opportunities,
which can be benefited by using the derived AIm, in relation
to the dairy cattle behaviors as a use case.

There are different challenges, however, which cannot be
disregarded when deriving novel measures, such as spatial
and temporal limitations, defining the network and sampling
animals into it, and validity and robustness of derived network
measures [12]. Therefore, prior to conducting an SNA, careful
attention should be given to those factors and the necessary
actions should be in place to mitigate against them. Although
the graph-based SNA generally assumes that the interactions
included in the graph are relatively stable over time, which
is not always true because animal relationships are highly
dynamic and so will the network topology. Also, sampling
relevant animals into the network, including their signifi-
cant interactions, is vital as if there are too many animals,
the network might split into unconnected subgroups. This
may cause complications in applying graph theoretic measures
such as diameter, which could consequently lead to misleading
information. Practically, animal interactions depend on various
factors such as age, gender, and health, so that selecting only
the significant interactions is crucial [11]. Disregarding such
interactions could negatively impact on the representativeness
of the network and so will the robustness of the derived
measures. Consequently, not only would the reliability of the
estimated network dynamics become invalid but also would
contribute to misleading outcomes about social behavioral
dynamics.

Therefore, the main contribution of this paper is to derive
an approach to evaluate AIm by combining local- and
global-level measures, node centrality, and network entropy
addressing the SNA challenges mentioned above. While net-
work entropy depicts the amount of information encoded
within a network and is used to compute the structural com-
plexity at the group level [17], the node centrality quantifies
node importance based on the extent to what a node is
surrounded by other nodes [18]. In this approach, the influence
of an animal on changing the network entropy is considered
as its AIm. The idea is to taking into account the variability
of graph-level structural information in evaluating node-level
properties. Thus, this approach facilitates expanding the range
of information used in quantifying AIm. In addition, this
process is backed by two other metrics, animal interaction
range and nearest-neighbor (NN) frequency matrix. The ani-
mal interaction range, which stands for the optimum range
where an animal can make strong interactions, helps to sample
significant interactions into the network graph. Therefore,
it helps to improve the representativeness of the network graph
and to enhance the validity of AIm. The NN frequency matrix
demonstrates the social affiliation of each animal with others
in the group as a frequency value counted over the time.
As this matrix represents the preferential members of every
animal, it is easy to recognize animals which have strong
interactions in the group. We use these approaches in demon-
strating detection of sick and estrus (sexually active) cows
in dairy herds as a use case of our approach. The variation
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of the normal probability density function (PDF) of AIm
at individual animal level as well as the Gaussian mixture
model (GMM) of AIm at group level were explored to identify
sick and estrus animals from the normal animals in the herd.

The remainder of this paper is organized as follows. While
Section II discusses related works, Section III explains the
theoretical steps of deriving AIm. In Section IV, the approach
described in Section III is applied to a real dairy cattle mobility
data set. Section V demonstrates the applicability AIm in
detecting sick and estrus cows from a herd based on the
simulated mobility data, including some directions to continue
this paper further, and Section VI concludes this paper.

II. RELATED WORKS

The use of SNA has gained considerable attention in
a wider range of fields such as sociology, business, and
ecology [12], [19]. Exploring social interrelationships, quan-
tifying disease transmission, and building models to explain
dynamics in network topology is some of the highlighted
applications. The study [12] emphasized that graph-based
SNA is a promising tool for exploring such applications.
Identifying and forming a network, developing methods for
characterizing social behaviors, and exploring dynamic vari-
ability in social interrelationships are some of the key areas
that animal science has been benefitted from SNA. Also, SNA
has increasingly been used for improving the efficiency of
human-managed animal farms.

Forming the network is one of the most important and
challenging tasks in SNA. Because not only are social inter-
actions heterogeneous but also are the factors which influence
making interactions. Therefore, sampling animals in a network
and defining their interactions must be done carefully as they
contribute to improving the representativeness of the animal
group and so the reliability of the derived social behaviors.
One of the simplest ways of measuring social interaction is
the use of NN identity. Rands [20] used NN identity data
for assessing interactions based on a clustering technique
in which a local group cluster matrix was developed in
order to identify the most interactive nodes in a network.
Evaluating the strength of the interactions among nodes is vital
for conducting a comprehensive SNA. While the study [21]
proposed weighted degree and strength centrality measures,
taking into account the weight (strength) distribution of inter-
actions, Cavanga et al. [11] discussed different mathematical
approaches which can be used in computing the strength of
the interactions in constructing the network.

The greater opportunities for monitoring social behaviors
in a real-time manner have necessitated the development of
novel SNA approaches through reexamining already existing
techniques. As a result, various attempts have been made in
deriving novel metrics in different applications. For instance,
Qi et al. [15] developed a novel measure called Laplacian
centrality to compute node importance and proved that it
has greater performances than the standard centrality mea-
sure based on terrorist network analysis. Following the work
in [15], the study [16] proved that using network-level infor-
mation in quantifying node-level attributes can significantly

improve the accuracy of selecting the top-k-most important
nodes compared to the existing measures. These studies were,
however, based on the static networks, but measures, which
enable capturing time variant features, were highly demanded
in SNA. Therefore, most research on SNA has focused on
the exploring dynamic properties of social networks. For
instance, while the study [18] derived a novel metric, dynamic
centrality by exploring the limitations accounted in static
network graph-based SNA, the time-ordered-graph method
explained in [22] converts a dynamic network into a static
network enabling the application of static SNA measures.

With the advancement of precision agriculture, applications
of SNA for human-managed animals have drawn a consid-
erable attention. For instance, significant improvements in
farm management such as individual animal fitness, control-
ling decease transmission, and welfare could be achieved by
exploring the social behavior of animals over a long period
of time emphasizing automatic location measurements, NNs,
and NN distance in SNA with farm animals [23]– [25]. The
studies [1] and [2] emphasized the importance of using SNA,
in particular, to dairy cattle management by exploring different
characteristics such as community structure, social differen-
tiation, stress, and productivity. However, Boyland et al. [2]
highlighted that SNA concepts have widely been used for
characterizing the different social behaviors of wild animals
but not much for human-managed animals. Therefore, there
are opportunities that SNA can be used in intensifying farm
operations though, and they are not yet fully realized by the
wider research community.

Our hypothesis is that SNA can effectively be capitalized
in understanding and quantifying various factors such as hus-
bandry practices, health issues, feeding, stress, and survival,
thus making a significant impact on the stability of farm
production systems and decision support tools. Moreover,
the scale in which SNA can be applied is continuously
increasing within the modern data monitoring tools. Hence,
the necessity of deriving novel SNA approaches for applying
to large-scale applications is also emphasized.

III. THEORETICAL BACKGROUND

This section explains the process of deriving the
entropy-based AIm. Initially, the procedure of computing the
NN frequency matrix is discussed. This is followed by an
experiment of the topological distance-based animal interac-
tion range and we then discuss how to use network entropy
to validate the interaction range. These two measures are then
used in the process of computing animal importance to the
group (i.e., AIm). Figs. 1 and 2 together give a graphical
overview of the process in four steps. Then, in order to
represent the variation of importance of individual and group
levels in a distributional sense, the PDF and GMM of AIm are
discussed. Finally, to test the validity of the derived measures,
the system used to collect data and how the experiment was
conducted, is explained.

A. Nearest-Neighbor Graphs

The spatial variability of NNs around each animal is com-
monly used to identify the most interactive individuals [20].
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Fig. 1. NNs and interaction range. (a) NNs of the node A. (b) NNs of the
node A with the interaction range.

Fig. 2. Illustration of the technique of computing animal importance to a
group, AIm. (a) Network graph (G) using NNs within the interaction range
Network Entropy =H(G). (b) Network graph (G) with the disconnected node
A Network Entropy =H(GA).

Therefore, the NN approach was used as the foundation to
understand the evolving cohesion (or social affiliation) with
respect to each animal’s daily activities and its interactions
with other animals in the group.

We consider the mobility of a group of N animals over
a period of time T . Then, we quantify the variation of
animal relationships in every time window t (≤ T ): Tw =
T/t number of time windows. Information on NNs for each
animal in this paper was determined based on the geographical
distance between every pair of individuals in every t-min
time window [Fig. 1(a)]. The frequency of each animal being
the kth NN (0 < k < N, k is the order of NN) to every
other animal in the herd within the entire time period was
formulated as a frequency matrix (AN×N ). The kth-NN algo-
rithm was used to identify the NNs of each animal in the
group based on the interanimal geographical distances. The
“haversine” formula [26] was used to compute the shortest
distance between each of the locations of two animals. The
matrix A was, therefore, defined as: A = [ fi, j ], where fi, j

means the frequency of the j th animal being an NN to
the i th animal over the period T . The matrix A, however,
is not a symmetrical matrix, since interactions are not always
symmetric. For instance, suppose the two animals i and j ,
and j is the first NN of i ; then, the first NN of j would
not be i whenever there is another animal closer to j than i .

Hence, the interaction between i and j would not be sym-
metrical. The i th row of A represents the spatial variation in
frequencies of the other N − 1 animals being an NN to i .

In practice, it cannot be considered that each animal inter-
acts with all other animals in the group in a particular time
window because the strength of interactions would be very
weak with distant animals (i.e., higher order NNs). Therefore,
on average, the optimal number of interactions that every
animal can have (i.e., the number of strong interactions) is
essential in studying the intensity of interaction frequency
of each animal within the herd and also constructing social
network graph [Fig. 1(b)]. The interaction range metric derived
below explains how to select those interactions.

B. Animal Interaction Range (kr )

Sampling the most significant interactions in a network
graph is one of the most crucial steps in graph-based SNA
because the quality of the network graphs affects the robust-
ness of social characteristics derived from them. The social
influence range is the region where an animal exhibits strong
interactions, and it depends on the individual’s sociality within
the group. Since sociality depends on various factors such as
gender, age, and health, the social influence range can vary
from animal to animal [25]. Therefore, an optimal measure to
quantify social influence range is essential. Therefore, the main
advantage of having an accurate social influence range is that
it minimizes the loss of animal connectivity information while
selecting interactions into a network graph. In this paper,
the social influence range was defined as an animal interaction
range (denoted as kr ) and represents the optimal number of
interactions with high weights. The interaction weight was
the reciprocal of the distance between a pair of interacting
animals.

Although many studies such as [3] and [27] commonly
used the metric distance for deriving the interaction
range, Ballerini et al. [10] proved that topological distance,
i.e., interaction range with number of animals, is more robust
than the metric distance. Therefore, this paper used the topo-
logical distance approach to derive the interaction range. The
advantages of using this approach are the density fluctuations
of animal aggregation, which can be well explained compared
to metric distance, and the metric distance, which can be
derived from the topological distance. Therefore, the inter-
action range was quantified based on the animal anisotropy
factor and the network entropy. The network entropy-based kr

was used to confirm the result obtained from the anisotropy
factor.

1) Anisotropy Factor (γ )-Based kr Estimation: Based on
the spatial distribution of NNs and their orientation around
each animal, the anisotropic structure of a moving group
of animals varies with increasing order of NNs (i.e., k).
The anisotropy value (γ ) represents the effect of interaction
among animals, whatever the interaction is, and quantifies to
what extent the spatial variation of the kth NN (around a
reference animal) is anisotropic. This is subsequently used to
determine kr , regardless of the distance between the animals.
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Initially, animal locations in this paper were converted into
3-D Cartesian coordinates (X, Y, Z) and a set of NN vectors
(u), which were derived as

u(i,k) ∈ u, u(i,k) = [(
ui

x , ui
y, ui

z

)]
(1×3)

where ui,k is a unit vector directed toward the kth-order NN
of the animal i (here i = 1, 2, . . . , N). Also, the animal group
center velocity vector (V ) was also calculated as

V = [vx , vy, vz ](1×3)

vx = 1

N

N∑

i=1

xi

t
, vy = 1

N

N∑

i=1

yi

t
, vz = 1

N

N∑

i=1

zi

t

where t is the width of the time window. Then, normalized u
and V (un and Vn) were computed as

u(i,k)
n = u(i,k)

√(
ui

x

)2 + (
ui

y

)2 + (
ui

z

)2
, Vn = V√

v2
x + v2

y + v2
z

.

Second, in order to calculate the orientation of the kth-order
NN vector of the i th animal (i.e., ui,k ) with respect to Vn ,
the projection matrix Mi,k of the ith animal was calculated as

Mk
i = [

u(i,k)
n ui

a

]
(3×3)

, for i = 1, 2, 3, . . . , N

where ui
a ∈ u(i,k)

n for a = {x, y, z}. Then, Mi,k of all animals
was averaged (Mk = (1/N)

∑N
i=1 Mk

i ) to derive a matrix,
which projects along the average direction of the kth-order
NNs of all animals in the herd. Mk corresponds to the most
relevant directions in the space and its eigenvalues represent
the number of NN vectors that can be detected along the direc-
tion of the corresponding eigenvectors [11]. The anisotropy
factor for the kth-order NNs, γ (k) was calculated at the third
step by taking the square of the scalar dot-product between
the normalized eigenvector (ek), which corresponds to the
minimum eigenvalue of Mk and the normalized herd center
velocity (Vn) as

γ (k) = (ek .Vn)
2. (1)

The process was repeated varying the NN order, i.e.,
k = 1, 2, · · · , N , in every time window and averaged over
Tws to obtain the variation in anisotropy γ with respect to
the spatial distribution of NNs (i.e., with increasing order of
NN). The eigenvector corresponding to the smallest eigenvalue
was used here since there is a reduced probability to detect
an animal’s NNs along the direction of this eigenvector.
Finally, according to [10], for the isotropic case, the value
of γ is 1/3 (i.e., no interaction) and the k value at which
this occurs is defined as the value of interaction range (i.e.,
the value of kr ). Thus, interactions between the reference
animal with its NNs were deemed not significant after the
kr th-order NNs (i.e., isotropically distributed). In other words,
the topological distance threshold is the kr value, which is the
number of individuals deemed to be around an animal. The
metric distance is the distance to the kr th NN from the focal
animal. More details on the anisotropy factor and its derivation
are given in [10] and [11].

2) Entropy-Based kr Estimation: Variability in the daily
group entropy, which is the average entropy (explained in
Section III-C) over all the time windows in this paper,
was computed as follows. Network graphs were generated by
increasing the NN order (i.e., k = 1, 2, · · · , N − 1) around
each animal. The increasing rate of herd entropy was examined
over the time period T , and the kr value was selected in units
of animals up to where there was no significant incremental
increase in herd entropy.

C. Network Graph-Based Animal Importance to the Group

Network graphs illustrate the structural connectivity of
social groups and are more complicated due to the hetero-
geneous nature of social interactions [Fig. 2(a)]. Therefore,
including only the most relevant interactions, for instance,
interactions belong to the interaction range (i.e., within kr ),
would help to simplify the network complexity and would also
enhance the quality of the structural information about animal
connectivity acquired for characterizing different social behav-
iors, such as density, centrality, and communicability [12].
Such graph-theoretic measures can be applied directly to quan-
tify these behaviors. Here, we follow an approach combining
the network graph entropy and weighted degree centrality to
evaluate animal importance to the group (denoted as AIm).
For instance, Fig. 2(a) represents the network graph (G) built
by selecting the interactions, which belong to the interaction
range of each node.

The variability in the number of interactions made by an
animal depicts its influence to the group, because the removal
of a highly interactive animal causes a substantial change in the
structural group properties (e.g., group cohesion and connec-
tivity). The animal importance to the group, AIm, quantifies
to what extent an animal influences the group. This can be
measured as the group entropy variation caused by the removal
of that animal from the group. The entropy (H ) characterizes
the structural information based on a group level as well as
on an individual animal level [16]. From a mathematical point
of view, the entropy of a random variable X , H (X) is the
expected information encoded within X [28] and formulates
as

H (X) = E[I (X)]
where E is the expectation and I (X) denotes the information
contained in X and is computed as I (X) = (1/P(X)), where
P(X) is the probability of X . Thus, according to the definition
of statistical expectation, H (X) can be simplified into

H (X) = −E[P(X)] = −P(X) log P(X).

Following the entropy of a single random variable, the entropy
of a system which consists of a set of n random variables can
be computed as

H (X) = −
n∑

i=1

E[P(xi ) log(P(xi ))]

and this quantifies the expected information carried by the
whole system.
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To compute the entropy of the group [i.e., H (G)], a network
graph was constructed considering only the interactions among
individuals within the interactive range. Mobility of animals
in this paper was considered as random variables and the
amount of structural information attributable to each animal
represents its influence to the herd. The direct weighted degree
centrality (CW ), which is a local (i.e., individual or node
level) measure used in graph theory, was used to quantify an
individual animal’s influence on the herd. This measure reflects
to what extent an animal is directly connected with other
animals based on the weight of direct interactions [21]. There
are two types of direct interactions associated with an animal:
the interactions it initiates (i.e., outward) and the interactions it
receives from others (i.e., inward). In this paper, the number
of direct interactions was the sum of the both inward and
outward interactions. Assuming an arbitrary time window ti ,
suppose the i th animal has v number of direct interactions
with weights {w j }vj=1. The weight of an interaction was
computed as the reciprocal of the distance between the pair
of interacting animals. Then, weighted centrality (CW ) of the
i th animal, CW (i) was computed as CW (i) = ∑v

j=1 w j , for
i = 1, · · · , N , and then normalized (C �

W ) to compute the
group entropy, H (G) as follows. C �

W satisfies all the conditions
to be a probability distribution

H (G) = log

(
N∑

i=1

CW (i)

)
−

N∑

i=1

C �
W (i) log(CW (i))

where

C �
W (i) = CW (i)

∑N
i=1 Cw(i)

.

The importance of the i th animal to the group, AIm(i),
was computed as the change in group entropy caused by the
removal of the i th animal from the group, that is,

AIm(i) = H (G) − H (Gi) (2)

where Gi represents the group without the i th animal. Also,
Fig. 2 graphically illustrates the computation of AIm for the
node A. The importance value of each of the N animals was
computed for all time-windows and then averaged over the
time period T to obtain the importance metric for that animal.

To compare the reliability of entropy-based AIm with the
other existing measures, the AIm value of all animals was
computed using CW , which uses only the local-level infor-
mation and the Laplacian weighted centrality (CL) proposed
in [29]. CL of a node in a weighted network graph (interaction
strengths are given as weights) defined as the relative drop
of Laplacian energy due to deactivation of all interactions
of that animal with others in the group. The study [29]
derived an approach to compute it by using intermediate-level
connectivity information, i.e., the interactions of an animal
with first and second NNs. The CL formula is explained briefly
below and we refer to [29] for the derivation and more details
about CL

CL(i)=4Cc(i)
W +2Cm(i)

W +2Ch(i)
W , f or i = 1, 2, · · · , N (3)

where S(i) contains the set of first NNs of the i th animal
and Wi, j is the weight of the interaction between i and j ;
Cc(i)

W = ∑
j∈S(i) W 2

i, j is known as the number of closed
two-step interactions containing the animal i (i.e., from i to
j and j to i ); Ch(i)

W = ∑
j∈S(i)(

∑
l∈{S( j )−i} Wi, j W j,l) is the

two-step interactions containing the animal i as an edge vertex
of the path (i.e., i to j and j to l, where ls are the first NNs of
entries of the set S(i); and Cm(i)

W = ∑
j,l∈S(i),& j �=l W j,i Wi,l ,

represents the two-step interactions containing the animal i in
the middle of the path (i.e., j to i and then i to l).

D. Gaussian Mixture Models

In order to get an overall idea about the variation in
animal importance of a group, the joint distribution of AIm
of all members was derived using the GMM approach. This
approach was based on the assumption that the AIm of
each animal has a Gaussian probability distribution (hereafter,
termed PDF). In this paper, the PDF of the AIm of an animal
represents the distribution of AIm values collected over a
period of time. GMM is a parametric PDF of a set of PDFs
and is computed as their weighted sum. This can also be
considered as a hybrid version of a set of PDFs and provides
not only a smooth overall distribution but also its components
unveil the details about the multimodel nature of the density.

Suppose the mean and covariance of a D-dimensional
continuous Gaussian random variable X is μ(1×D) and �,
respectively. Theoretically, the PDF of X is denoted as
X ∼ N (μ,�) and written as

f (X |μ,�) = 1

(2π)
D
2 |�| 1

2

e

(
1
2 (X−μ)T �−1

i (X−μ)
)
.

Then, the GMM of a set of m such random variables is written
as

F(X |�) =
m∑

i=1

wi f (X |μi ,�i )

where the GMM model weights, wi s satisfy
∑m

i=1 wi = 1 and
� = {wi , μi , σi }, i = 1, · · · , m, are the set of parameters in
GMM model that has to be estimated.

To estimate �, the iterative expectation–maximization (EM)
and maximum A-posterior estimation techniques are com-
monly used. Depending on the different characteristics of the
set of PDFs, GMM can have various forms. The covariance,
�, could be similar for all components in some cases, whereas
it is possible to use a full rank or diagonal covariance matrix.
In our evaluation, a full covariance matrix method is used
and the EM technique is used to estimate the parameters.
Moreover, the GMM model configurations depend on the
available data as well as the application. We refer to [30] for
more details about GMM.

For instance, if X1 ∼ N (μ1,�1), X2 ∼ N (μ2,�2), and
X3 ∼ N (μ3,�3) with D = 1, then the GMM of X1, X2, and
X3 (say X4) can be written as

F(X4|�4)=w1N (μ1,�1)+w2N (μ2,�2)+w3N (μ3,�3)

where �4 = {(w1, w2, w3), μ4,�4} and w1 + w2 + w3 = 1.
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Fig. 3. Variation of the shape of GMM in response to the significant change of the mean of PDFs. First one for similar μs and different σ s. The second
and third graphs represent the change of the shape of GMM when one PDF is shifted to the left and right of the other PDFs two, which have similar μ and
different σ s, respectively.

Fig. 3 represents the variation of the shape of the GMM
of three different Gaussian random variables X1, X2, and X3
(where we assume D = 1 and �i = σi for i = 1, 2, 3) in
response to the change in their PDFs for three different cases:
1) similar means with different variances (μ1 = μ2 = μ3)
(left); 2) variance of X1, X2, and X3 are different, and X2
and X3 have similar means, but X1s mean diverged to the
left of the mean of X2 and X3 (μ1 < μ2 = μ3) (middle); and
3) the opposite case of the second case, but the change happens
with the variable X3 instead of X1 ( μ1 = μ2 < μ3) (right).
In each case, the variance of X1, X2 and X3 are different
from each other, i.e., σ1 �= σ2 �= σ3. Therefore, the GMM
represents a multimodel nature (in this case it is a bimodal
because there are two-packs only) mainly when the means of
PDFs are significantly different.

When considering the AIm of an arbitrary animal as a
random variable similar to X explained earlier with D =
1, the PDF of the AIm of that animal can be written as
f (X |μ, σ) = (1/2πσ 2(1/2)

)e(((X−μ)/2σ))2
, i.e., X ∼ N (μ, σ ).

Then, the GMM of AIm represents the joint distribution of
the AIm of the group.

E. Geolocation Mobility Data

GPS location data of 33 (N) cows (a herd) were collected
over a 24-h period for five consecutive days (T ) at a Teagasc
research dairy farm, in Moorepark, Ireland. All cows were
part of a study on robotic milking in grazing production
systems [31]. The data were partitioned into nonoverlapping
time windows each of 10 min (t) duration (i.e., Tw = 720
windows for the entire duration). For each animal, maximum
of three locations were observed in every 10 min, so that
the average location of each cow was computed within each
window. Linear interpolation was used to compute missing
observations. The cows grazed different paddocks during the
5-day period with varying distances from the milking parlor
(Fig. 4). All cows visited the milking station at most twice
daily and moved to a new paddock after each milking.

IV. RESULTS

The applicability of the mathematical procedures is dis-
cussed by using a GPS mobility data set of a dairy herd

Fig. 4. Heat map of the GPS locations of the cows at the research farm in
5-day period. Blue dot: milking station.

explained in Section III. First, the cattle social interaction
range is derived using the data set and it is then validated based
on the variability of network entropy. The variability of social
affiliation of dairy cattle is discussed next. Finally, the entropy-
based AIm is computed and its validity is compared with the
importance evaluated using the direct degree and Laplacian
centrality measures. MySQL database was used for efficient
data storage and access, and Python software was used for
data analysis and the simulation study. More specifically,
the Python packages networkx and scikit-learn were used for
building the network graph and computing GMM models,
respectively.

A. Interaction Range of the Pasture-Based Dairy Animals

The anisotropy factor (γ ) revealed a clear relationship
with the herd center velocity (V ) along the direction of the
eigenvector. This corresponded to the smallest eigenvalue of
the average projection matrix (M �) [Fig. 5(a)]. The γ decayed
with increasing NN order (k) and reached 1/3 (exact value
or isotropic point) near a k value of 7. Thus, the NNs above
the seventh-order NN were isotropically distributed around a
focal animal and did not strongly interact with it. Therefore,
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Fig. 5. Derivation of dairy cattle social interaction range (kr ). (a) Anisotropy variability with NN order (k) for the 33 dairy cows. (b) Herd entropy variation
with the number of NNs for each day [black vertical line: interaction range derived from anisotropy factor (γ )].

the value of interaction range (kr ) was selected as 7 (kr = 7).
In other words, the strength of the interactions of a focal cow
with the first seven NNs was considerably higher compared to
the interactions beyond the seventh NN.

The variation in average herd entropy with the spatial
distribution of NNs over the 5 days of the study is shown
in Fig. 5(b). Although the herd entropy increased with the
NN order (i.e., k), it did so at a declining rate. This is
because entropy was calculated based on the weighted degree
centrality, CW . The weights of interactions reduced with the
increasing order of NN. Therefore, the contribution to the
increment of herd entropy, H (G) from the interactions with the
animals beyond the kr th NN was minimal (on average ≤ 0.01).
This indicates that the interaction range of our pasture-based
dairy cows is 7.

To be more precise about the interaction range derived from
Fig. 5(a), the effect of the interaction range on the herd entropy
was examined. The herd entropy characterizes the information
about the connectivity of the herd. Hence, the broader interac-
tion range will increase the herd connectivity and so will the
herd entropy. However, the interaction strengths weakened as
the interaction range increased and, consequently, contributed
to a decline in the increasing rate of herd entropy. Therefore,
the optimal interaction range (i.e., number of NNs) which does
not make any significant contribution to improve the herd
entropy should be the optimal interaction range [Fig. 5(b)].
Although having a broader interaction range brings some
disadvantages such as higher competition for food and space
and risk of falling sick [32], there are some benefits as
well, especially in graph-based SNA and also for corporate
defending against predator attacks.

B. Time-Evolving Interactions With NN Frequency Matrix

The frequency of each cow being within the interaction
range of every other cow over the 5-day period of the study is
represented in Fig. 6, which can be read similar to reading a

normal square matrix. For instance, considering the cow index
(ID) 10, the corresponding row represents the frequencies of
interactivity of all other cow IDs with the cow ID 10, while
the column depicts the frequencies of interactivity of cow ID
10 with the remaining cow IDs, including itself. Since the NN
frequency matrix is not a symmetrical matrix, the entries of a
particular row were not always exactly similar to the entries of
the corresponding column. As an example, the interactivity of
the cow ID 10 to the cow ID 9 was greater than 70%, whereas
it was less than 60% for the cow ID 9 being interactive with
the cow ID 10 over the 5-day period of the study.

The variability of frequency fluctuations provided a clear
illustration of the intensity of interanimal interactions (social
affiliation) in order to identify specifically the most and least
interactive cows. In general, most of the frequency values were
below 40% (i.e., less than 30 out of 120 h), but few cow
ID pairs represented greater than 50% values in Fig. 6. For
instance, the interactivities of the cow ID pairs 7–8, 13–15,
and 29–31 were between 60% and 70%, and it was greater
than 80% for the cow ID pairs 22–23, 23–24, and 24–25.

Since the highly interactive cows are easily recognizable
in Fig. 6, this matrix could be used to select especially the most
(or least) cohesive cows in a herd. Hence, this matrix could be
useful in characterizing herd-level behaviors such as the cows
which are at high (or low) risk of getting viral infections,
the leading disease carriers, sexually active cows, and the
cows which are highly likely to synchronize their activities.
Such information would be useful to manage herds more
efficiently in different farm operations such as maintaining
optimum animal well-being and training cows for voluntary
participation in milking. In SNA point of view, sampling
animals form a larger group to form network graphs.

C. Animal Importance to the Herd

The importance (AIm) of the 33 study cows from the
weighted degree centrality and Laplacian centrality measures
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Fig. 6. Frequency of being individual’s interaction range as a percentage of
the total number of time-windows (i.e., 720) over the 5-day period [the size
of a time-window was 10 min and the frequency percentages were computed
as ( f/720) × 100].

(CW and CL ) and herd entropy variation over the 5-day study
period are shown in Fig. 7. The AIm based on the CW and CL

measures were more or less similar and fluctuated more with
greater variability compared to the herd entropy-based AIm.
The CL -based AIms were more stable than the AIm computed
using CW because the confidence limits of the CL -based AIm
were slightly tighter than the confidence limits of the AIm
computed using CW . On average, the confidence limits of the
herd entropy-based AIm was considerably tighter compared to
CW and CL measures based AIms. Therefore, the stability of
the AIm computed using the entropy-based measure is greater
than the other two measures.

The degree centrality is itself a measure of animal impor-
tance to the herd and can be computed mainly using the direct
and weighted degree centrality (CW ) measures. CW takes into
account the heterogeneous nature of social connectivity based
on their interaction strengths, but the direct degree centrality
assumes that all interactions have the same strength. Hence,
CW is a commonly used reliable measure for quantifying ani-
mal importance in SNA. Moreover, the accuracy of CW -based
AIm could even be improved by deriving the interaction
strengths (weights) from well-defined methods [21] rather than
interanimal distance. Although CW performs well in quan-
tifying animal importance, based on local-level connectivity
information, it has been reported that the reliability of animal
importance measure could be improved further by increasing
the range of connectivity information based on the CL measure
defined by [29].

However, CL uses only the intermediate-level informa-
tion (i.e., the connectivity data of each animal associated
with the single (direct) and two-step interactions). Therefore,
to improve the robustness of AIm, this paper considered
the global-level information (i.e., herd entropy) to compute
animal importance because highly reliable AIm is necessary

Fig. 7. AIms of 33 study cows and their variability from the direct weighted
centrality (CW ), weighted Laplacian centrality (CL ), and herd entropy-based
approach.

for detecting animals which have significant influence, such as
dominant cows and group leaders. That is why the uncertainty
of the entropy-based AIm of the 33 study cows was consider-
ably smaller (with a narrower confidence interval) compared
to CW and CL in Fig. 7. Thus, this guarantees that the
entropy-based AIm characterizes the individual cow influence
to the herd more precisely than the existing measures.

V. DISCUSSION

The “datafication” of modern-day dairy and other agricul-
tural production systems, through the widespread adoption of
sensors [33], facilitates the development of novel metrics and
algorithms to detect individual animals that may require par-
ticular attention. This is, especially true with the proliferation
of these technologies which, because of their ever-reducing
costs are now being used on an individual animal basis. It was
our hypothesis that a greater exploitation of the data from all
individuals in a group could provide more information than
the analysis of the data relating to just a single animal in the
process of evaluating AIm. In this section, we discuss two use
cases of AIm and directions for further studies based on the
limitations and benefits of the AIm approach.

A. Animal Mobility Simulation to Identify Estrus
and Sick (or Injured) Animals

In order to demonstrate how to use AIm measure in a
real-world application, an example is illustrated regarding the
detection of sick and estrus cows in a herd. The illustration
is, however, based on the simulated mobility data (using the
pymobility Python package [34]) because the data set used
earlier did not have any estrus or sick cows and was too small
and was collected only over a short period of time.

In the simulation study, the behavior of sick and estrus
cows was compared to normal contemporaries in a herd
based on their variability in the AIm metric. Two steps were
taken in carrying out the simulation study. First, the mobility
patterns of the sick and estrus cows relative to the normal
cows (i.e., nonestrus and healthy) were simulated separately
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Fig. 8. Individual PDF of AIm of normal herd animals(left) and their joint PDF (right).

over a time period by using a random-way-point mobility
pattern [34]. This approach is commonly used to simulate
animal movements within a given region, depending on their
velocity and waiting time (time spent at a position before
making the next random movement). Therefore, variability
in the characteristics of walking area, speed, and waiting
time was considered as the signs (parameters) in simulating
mobility of sick (and estrus) cows. Second, to represent the
variability in AIm, the PDF of AIm was computed for each
sick animal, each animal in estrus, and each normal animal.
Also, to illustrate the group-level variation of AIm of sick and
estrus herds with respect to normal herds, the joint PDF of the
individual PDF was derived.

Three herds (i.e., normal, sick, and estrus animals) each
with 40 cows were simulated separately within a 60m × 30m
(rectangular paddocks are preferred with 2:1 width and depth
ratio)1 paddock over 1500 time windows (∼10 days). In sick
and estrus herds, 35 of the cows were assumed to be normal
and the rest were assumed to be either sick or in estrus.
In this simulation, we did not consider sick and estrus animals
together in the same herd. This is because there might be a
cow in both conditions and it might be difficult to differentiate
between such conditions in the same animal.

According to the literature, the average cow speed
is 2–3 km/h and it can be increased up to 4.5 km/h in
properly maintained farms. However, these ranges are affected
by many factors such as paddock and track design, weather
conditions, and distractions. 1,2 In optimal conditions, cows
lie down generally for 14 h per day (≈ 30min/h) and on
average, a normal cow gets up 16 times a day. The resting
time varies for many reasons such as age, heat cycle, health,

1https://www.teagasc.ie/media/website/animals/dairy/
GrazingInfrastructure.pdf

2https://www.dairynz.co.nz/media/214 237/Understanding-cow-
movement.pdf

weather, herd size, and the housing and paddock conditions.3

Therefore, in the simulation study, cow velocity and the
waiting time at a position were assumed to vary uniformly in
the ranges of 0.0–3 km/h and 0–30 min/h, respectively. Also,
we assumed that normal cows move over the entire paddock
at their own peace.

As sick cows move slowly and take more time to make the
next move, they have long resting (waiting and lying) time.
Therefore, to simulate the mobility pattern of a sick cow,
the region covered and the velocity range were reduced by
half and the waiting time was doubled compared to a normal
animal. This procedure was repeated for all time windows
and the PDFs of AIm for each animal were quantified. The
same process was followed for the herd with cows in estrus by
changing the mobility pattern of cows in estrus; since the level
of activity intensifies when cows are in estrus [35], the velocity
range was doubled and the waiting time was halved. These
cows were allowed to move in the entire paddock the same as
the normal cows in each iteration.

1) Normal Herd: Fig. 8 represents the PDF of AIm of indi-
vidual animals (left) and their joint PDF (right). In general, all
PDFs are distributed around a common mean (approximately
0.025) with different shapes (variances). The corresponding
mixture (joint) PDF represents the overall distribution of AIm
of the herd and does not indicate any multimodel nature as
there is only one peak similar to the theoretical example
explained (first case) in Fig. 3. Therefore, any deviation from
this behavior would be an early indication of herd approaching
an unusual behavior and thus needing attention. Sections V-A2
and V-A3 illustrate the nature of such deviation when there are
sick and estrus animals in the herd.

2) Identifying Cows Approaching or in Estrus: Fig. 9(a)
and (b) present the simulated outcomes of the variability
in interactivity and AIm (as PDFs) of a mixture of estrus

3http://www.milkproduction.com/Library/Scientific-articles/Housing/Cow-
comfort-9/
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Fig. 9. Variation of social affiliation and importance of the estrus and normal cows. (a) Intensity of interactivity of cows in estrus (IDs 20–24) with the
nonestrus animals. (b) Individual PDF of AIm of the estrus animals with their normal herd animal (left) and their joint PDF (right).

and nonestrus cows, respectively. In general, the intensity of
interactivity between the nonestrus cows ranged between 30%
and 50% [IDs 20–24 represent the estrus cows; Fig. 9(a)], and
on average, the intensity of interactivity among only the cows
in estrus was greater than 70% but was less than 10% between
the estrus and nonestrus cows [columns of the estrus cows;
Fig. 9(a)]. On the other hand, the intensity of interactivity
of normal cows to the estrus cows (rows of the estrus cows)
was less than 30% [Fig. 9(a)]. The mean values of the PDFs
of nonestrus cows were approximately similar (i.e., the PDFs
distributed around a similar mean value), but their variance
was different [Fig. 9(b)].

The PDFs of the estrus cows were shifted toward the right
of the PDFs of the normal cows and denser (i.e., less variance
and high kurtosis) than normal cows. Consequently, the joint
of these PDFs represents a bimodal behavior as there are
two peaks in the distribution. In comparison to the GMM of
normal herd given in Fig. 8, the GMM is expanded toward
the right with a peak value. This is due to the cows in estrus
having higher AIm and validates the theoretical illustration
(case 3) given in Fig. 3.

The mobility patterns of the sexually active cows are
generally different from the normal cows due to their greater
tendency to join groups of cows that are also in estrus, and
thus have less resting time, as well as ending up walking
together. Consequently, the measured interactivity among cows
in estrus is greater than the interactivity between cows in estrus
and nonestrus. Hence, the simulated intensity of interactivity
between the cows in estrus was greater compared to the
intensity of interactivity between estrus and normal cows
in Fig. 9(a). Consequently, cows in estrus become the most
important (i.e., highly cohesive) members of the herd more
frequently than normal cows. As a result, less variance and
higher mean of their AIm is detected. Therefore, the PDFs of
AIm of cows in estrus become denser compared to that of the
normal cows [Fig. 9(b)], and also, the joint PDF of AIms is
more expanded toward the right compared to normal the herd
(Fig. 8).

The failure of detecting cows in estrus in herds not adopting
fixed-time artificial insemination has negative repercussions
for farm profit due to extended calving intervals as well as pos-
sibly the cost of semen inseminated at the incorrect time of the
estrus cycle [33]. Roelofs et al. [36] noted that herd behavior
should be closely monitored as some of the well-documented
signs of estrus may not exclusively be exhibited by the cows
in estrus. Among the different herd behaviors which have been
categorized as primary and secondary signs of estrus [37],
observing the change of cow mobility patterns can be useful
as a behavioral sign for generating early alerts about the cows
approaching or in estrus. Therefore, the matrix A and AIm
can be used in detecting early estrus signs.

3) Identifying Sick or Injured Cows: Fig. 10(a) depicts the
variability of intensity of interactivity for a mixture of sick and
normal cows. The variability in the intensity of interactivity
of sick cows (20–24 rows and columns) is clearly highlighted
in Fig. 10(a) evident. The intensity of interactivity of sick
cows with the herd was below 40%, whereas, among the sick
cows, it was greater than 80%. The PDFs of the sick animals
shifted toward the left of the mean value of the PDFs of normal
cows [Fig. 10(b)], and also, their mean values were different
to the mean values of the PDFs of normal cows. As a result,
the overall distribution of the AIm of the herd is expanded to
the left side with a peak, i.e., bimodal behavior with left-tailed
distribution.

Due to the fact that sick cows are reluctant, or have difficulty
in moving, they might not always be able to follow the herd.
They may become isolated from the herd or lag behind the
herd. Consequently, their mobility patterns may be different
(or diverge) from their peers in the herd. This divergence can,
therefore, be easily used to differentiate those animals. In SNA,
this divergence of mobility can be accounted for as a decline
in their interactivity with the herd. Hence, highly interactive
cows will generally not be the sick cows. Also, they will
have fewer chances of being as highly interactive members
to other herd mates. Therefore, the intensity of interactivity
of sick cows with the herd generally becomes low [below
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Fig. 10. Variation of social affiliation and importance of the sick and healthy cows. (a) Intensity of interactivity of sick cows (IDs 20–24) cows with healthy
cows. (b) Individual PDF of AIm of the sick animals with their normal herd animals (left) and their joint PDF (right).

30% in Fig. 10(a)]. Moreover, sick cows may gather as a
subgroup, so that they are counted as being highly interactive
with each other while computing the NN frequencies. That is
why Fig. 10(a) represents the greater intensity of interactivity
(greater than 80%) values for sick cows. However, in practice,
this does not imply that they are exclusively associated with
each other. As sick cows experience different mobility patterns
and are less interactive within the herd over time, their AIm
becomes less and varies more compared to normal cows
because AIm depends on the number of interactions and
their weight. Hence, the mean values of their PDFs of AIm
were less and different from the healthy cows in Fig. 10(b).
Consequently, the joint PDF of AIm is expanded more toward
the left compared to the normal herd joint PDF given in Fig. 3.
This validates the theoretical concept explained under the
case 2 in Fig. 3.

Early detection of health-related ailments is extremely
important to prevent erosion of herd profit but also to minimize
the impact on animal welfare. In the early attempts of animal
health assessment studies, animal mobility was commonly
used to identify animal health issues [38]. Moreover, Rahaman
et al. [39] stated that automatically recording mobility behav-
iors facilitates the derivation of value of animal health alerts.
Apart from the cow mobility pattern analysis, lying and stand-
ing behaviors [40], body temperature and visual signs [40],
and variation in hunger [41] have also been used to evaluate
animal health status.

4) Herd Behavior With Increasing Sick and Estrus Animals:
To explore the herd behavior as more animals become sick
in the herd, under the same settings, individual AIm and
herd entropy were computed by varying the number of sick
animals as a percentage of the herd (0%–70% prevalence
within the herd). To represent variability in AIm and herd
entropy, the 95% confidence limits were also computed. It was
assumed to remain that animals falling sick were sick for
the rest of the simulation process. The same procedure was
repeated with an increasing number of estrus animals in the
herd. As cows are in estrus for only a few hours, we did not,

however, assume that estrus animals stay to remain in estrus
for the rest of the simulation.

The variability in average herd entropy with an increasing
number of sick and estrus animals (as a percentage of herd
size) in the simulated herd is shown in Fig. 11(a). The herd
entropy of the normal herd (i.e., 0% sick or estrus cows) was
3.58 ± 0.13. As the sickness spread in the herd, the aver-
age herd entropy decreased and the associated confidence
interval widened. With an increasing number of estrus cows,
the herd entropy slightly increased compared to the normal
herd entropy, the confidence limits of the herd entropy varied
within the confidence limits observed for the normal herd
and also became narrower. Furthermore, as a consequence of
increasing the number of cows in estrus in the herd, there will
be many high importance animals. Therefore, the variability
in herd entropy will be smaller (i.e., more stable) and so will
the individual AIm. This is the reason for obtaining narrower
confidence interval for the herd entropy as more cows came to
estrus in Fig. 11(a). Hence, examining the variability in herd
entropy and individual AIm over a period of time can also be
used to generate early alerts about the cows in or approaching
estrus.

Fig. 11(b) and (c) depict the variability in GMM of AIm
as the number of sick and estrus animals increased in the
herd, respectively. When the prevalence of sick animals in
the herd increased, the GMM spread widely toward the left
of the mean of the normal herd (0% sick animals) and also,
the bimodal nature became more apparent. Similarly, when
more animal come to estrus, the GMM represented a tendency
of spreading toward the right from the mean of the nonestrus
case (0% case). The possibility of dividing the herd into
subgroups is increasing with increasing sick/estrus animals
in the herd. That is why the multimodel nature of GMM is
increasing in both Fig. 11(b) and (c). Moreover, the disperse
(uncertainty) of GMMs is higher with the prevalence of
sickness in the herd than the increment of cows in estrus.

Therefore, exploring the most prominent features in the NN
frequency matrix and the variability (or deviations) in herd
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Fig. 11. Herd entropy variation with the sick and estrus animals accounted as a percentage of (a) herd size and corresponding variation of GMM for the
(b) sick and (c) estrus herds.

entropy, individual PDF of AIm, as well as the GMM of AIm
over a time scale, can be used to detect the presence of sick
cows which may require closer attention.

B. Directions for Future Studies
The AIm cannot, however, capture time-variant proper-

ties of dynamic networks because CW used to derive AIm
and most of the other graph-theoretic measures have been
defined for static graphs [18], [40]. Therefore, novel measures
for dynamic network graphs are highly desirable in SNA.
Moreover, animal interactions are heterogeneous in nature,
and also, there are various factors which influence the gen-
erating strong interactions such as gender, age, and parental
attraction. Therefore, computing interaction weights by taking
into account such factors would definitely contribute to cap-
ture more precise social-behavioral characteristics. Moreover,
taking into consideration more mobility parameters such as
the probability for deciding the next movement direction and
using the current location information when deciding the next
location would help to simulate more realistic mobility data
and so would the social behaviors.

In modern-day data analytic applications, interoperability
of heterogeneous data sets collected across a geographically

distributed data source is one of the critical issues. The reason
for that is most of the technologies currently in use, notably
in agrisector, operate in isolation as they are incapable of
communicating with each other. Consequently, the importance
of collecting data from those technologies is significantly
underutilized. To make full use of such data, it is necessary
to explore the interrelationships between such data sets to
conduct a more comprehensive analysis. The use of AIm facil-
itates incorporating location-based mobility behaviors with a
variety of other information sources. For instance, exploring
the impact of cow mobility on milk and pasture quality,
feed intake, and nutrient deficiencies. Therefore, exploring the
interrelationship of AIm with other farming variables would
be another exciting extension of this paper that would help
alleviating the barriers of performing cooperative analytics
with heterogeneous data sets.

In addition, AIm evaluating process could also be used in
other applications such as WSN and distributed data analytic
platforms, which are currently used in real-time decision
making. In such applications, optimizing the computational,
communication, and energy requirements are critical in order
to improve the responsiveness and timeliness of the system.
In this case, identifying the least and highest AIm nodes
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can make a significant contribution. For instance, while the
high AIm nodes are vital in selecting nodes (gateways) to
improve the effectiveness of data communication in the net-
work, least AIm nodes would be the best nodes for offloading
computations and sharing resource requirements. Moreover,
in federated learning, which is a distributed machine learning
framework, a machine learning model is trained across a large
number of data sources, and the model updates are aggregated
at a coordinating unit to compute the final model updates.
Those updates are then sent back to each data source to make
inferences. Therefore, the AIm metric can be used to select
the coordinating unit as the data source which has the highest
AIm as such a node can effectively communicate with other
data sources. Therefore, the responsiveness of the learning
system can effectively be increased, optimizing the resource
consumption.

VI. CONCLUSION

The NN-based graph analytic techniques were used in this
paper to evaluate animal importance to the group, combin-
ing animal- and group-level information. Meanwhile, animal
interaction range and NN frequency matrix were derived to
support the AIm evaluation process. Based on the observations
from the cow sample population in this paper, the most
common interaction range of grazing dairy cows is 7 and
the NN-frequency matrix gives an overview regarding the
social affiliation of animals in the herd. The AIm metric
derived based on the herd entropy variation to quantify AIm
performed well compared to the already existing AIm mea-
sures, which are based on the degree and Laplacian centrality
measures. Using simulated data, the intensity of cohesion
in cows in estrus was greater among themselves than their
cohesion to the herd. The sick cows demonstrated considerably
less intensity of cohesion to the herd than healthy cows and
that was even smaller compared to the cows in estrus. The
PDFs of cows in estrus were shifted to the right of the mean
of the PDFs of nonestrus cows, which exhibited nearly a
similar mean, but differences existed in their variances. Also,
cows in estrus had smaller variances (i.e., more dense PDFs)
than their nonestrus contemporaries. The mean values of the
PDFs of sick cows were not comparable to each other and
were less than the healthy cows. Moreover, while the joint
PDF of AIm in sick herd represented a bimodal nature and
expanded toward the left compared to the joint PDF of AIm
of a healthy herd. The joint PDF of on estrus herd showed
completely an opposite behavior to the sick herd. Results
from this paper, therefore, suggests that the NN frequency
matrix and entropy-based animal importance metric can be
used to generate early alerts about the deviations of their social
behaviors and then to derive useful information.

ACKNOWLEDGMENT

The authors would like to thank D. McSweeney for his
contribution in the collection of the global positioning system
data. They would also like to thank Dr. B. Butler for his
valuable comments on improving the technical quality of this
paper.

REFERENCES

[1] N. K. Boyland. (2018). The Influence of Social Networks on Welfare and
Productivity in Dairy Cattle. [Online]. Available: https://ore.exeter.ac.
uk/repository/bitstream/handle/10871/19360/BoylandN.pdf?sequence=
1&isAllowed=y

[2] N. K. Boyland, D. T. Mlynski, R. James, L. J. N. Brent, and D. P. Croft,
“The social network structure of a dynamic group of dairy cows: From
individual to group level patterns,” J. Appl. Animal Behav. Sci., vol. 174,
pp. 1–10, Jan. 2016.

[3] E. A. Codling and N. W. Bode, “Copycat dynamics in leaderless animal
group navigation,” J. Moving Ecology, vol. 2, no. 1, p. 11, 2014.

[4] R. N. Handcock et al., “Monitoring animal behaviour and environmental
interactions using wireless sensor networks, GPS collars and satellite
remote sensing,” J. Sensors, vol. 9, no. 5, pp. 3586–3600, 2009.

[5] B. C. Fargas and M. N. Petersen, “GPS-free geolocation using LoRa
in low-power WANs,” in Proc. IEEE Int. Conf. Global Internet Things
Summit (GIoTS), Jun. 2017, pp. 1–6.

[6] P. Varun, W. Elmannai, and K. Elleithy, “Mobile and Wi-Fi Geo location
using Google latitude,” in Proc. IEEE Int. Conf. Comput. Inf. Technol.
(WCCIT), Sousse, Tunisia, Jun. 2013, pp. 1–2.

[7] A. Goswami and A. Kumar, “Challenges in the analysis of online social
networks: A data collection tool perspective,” J. Wireless Pers. Commun.,
vol. 97, no. 3, pp. 4015–4061, 2017.

[8] E. Pennisi, “Social animals prove their smarts,” Science, vol. 312,
no. 5781, pp. 1734–1738, 2006.

[9] T. Slotyasik and Z. Nogalski, “The effects of social hierarchy in a dairy
cattle herd on milk yield,” Political J. Natural Sci., vol. 25, no. 1,
pp. 22–30, 2010.

[10] M. Ballerini et al., “Interaction ruling animal collective behavior depends
on topological rather than metric distance: Evidence from a field study,”
Proc. Nat. Acad. Sci., vol. 105, no. 4, pp. 1232–1237, 2008.

[11] A. Cavanga, I. Giardina, A. Orlandi, G. Parisi, and A. Procaccini,
“The STARFLAG handbook on collective animal behaviour: Part II,
three-dimensional analysis,” J. Animal Sci., vol. 76, pp. 238–248,
Feb. 2008.

[12] T. Wey, D. T. Blumstein, W. Shen, and F. Jordan, “Social network analy-
sis of animal behaviour: A promising tool for the study of sociality,”
J. Animal Behav., vol. 75, pp. 333–344, Feb. 2008.

[13] B. A. Wood, H. T. Blair, D. I. Gray, P. D. Kemp, P. R. Kenyon,
and S. T. Morris, “Agricultural science in the wild: A social network
analysis of farmer knowledge exchange,” PLoS ONE, vol. 9, no. 8, 2014,
Art. no. e105203.

[14] N. Pinter-Wollman et al., “The dynamics of animal social networks:
Analytical, conceptual, and theoretical advances,” J. Behav. Ecol.,
vol. 25, pp. 242–255, 2014.

[15] X. Qi et al., “Terrorist networks, network energy and node removal:
A new measure of centrality based on laplacian energy,” J. Social Netw.,
vol. 2, no. 1, pp. 19–31, 2013.

[16] X. Ai, “Node importance of ranking of complex networks with entropy
variation,” J. Entropy, vol. 19, no. 7, p. 303, 2017.

[17] K. Park and A. Yilmaz, “A social network analysis approach to analyze
road networks,” in Proc. ASPRS Annu. Conf., San Diego, CA, USA,
2010, pp. 1–6.

[18] K. Lerman, R. Ghosh, and J. H. Kang, “Centrality metric for dynamic
networks,” in Proc. 8th Workshop Mining Learn. Graphs (MLG),
New York, NY, USA, 2014, pp. 70–77.

[19] G. Martino, F. M. Sarti, and F. Panella, “Social network analysis in
encouraging role-players in the beef market to take breeding decisions:
A methodological study,” Italian J. Animal Sci., vol. 12, no. 1, p. e9,
2013.

[20] S. A. Rands, “Nearest-neighbour clusters as a novel technique for
assessing group associations,” Roy. Soc. Open Sci., vol. 2, no. 1,
p. 140232, 2015.

[21] L. Candeloro, L. Savini, and A. Conte, “A new weighted degree
centrality measure: The application in an animal disease epidemic,”
PLoS ONE, vol. 11, no. 11, 2016, Art. no. e0165781.

[22] H. Kim and R. Anderson, “Temporal node centrality in complex net-
works,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 85, no. 2, 2012, Art. no. 026107.

[23] C. C. DubÃƒÂ©, C. Ribble, and D. Kelton, “An analysis of the
movement of dairy cattle through 2 large livestock markets in the
province of Ontario, Canada,” J. Can. Veterinary, vol. 51, no. 11,
pp. 1254–1260, 2010.

[24] P. Koene and B. Ipema, “Social networks and welfare in future animal
management,” J. Animals, vol. 4, no. 1, pp. 93–118, 2014.



VIMALAJEEWA et al.: LEVERAGING SNA FOR CHARACTERIZING COHESION OF HUMAN-MANAGED ANIMALS 337

[25] M. Nöremar, N. Håkansson, S. S. Lewerin, A. Lindberg, and A. Jonsson,
“Network analysis of cattle and pig movements in Sweden: Measures
relevant for disease control and risk based surveillance,” Preventive
Veterinary Med., vol. 99, pp. 78–90, May 2011.

[26] C. Veness. (2008). Calculate Distance, Bearing and More Between Lat-
itude/Longitude Points. [Online]. Available: http://www.movable-type.
co.uk/scripts/latlong.html

[27] G. Neisen, B. Wechsler, and L. Gygax, “Choice of scan-sampling
intervals—An example with quantifying neighbours in dairy cows,”
J. Appl. Animal Behav., vol. 116, pp. 134–140, Jan. 2008.

[28] K. K. Nambiar, P. K. Varma, and V. Saroch, “An axiomatic definition of
Shannon’s entropy,” Appl. Math. Lett., vol. 5, no. 4, pp. 46–54, 1992.

[29] X. Qi, E. Fuller, Q. Wu, Y. Wu, and C.-Q. Zhang, “Laplacian centrality:
A new centrality measure for weighted networks,” Inf. Sci., vol. 194,
pp. 240–253, Jul. 2012.

[30] D. Reynolds, “Gaussian mixture models,” MIT Lincoln Lab., Lexington,
MA, USA, Tech. Rep., 2007. doi: 10.1007/978-1-4899-7488-4_196.

[31] A. Bach and V. Cabrera, “Robotic milking: Feeding strategies and
economic returns,” J. Dairy Sci., vol. 100, pp. 7720–7728, Sep. 2017.

[32] K. Gajamannage, E. M. Bollt, M. A. Porter, and M. S. Dawkins,
“Modeling the lowest-cost splitting of a herd of cows by optimizing a
cost function,” J. Nonlinear Sci., vol. 27, no. 6, 2017, Art. no. 063114.

[33] H. Kim, S. Oh, S. Ahn, and B. Choi, “Real-time temperature monitoring
to enhance estrus detection in cattle utilizing ingestible bio-sensors:
Method and case studies,” J. KIIT, vol. 15, no. 1, pp. 65–75, 2017.

[34] A. Panisson. (2012). Generalized Random Waypoint to Support any
Number of Spatial Dimension. [Online]. Available: htps://github.com/
panisson/pymobility

[35] P. M. Fricke, P. D. Carvalho, J. O. Giordano, A. Valenza, G. J. opes, and
M. C. Amundson, “Expression and detection of estrus in dairy cows:
The role of new technologies,” J. Animal, vol. 8, no. s1, pp. 134–143,
2014.

[36] J. B. Roelofs, F. J. C. M. van Eerdenburg, N. M. Soede, and B. Kemp,
“Various behavioral signs of estrous and their relationship with time of
ovulation in dairy cattle,” J. Theriogenology, vol. 63, no. 5, pp. 1366–
1377, 2005.

[37] M. L. O’Connor. (2017). Heat Detection and Timing of Insemination
for Cattle. Accessed: Nov. 2017. [Online]. Available: https://extension.
psu.edu/heat-detection-and-timing-of-insemination-for-Cattle

[38] S. L. Walker, R. F. Smith, J. F. Routly, D. N. Jones, M. J. Morris, and
H. Dobson, “Lameness, activity time-budgets, and estrus expression in
dairy cattle,” J. Dairy Sci., vol. 91, no. 12, pp. 4552–4559, 2008.

[39] A. Rahaman, D. Smith, J. Hills, G. Bishop-Hurley, D. Henry, and
R. Rawnsley, “A comparison of autoencoder and statistical features
for cattle behaviour classification,” in Proc. Neural Netw. (IJCNN),
Vancouver, BC, Canada, Jul. 2016, pp. 1232–1237.

[40] A. J. Itle, J. M. Huzzey, D. M. Weary, and M. A. G. von Keyserlingk,
“Clinical ketosis and standing behavior in transition cows,” J. Dairy Sci.,
vol. 98, no. 1, pp. 128–134, 2015.

[41] M. S. Herskin, F. Skjøth, and M. B. Jensen, “Effects of hunger level and
tube diameter on the feeding behavior of teat-fed dairy calves,” J. Dairy
Sci., vol. 93, no. 5, pp. 2053–2059, 2010.

Dixon Vimalajeewa received the B.Sc. degree
in mathematics and statistics from the University
of Ruhuna, Matara, Sri Lanka, in 2012, and the
M.Sc. degree in computational engineering from the
Lappeenranta University of Technology, Lappeen-
ranta, Finland, in 2015. He is currently pursuing the
Ph.D. degree with the Telecommunications Software
and Systems Group, Waterford Institute of Technol-
ogy, Waterford, Ireland.

His current research interests include data analyt-
ics, sensor-based animal phenotypes, and distributed
learning algorithms.

Sasitharan Balasubramaniam received the bach-
elor’s degree in electrical and electronic engineer-
ing from The University of Queensland, Brisbane,
QLD, Australia, in 1998, the master’s degree in
computer and communication engineering from the
Queensland University of Technology, Brisbane,
in 1999, and the Ph.D. degree from The University
of Queensland in 2005.

He is currently an Academy of Finland Research
Fellow with the Department of Electronic and
Communication Engineering, Tampere University of

Technology, Tampere, Finland, and an Acting Director of research with
the Telecommunication Software and Systems Group, Waterford Institute of
Technology, Waterford, Ireland, where he was involved in a number of Science
Foundation Ireland projects. His current research interests include molecular
and nanocommunications and Internet-of-(bio–nano) Things.

Dr. Balasubramaniam is the Co-Founder of the Steering Committee of the
ACM NanoCom Conference. He was a recipient of the ACM/IEEE NanoCom
Outstanding Milestone Award in 2018. He is the IEEE Nanotechnology
Council Distinguished Lecturer. He is currently an Editor of the IEEE
INTERNET OF THINGS JOURNAL, Nano Communication Networks (Elsevier),
and Digital Communication Networks.

Chamil Kulatunga received the bachelor’s degree
in electronics and telecommunication engineer-
ing from the University of Moratuwa, Moratuwa,
Sri Lanka, in 1999, the master’s degree in computer
science from the Waterford Institute of Technology
(WIT), Waterford, Ireland, in 2003, and the Ph.D.
degree in Internet engineering from the University
of Aberdeen, Aberdeen, U.K., in 2009.

From 2015 to 2017, he was an Experienced
Post-Doctoral Researcher, under the Science Foun-
dation Ireland funded PrecisonDairy Project, with

the Telecommunication Software and Systems Group, WIT. He is currently
a Research Data Analyst, under the Science Foundation Ireland and Origin
Enterprises funded CONSUS Project, with the University College Dublin,
Dublin, Ireland. His current research interests include distributed machine
learning and data-driven agriculture in crop and dairy farming.

Bernadette O’Brien received the bachelor’s degree
in dairy science and the master’s and Ph.D. degrees
from the National University of Ireland, Cork, Ire-
land, in 1982, 1985, and 1988, respectively.

She is currently a Principal Research Officer
with Teagasc Moorepark’s Animal and Grassland
Research and Innovation Centre, Cork. In her cur-
rent role at Teagasc, her projects include research
into innovative and sustainable systems combining
automatic milking and precision grazing, increasing
efficiency of traditional technologies, and exploring

new technology on dairy farms. This has followed from research on on-farm
labor efficiency with respect to labor input profiles, alternative milking
frequencies, various calf feeding frequencies, and milking efficiency in
conventional parlors. She has also been successful in obtaining funding for
research initiatives examining the use of precision technologies, technology
platforms, and computational biology to increase the economic and environ-
mental sustainability of pasture-based production systems. She has recently
established and coordinated a network of research scientists in six European
countries in joint research in automatic milking.

Donagh P. Berry received the bachelor’s degree in
agricultural science and the Ph.D. degree in quanti-
tative genetics from the University College Dublin,
Dublin, Ireland in 2000 and 2003, respectively, and
the master’s degree in bioinformatics and systems
biology from the University College Cork, Cork,
Ireland, in 2012.

He is currently a Senior Principal Investigator of
quantitative geneticist with Teagasc, Cork, Ireland,
where he is responsible for the research on genetics
in dairy cattle and for the development and imple-

mentation of genomic evaluations in dairy cattle, beef cattle, and sheep in
Ireland, and the Director of the VistaMilk Agri-Tech Research Centre, where
he leads a team of more than 200 scientists in the development and deployment
of digital technologies in precision dairy production. He holds professorships
at three (inter)national universities.



Appendix D

A Service-based Joint Model Used for
Distributed Learning: Application for
Smart Agriculture

Journal Title: IEEE Transactions on Services Computing
Article Type Regular Paper

Complete Author List Dixon Vimalajeewa, Chamil Kulatunga, Donagh P. Berry, Sasitha-
ran Balasubramaniam

Status Under Review



1

A Service-based Joint Model Used for
Distributed Learning: Application for Smart

Agriculture
Dixon Vimalajeewa, Chamil Kulatunga, Donagh P. Berry, Sasitharan Balasubramaniam

Abstract—Advanced distributed analytics facilitate to make the services smarter for a wider range of data-driven applications in
many domains, including agriculture. The key to producing services at such level is timely analysis for deriving insights from data.
Centralized data analytic services are becoming infeasible due to limitations in both the ICT infrastructure, timeliness of the information,
and data ownership. Distributed Machine Learning (DML) platforms facilitate efficient data analysis and overcome such limitations
effectively. Federated Learning (FL) is a DML concept, enables optimizing resource consumption while performing privacy-preserved
timely analytics. In order to create such services through FL, there needs to be innovative machine learning (ML) models as data
complexity as well as application requirements limit the applicability of existing ML models. Therefore, in this paper, we propose a
Neural Network (NN)- and Partial Least Square (PLS) regression- based joint FL model (FL-NNPLS). Then its predictive performance
is evaluated under sequential- and parallel-updating based FL in a smart farming context, and specifically for milk quality analysis.
Smart farming is a fast-growing industrial sector which requires effective analytic platforms to employ sustainable farming practices. The
FL-NNPLS approach performs and compares well with a centralized approach and has state-of-the-art performance.

Index Terms—Decentralized Machine Learning, Federated Optimization, Neural Network, Data Imbalance, MIRS Milk Quality Predic-
tions.

F

1 INTRODUCTION

Extensive adoption of connected technologies such as
Internet of Things (IoT) and Cloud Computing are pro-
pelling the advancement of data-driven services in many
sectors such as sustainable intensification of food produc-
tion in agriculture and for personalised/controlled delivery
of drugs in health-care. To deliver such services, data an-
alytic frameworks are essentially required to be integrated
to the ICT infrastructures to extracting insights and then
communicate them effectively to the consumers and end-
users for. The reason for this is such integrated systems
can handle heterogeneous and massive datasets while en-
abling granular analysis with dynamic changes to produce
timely and accurate insights. Hence, an advanced analytical
platform coupled with efficient Machine Learning (ML)
techniques is required to improve reliability and timeliness
of such services [1], [2], [3]. Therefore, this study focuses
on proposing an effective analytical framework based on
Distributed ML (DML) models coupled with IoT and Cloud
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Computing infrastructures.
Most sensor technologies and IoT platforms provide

services to collate and store vast quantities of data produced
from geographically distributed sources. As most computa-
tional facilities for analyzing such data reside in centralized
data centers (e.g., cloud), where data will be consolidated
as single large datasets, means that the analytics can subse-
quently be performed at the location, which is referred to as
Centralized ML (CML). Numerous studies have shown that
CML is highly advantageous for developing new hypothe-
sis, as it enables improved learning accuracy [4] and model
acceptability [5]. However, data centralization is feasible
only when the communication and computational capabili-
ties of the data centers are not limited. At the same time, if
data owners are not reluctant to sharing data with CML sys-
tems due to data privacy, security, and ownership concerns
[6]. These limitations hinder real-time decision making,
which is crucial in providing timely services. A promis-
ing approach to solve this is Distributed ML (DML), as
it facilitates the development of more advanced intelligent
systems by incorporating various systems, technologies, and
ML techniques. Therefore, to overcome the limitations in
CML, there is a growing need for effective DML approaches
equipped with functionalities such as data-protection and
optimum use of available resources.

DML synchronously or asynchronously executes data-
intensive analytical applications across geographically dis-
tributed processing units by capturing real-time dynamics
in order to enable making timely decisions for support-
ing services effectively [7]. For instance, Fog computing
paradigm is emerging as a technological enabler for DML,
since the analytical process is discovered and offloaded to a
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Fig. 1. A FL architecture based on smart dairy farming: (1) Every client service (i.e., farm) collects data (e.x., MIRS of milk samples) and trains a ML
model and send the updated model to the central service unit, (2) The central service unit which derives the final model updates by aggregating the
model updates of client services, (3) Client services download the final model updates and then update their local ML models to perform inferences.

node that is in close proximity to the data source [8]. This
has led to a growing interest to focus on developing new
distributed optimization techniques [9] and one technique
is Federated Learning (FL) [10]. FL enables optimization
algorithms to be federated in order to make real-time deci-
sions without moving data away from the source. This also
minimises data privacy concerns and needed resource con-
sumption (this will be elaborated in a subsequent section).

The key to practicing such DML techniques is having
effective ML models which can be trained dynamically
for capturing underlying updated data. The data collected
by modern day sensor technologies and IoT platforms is
usually highly dynamic, complex, large in size, and highly
dimensional which can lead to noise accumulation, multi-
correlation, and heavy computational costs. Consequently,
such characteristics limit the applicability of commonly
used simple ML models such as Least Square Regression
(LSQR), Principal Component Analysis (PCA), Partial Least
Square Regression (PLSR), and Neural Network (NN). For
example, LSQR, PLSR, and NN techniques have extensively
been used in various data analytical applications, but fails
under certain conditions, thus requiring further enhance-
ments. That is, although PLSR overcomes the limitations of
multi-colinearity and high-dimensionality in LSQR fitting,
the predictive accuracy is limited due to its inability in
capturing complex functional relationships, such as non-
linearity [11]. A promising alternative to mitigate such lim-
itations is NN models, as they are becoming increasingly
feasible and also actively being used for a wide range of
applications. However, selecting optimal NN configurations
by using techniques such as grid search and random search
depends on the problem, resource availability as well as the
experience of the users. It may be inefficient in terms of time
and resource consumption as mostly IoT sensor-based DML
applications are resource constrained and timely delivery of

the outcomes is vital. This means that the NN approach may
not be an efficient alternative in all cases.

Consequently, modern studies are exploring innovative
ML models which are, for instance, scalable, adaptive, light-
weight, and computationally inexpensive. It has already
been proven that the combined use of NN models with
conventional ML models such as PLSR and PCA (known
as hybrid models) has the potential to alleviate the barriers
that arise when they are used separately, while providing
accurate outcomes. However, this scenario has been used
in a limited number of studies such as [11], [12], and also
under CML settings. To date, there has been no study that
has investigated its use within DML, and in particular
under FL. Therefore, in this study, we propose a joint
model of coupling the NN with PLSR models that can be
used for FL. We demonstrated the effectiveness of FL in
the context of smart dairy farming by using Mid-Infrared
Spectroscopy (MIRS) analysis of milk samples, which are
routinely used for the quantification of milk quality (see
Fig.1). Milk quality analysis particularly plays a vital role
in the dairy industry [13], where micro-nutrients of milk
components monitored by robotic milking machines can be
analyzed using ML techniques to determine several impor-
tant insights such as health issues [14], nutrient deficiencies
[15], and social behaviour [16]. These insights provide sup-
port in terms of intensifying sustainable farming practices
such as controlled delivery of nutrients and fertilizers and
reducing cost while increasing the profit. However, MIRS-
based chemometric analysis have extensively used PCA,
LSQR, and PLSR models in earlier studies such as [17], [18].
Joint ML models have not generally been used under FL
settings for any analytical purposes, and particularly in the
field of agriculture. Therefore, our main contributions of the
study is summarized as follows:

• By considering the limitations of the LSQR, PLSR,
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and NN techniques, introduce a joint ML model
known as NNPLS, which combines NN and PLSR
techniques.

• Evaluate two federation approaches, which are se-
quential and parallel, where they can be used to fed-
erate the NNPLS model, and apply these approaches
to a Smart Dairy Farming application. Specifically,
the application is for Mid-Infrared Spectroscopy
(MIRS) milk quality data analysis.

• Evaluate and compare the predictive performances
of the NNPLS model under CML and DML (FL)
settings.

• Ensure that the NNPLS model based FL has compa-
rable performance to the state-of-the-art methods by
comparing FL performance of the NNPLS model to
an advanced ML technique, which is Convolutional
NN (CNN) model.

• Discuss the advantages and challenges of the
NNPLS-based FL while proposing an alternative to
overcome the imbalance issues in FL.

The remainder of the paper is organnized as follows.
Section 2 summarizes the state-of-the-art in distributed ma-
chine learning, including the discussion of the FL process
followed by the NNPLS model. FL approaches are discussed
in detail in Section 3. Section 4 presents the performances of
NNPLS under FL settings while Section 5 and 6 discusses
the benefits and limitations of the FL-NNPLS approach and
concludes the paper, respectively.

2 STATE-OF-THE-ART ON DML AND FL
The progressive advancements of IoT and cloud technolo-
gies have contributed to development of smarter services
that are found in various sectors such as transportation
[19], healthcare [20], agriculture [21], [22], and energy [23].
Therefore, this section provides an overview of the relevant
literature focusing on the attempts made in advancing DML
mechanisms, including the importance of FL in DML, and
the involvement of deep learning and hybrid ML models in
ML.

2.1 Distributed Machine Learning (DML)
CML has traditionally been the dominant ML approach.
However, with the growing prevalence of big data, CML
approaches are facing increasing challenges in collecting
and processing massive datasets due to constraints in re-
source for modern ICT platforms [6], and in particular
low powered devices. Consequently, the concept of DML
is gaining traction for a wide range of applications such
as image classification [9], smart healthcare [20], and smart
agriculture [21]. This has led to continued development
in new DML algorithms with high accuracy and fast con-
vergence rates [9]. As a result, most of the CML algo-
rithms were converted into DML models, e.g., Bayesian
networks, decision trees, and support vector machine [24].
Nevertheless, to support the ever-increasing complexity of
data and their features, research in ML has focused on
incorporating learning functionalities, and one example is
Deep Learning [6]. In employing learning functionalities in
a broader spectrum of DML applications, data-protection

was raised as one of the major concerns and was even more
severe in large-scale data analytic applications [21], [24]. As
a result, privacy-preserved DML solutions such as FL [10]
and parameter server-based DML [25], blockchain-enabled
ML [26] have been developed. When there is a trusted third
party which can serve as an central service unit, FL and
parameter server-based approaches were recommended for
DML. Other alternative is the use of blockchain but discov-
ering resources providers was the most critical challenge.

Considering the early attempts that have been made
to carry out DML, the MapReduce computational model
proposed in [27] migrated computation towards the source
of the data, which significantly reduced the communi-
cation requirements of big datasets, even when Hadoop
stored data in commodity hardware clusters (sometimes
geographically distributed) and processed data locally in
batches [28]. The parameter server-based DML proposed
in [25] performs asynchronous data communication be-
tween distributed nodes, supporting flexible consistency
models, elastic scalability, and continuous fault tolerance.
Today, the Fog and Edge computing paradigms are emerg-
ing as the best enablers for DML algorithms. The reason
is that analytics in Fog and Edge computing provides
opportunities for offloading centralized computations by
discovering processing capabilities in close proximity to the
data sources [7].

2.2 Federated Learning (FL)
FL is a collaborative ML (and also a distributed optimiza-
tion) concept [29] that was developed by Google researchers
to train distributed datasets in a centralized server [25]. A
shared predictive model is collaboratively trained without
moving data away from the participating client service’s
nodes such as mobiles and gateway devices. FL process
mainly consists of three steps, which are as follows (also
see Fig. 1):

1. Each client service trains (updates) the model, i.e.,
computes the model parameters by using its own
data, and then transmits updated models (local mod-
els) to the central service unit.

2. The central service ( coordination) unit (e.g., param-
eter server) collects the local models (i.e., local model
parameters) and then aggregates them to compute
the final updated global model parameters. That is,
every client services contributes to collaboratively
train a common ML model.

3. Every client service retrieves global model parame-
ters from the central service unit and uses them for
making their own decisions and also, for the next
model updating cycle.

These three steps repeatedly execute as FL progresses.
Gradient Descent (GD) algorithms have commonly been

used for computing model parameters [30]. Assume a FL
model that needs to update a parameter matrix of W d1×d2 .
The ith client service (assume C number of client services in
total) will download the parameters at time t, W i

t , and cal-
culate the gradient Hi = W i−W . Then, Wt+1 = Wt + ηHt,
where η is the learning rate. According to the average prin-
ciple, Ht = 1

n

∑
Ht. There are some variants of GD algo-

rithms such as mini-batch GD and Stochastic GD(SGD) [31].
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In SGD, a single training sample is used at a time to train
the model while mini-batch GD uses a small subset of the
training dataset. Both have been proposed to overcome the
processing burden in deep learning algorithms using image
data with a vast number of parameters in the order of 1000s
or more.

Structured- and sketched-updating are two main ap-
proaches used to optimize the up-link communication for
sending the updated parameters to the server when the
resources are restricted. The structured approach sends
the full gradient to the central procession unit while the
sketched approach transmits only the compressed gradient.
These two approaches are, however, used together in FL
and the federation process can be realized by following the
synchronous or asynchronous FL algorithm. In the asyn-
chronous algorithms, all the training subsets are updated
by the client services independently, while in the case of
synchronous case, the parameter updates are dependant
between all the client services. Synchronous algorithms are
comparatively slow since the lower bound delays is con-
strained by the most inefficient machine in the cluster of
client services while the asynchronous approach is known
to converge towards poorer results [29].

The quality of the federated ML model and the opti-
mization technique which is used to train the model are
as crucial as the quality of the data used. Since a CML
model is transformed into a set of small devices, each using
a subset of a large training dataset, this model achieves
data locality and harnesses the computational power of
distributed edge/fog computing. Also, FL makes use of idle
processing power by facilitating a certain number of clients
to act as model trainers. Since the datasets are located in the
client services’ devices, FL has great potential in reducing
communication cost and preserves the data ownership and
privacy issues. Recent research [20], which used FL with
the support vector machine classifier for predicting heart
diseases, and preserves the privacy of patients data, is good
evidence to emphasize the significance of FL. Moreover, the
reasons to use FL as an alternative to current ML techniques
with privacy preserving were broadly discussed in [10],
while highlighting some common issues of FL, such as
data imbalance and misbehaviour (or failure) of the central
service unit, which requires careful attention when selecting
it.

2.3 Involvement of Deep Learning in modern ML
The involvement of deep learning techniques such as con-
volution, recursive, and recurrent NNs in advanced ML
research like image recognition, object detection, and video
analysis [11], [32] has intensified in recent years. Conse-
quently, FL has also been influenced by deep learning tech-
niques. For instance, the study in [30] used a CNN model to
study the communication efficiency of their ML model un-
der FL settings. The local Stochastic Gradient Descent (SGD)
optimization technique based Federated Averaging algorithm
proposed in [30] proved that the ML model could train with
minimal communication requirements and that could help
effectively overcome the communication issues in FL [10].
However, the applicability of deep learning models was
limited particularly in many resource-limited applications
such as sensor-based analytics.

As an alternative, hybrid ML models, i.e., the combined
use of deep learning models with conventional ML models,
were developed. For instance, the study [12] proved that
the combined use of NN and PLSR has the potential to
generate more robust outcomes as well as optimize the
resource consumption compared to using the algorithms
separately. Similarly, different versions of hybrid models
such as PCA combined with NN (PCANet) [33], PLSR
with NN (PLSNet) [34], CNN based PLSR (CNN-PLS or
stacked PLS) [32], and Hybrid-DBSCAN model for optimiz-
ing clustering throughput in GPU and CPU [35] have been
proposed and applied in various applications. Some of the
applications include failure diagnosis of railway infrastruc-
tures [12], traffic incident detection [11], inland water quality
evaluation [36], and image analysis [37]. The use of hybrid
model was always limited to deep learning applications and
has been realized in many other purposes as well. For ex-
ample, [38] proposed a hybrid mathematical formulation for
optimizing the computational energy required at data cen-
ters intending to reduce the ecological impact arising from
data processing (i.e., Greenhouse gas emission). Also, [39]
proposed a hybrid energy harvesting system and proved
that the proposed system has greater performances when
compared to a single source harvesting approach. However,
there is no evidence that such hybrid models have been used
under DML settings, and in particular for FL framework.

2.4 Smart Dairy Farming
With the growing adoption of modern technologies such
as milking robots and remote sensing in smart farming,
more data-driven and data-enabled services are available
today. Timely recommendations and relevant management
strategies based on analyzing the information collected play
a crucial role in accelerating the sustainable intensification of
food production while optimizing resource utilization [21],
[40]. This is a major requirement to address the challenges
that will result from limited land availability, high labour
cost, as well as climate change, aiming to support food
demand for the 9 billion world population by 2050 [41].
This not only emphasises the need for effective computing
services equipped with ML mechanisms that are up-to-
date and trained dynamically, but have the capacity to be
distributed and cooperative [40], [42]. However, most farms
operate in isolation, which in turn, limits their interoperabil-
ity. Resource constraints, functional incompatibility of the
existing IoT platforms hamper such analyses. Besides these
limitations, farmers are reluctant to share their data due to
privacy and ownership issues. In this context, FL can pro-
vide effective services for deriving decisions by integrating
insights extracted from a large number of distributed data
sources.

In general, FL has been beneficial for supporting ser-
vices for different applications and particularly where data
privacy, constraints in resources, and ownership becomes
major concerns in performing data analytics. At the same
time, the use of hybrid ML models in data analytics have
received considerable attention for a wide range of data
analytical applications. The importance of FL, however, has
not been thoroughly realized yet in smart agriculture where
communication and computation resource limitations and
also data-privacy are significant issues.
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3 FEDERATED LEARNING WITH A NEURAL NET-
WORK BASED PARTIAL LEAST SQUARE REGRES-
SION

This section, first, briefly describes the NN and PLSR meth-
ods and then explains how these two methods are combined
to derive the joint ML model known as NNPLS. Next, the
two approaches to federate the derived joint models are
discussed. Finally, the evaluation metrics used for assessing
the FL performances are described.

3.1 Partial Least Square Regression (PLSR)

Least square regression (LSQR) fails when the predictor
variables are strongly correlated with each other and the
number of informative features is larger than the number of
data points. PLSR is a projection method [43], and considers
not only the correlations between the predictor variables
(X), but also the correlations among the predictor and the
response (y) variables. By doing so, PLSR overcomes the
limitations of the LSQR method, transforming the dataset
into a lower dimensional space (latent space), where the
LSQR can be used. Therefore, the general procedure of
PLSR consists of two steps; dimension reduction and the
application of LSQR, and are listed as follows:

1. The PCA technique is used for the dimension reduc-
tion by deriving the PLS factors (or Latent Variables
(LVs)), which explain most of the variation in X and
y.
That is, PCA decomposes X and y using the singular
value decomposition method as: X = GXP

T
X and

y = GyP
T
y , where G and P represents the score

and loading matrices (their subscript stands for the
matrix which they are derived from), respectively.
Suppose q LVs are selected, where normally cross-
validation technique is used) the X can be repre-
sented as:

X = gX,1p
T
X,1+gX,2p

T
X,2+· · ·+gX,qp

T
X,q+EX,q, (1)

where {gX,i}qi=1 ∈ GX , {pTX,i}qi=1 ∈ PX , and EX,q

is the error matrix when the first k LVs are used to
form the PLSR model.

2. LSQR is used to derive the PLSR model as follows,
y = pTX,1p

T
y,1 + pTX,2p

T
y,2 + · · ·+ pTX,qp

T
y,q + Ey,q (2)

where {py,i}qi=1 ∈ Py and Ey,q is the error vector.

Further details on the PLSR process can be found in [43].

3.2 Neural Network (NN)

NN is the neural structure of the human brain, which is
used for non-linear computational models with self-learning
features. The model is constructed from interconnected lay-
ers of nodes that represents artificial neurons. The nodes of
consecutive layers are connected by weighted links, which
communicate information between the layers. The incoming
data to these nodes are processed using a function called
activation function. The data fed into a NN via the input
layer are processed through the hidden layers, and the
outcomes are derived from the output layer (Fig. 2). A
learning rule is used to adjust the weights of the links to

Fig. 2. PLSR model as a naive NN with one hidden layer. The top and
bottom of each vertical color bar explains the entities of the NN and
PLSR models, respectively. The weights in the hidden layer corresponds
to the kth node/LV.

minimize the errors of the learning outcomes (e.g., back-
propagation technique).

We assume a simple NN with n nodes in the input
layer with a single hidden layer, which consists of l nodes,
and the output layer has only one node (see Fig. 2) and
named as (n, l, 1) NN model. {Wh

n×l, b
h
1×l} and {W o

1×l, b
o}

are respectively the input and hidden layer weight (W )
matrices, including the bias (b) term. The incoming and the
outgoing information, denoted as htin and htout of the kth

hidden layer nodes are computed as follows (Fig. 2 provides
the description of the process at the top of each colored
bars):

hink = wk,0 + x1w
h
k,1 + x2w

h
k,2 + · · ·+ xnw

h
k,n (3)

=
n∑

i=0

xiw
h
k,i

houtk = fh(hink ), (4)

where fh is the hidden layer activation function, {wk,i}li=1 is
the kth column of the matrixWh, andwk,0 is the kth element
of the vector bh. The input data sample is represented as
x1, x2, · · · , xn ∈ XN×n.
The same procedure is repeated for all other nodes in order
to compute their outputs that will represent the inputs for
the output layer (yin). Based on this, NN calculates the
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output (yout) as follows:

yin = wo
0 + hout1 wo

1 + hout2 wo
2 + · · ·+ houtl wo

l (5)

=
l∑

i=0

houti wo
i (6)

yout = fo(yin)

where wo
0 = bo and {w0

i }li=1 ∈W o are the output layer bias
and weight matrix, respectively, and fo is the output layer
activation function.
In order to improve the robustness of yout, NN optimizes the
weights as well as the bias by minimizing the errors between
the actual y and yout. This is referred to as training the NN.
The most extensively used training algorithm is the back-
propagation and the process explained above presents the
forward propagation step as it required for explaining the
process of deriving the joint model only. Whereas, the back-
propagation technique is used for training the joint model.
There are other different optimization techniques for learn-
ing rules such as SGD. f(x) = x (linear), f(x) = 1

1+e(−x)
(Sigmoid) are some of the frequently used activation func-
tions.

3.3 NNPLS Model
When the number of hidden nodes is equal to the number
of LVs (i.e., l = q), and the input and output layer weight
matrices (i.e., Wh and W o) is equal to the loading matrix
of X (PT

X ) and y (PT
y ), respectively, the computations rep-

resented by equation 3 and 5 are equal to the equation 1
and 2, respectively. In other words, one forward propagation
step of the (n, l, 1)NN model given in Fig.2 is equal to the
PLSR model with q(= l) number of latent variable. On
the other hand, the PLSR model can be considered as a
NN model with one hidden layer (number of hidden layer
nodes is equal to the number of latent variables). The single
node in the output layer is illustrated in Fig 2. This is the
basic concept behind the joint PLSR and NN techniques
for deriving the NNPLS model. Then the derived NNPLS
model is trained in four steps, which are as follows (see
Fig.3):

1. Apply suitable pre-processing on a given dataset
[X, y] such as PCA, scaling, and centering.

2. The optimal number of hidden nodes required for
the NNPLS model is the number of LVs, which is
derived from the PLSR-based cross-validation tech-
nique.

a. Different PLSR models are fitted to the data by
varying the number of LVs. In each fitting, the
cross-validation error (RMSECV - explained
later) is computed by repeating the 10-Fold CV
for 103 iterations.

b. The number of LVs corresponds to the mini-
mum RMSECV and is selected as the optimal
number of LVs which is also the number of
hidden nodes (l) for the NNPLS model. For
instance, in order to get an idea about selecting
optimal LVs, Fig. 4 represents the behavior of
RMSECV with respect to the LVs for Fat milk
percentage using the MIRS dataset discussed

Fig. 3. Workflow of the NNPLS model for data pre-processing and model
development steps.

Fig. 4. Determination of the optimal number of LVs (i.e., hidden layer
nodes) by using the MIRS dataset explained in Section 4.1 with Fat milk
quality parameter; the optimal value of LV corresponds to the minimum
RMSECV .

in Section 4.1. As observed in the graph, the
minimum RMSECV occurs at 6 LVs, which
is the number of hidden nodes required for
NNPLS model.

3. The loading matrices of X and y that corresponds to
the optimal LVs are taken as the initial weights of the
input and output layers that are required for start-
ing the NN training process with selected activation
functions and the optimization technique. The recti-
fied and linear activation functions were respectively
used for fh and fo. The optimization technique used
was the ADAM method.

4. Perform model updating based on a preferred ap-
proach and here we explain the sequential and par-
allel updating under FL settings in the next section.
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3.4 NNPLS model based Federated Learning (FL-
NNPLS) architecture

In the NNPLS model based FL, the set of parameters that
has to be federated is the NN weights derived from each
client service that is located in distributed locations. Each
client service trains a common NNPLS model by using the
weights downloaded from the central service unit. After
training, the client service will send back the updated
weights to the central service unit. The central service unit
aggregates them and computes the final updated weights,
and sends back to every client service unit in order for
them to update their models and perform predictions. In
this process we assume that all client services contribute to
model updating at each federation step as well as accept the
final model updates. This means that the NNPLS model is
dynamically updated based on the new datasets collected
from each client over time. This is the core functionality
of the FL-NNPLS architecture, which updates the model
sequentially as well as in parallel.

3.4.1 Parallel Updates
The process for parallel updates follows the three steps
illustrated in Fig.1, and is as follows:

1. Each client service independently trains a common
NNPLS model using the available data.

2. The central service unit collects the NNPLS model
weights sent by each client then averages it in order
to get the final updated global weights

3. Each client service unit downloads the global
weights and update the model to perform predic-
tions accordingly.

In the next federating step, which is the updating pro-
cess, the global weights from the previous federating step
are combined with the new loading metrics derived from
the PLSR method by using the new dataset, and this is then
used as initial weights for training the NNPLS model.

Let us assume there are C client service units, the at the
(t− 1)th federating step, the final input and output NNPLS
model weights are denoted asW t−1

in andW t−1
out , respectively,

and are derived by averaging the weights received from the
C client services as follows:

W t−1
in =

1

C

C∑

i=1

W t−1
in,i W t−1

out =
1

C

C∑

i=1

W t−1
out,i

where W t−1
in,i and W t−1

out,i are the input and output NNPLS
model weight matrices of the ith client.
These weights are then sent back to all the client services
to assess their model’s performance and is also used for
computing the initial weights for the next federation step
(tth). At the tth step, the ith client service applies the PLSR to
its new dataset, {Xt

i , Y
t
i } and derives the loading matrices

P t
X,i and P t

Y,i. Following this process, the initial weights
for training the NNPLS model are computed by averaging
these loading matrices with the final model weights from
the (t− 1)th step, which is represented as follows:

W t,init
in,i =

P t
X,i +W t−1

in

2
, W t,init

out,i =
P t
Y,i +W t−1

out

2

This computation is performed for i = 1, · · · , C and aggre-
gated in order to obtain the updated weights that are used
to evaluate the FL performances at the tth federation step,
assuming W 0

in = 0 and W 0
out = 0.

3.4.2 Sequential Updates

In the case of the sequential updates, the process is per-
formed in a sequential manner. Three steps of the updating
process are as follows:

1. The NNPLS model training process starts at a ran-
domly selected client service, assuming that this
client has sufficient data to start the training process.

2. The central service unit collects the model weights
sent by that client service.

3. The next client service unit, which is ready to per-
form the model training process, downloads the
weights from the central service unit and update its
NNPLS model.

This process continues sequentially and one federating
step is completed when the model of all the client services
is up-to-date. The weights from the client service that is used
for performing the last training is used as the final weights
of the FL-NNPLS system, which will be utilized for the next
federating step.

Let us assume the final NNPLS model weights from the
(t − 1)th federation step are W t−1

in and W t−1
out . At the tth

federation step, the first model training is performed by
the ith client, where i ∈ {1, · · · , C}. The initial weights are
computed as follows:

W t,init
in,i =

P t
X,i +W t−1

in

2
, W t,init

out,i =
P t
Y,i +W t−1

out

2

where P t
X,i and P t

Y,i are the loading matrices of the dataset
{Xt

i , Y
t
i }) of the ith client service at the tth federation step.

The NNPLS model is then trained to compute the final
weights. The tth federation step is completed once all client
services have finished updating the model. This procedure
is continued for t = 1, · · · , T assuming that at t = 1,
W 0

in = 0 and W 0
out = 0.

3.5 Evaluation Metrics

The metrics, Root Mean-Square Error (RMSE) and coeffi-
cient of determination (R2) are used to evaluate the predic-
tive accuracy of the LSQR, PLSR, and NNPLS models under
the federated and non-federated (i.e., CML) approaches.

The RMSE quantifies the standard deviation of the
residuals and computed as:

RMSE =

√∑N
i=1(yi − ŷi)2
N − 1

,

where y and ŷ are actual and the predicted response variable
and N is the sample size.

TheR2 depicts the proportion of variance in the response
variable y, which is related to the predictor variables in X .
Therefore, we use R2 as the accuracy measure to represent
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Fig. 5. Water absorbance regions removed MIR spectra of 712 milk sam-
ples within the wave number region 2500−25000nm(900−5000cm−1)
of the electromagnetic spectrum.

how accurate a ML model can predict a response variable y
in our evaluations and compute as:

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

,

where y, ŷ, N have the similar meaning as explained under
RMSE.

4 PERFORMANCE EVALUATIONS

In this section, we explore the NNPLS model performances
compared to the ML models of LSQR and PLSR and also,
compare the learning performances of the NNPLS model
based FL and non-FL (i.e., CML) approaches. To perform
these experiments, we use a dataset of MIRS from bovin
milk. Initially, the dataset is briefly introduced, including the
pre-processing steps. Based on the predictive performance
obtained using a LSQR model, we explain the different char-
acteristics of FL. This is followed by a discussion on the non-
federated CML performance of the NNPLS model relative
to LSQR and PLSR models using three different predictive
parameters. Finally, we examine the performance of the FL-
NNPLS approach for the same predictive parameters.

When performing distributed learning using the dataset
(i.e., training the NNPLS model under FL settings), we divid
the MIRS dataset among five distributed clients. The num-
ber of clients was limited to 5 in order to have a sufficient
number of samples per client (means client service ) to per-
form the learning. This is because the original MIRS dataset
consists of 712 samples only (each subset has 712/5 ≈ 140
samples). In a real-world scenario, this is feasible because
in general, the herd size of an average dairy farms is
around 100-150. The sub-samples are collected from client
services into a central location (e.g., Cloud infrastructure)
when performing CML, and this is assuming no privacy
concern are raised for the communicating data. In all model
training processes, 80% of the total samples were randomly
selected for training and the remaining samples were used
for testing.

4.1 MIRS Dataset and Pre-processing
The data used in this study originated from the Teagasc
research dairy farm at Moorepark, Ireland where MIR

spectra of milk were collected. The composition of milk
was determined using the FOSS MilkScan [44]. The dataset
consists of MIR spectra of 712 different milk samples in
the wavenumber region of 925 − 5005cm−1 with a resolu-
tion of 3.853cm−1. The wavenumbers were rounded to the
nearest integer. As a result, the given spectrum contained
1060 transmittance data points. Hence, the original gold
standard MIRS spectra used for FL was a 712 × 1060 size
matrix. We converted them to absorbance values by taking
log10 from the reciprocal of the transmittance values. The
absorbance values in the milk samples indicates the amount
of absorption of the electromagnetic radiation when the
MIR light penetrates through the milk sample. Higher ab-
sorbance values indicate that the MIR light penetrates less at
certain wavenumbers according to the molecular bonds. In
addition, the percentages of the selected milk nutrient com-
ponents (MQTs), Lactose, Fat, and Protein, corresponding
to each milk sample were stored in a matrix (yn×k, where
n = 712 and k = 3).

In spectrometry-based data analysis, pre-treatments are
necessary as MIRS data contains large quantity of redun-
dant data which adds variability in the wavelengths. Also,
the higher dimensionality and multi-collinearity among the
wavelengths limits the use of simple ML models. Conse-
quently, these factors could affect the resulting predictive
accuracy. The original milk spectrum indicated two random
sharp fluctuation regions, which occurs in the wave number
regions of 1500 − 1800cm−1 and 2900 − 3800cm−1 per
visual observation (see Fig.5). These regions are the water
absorbance regions according to the pure water spectrum at
25◦C , which corresponds to O = H bonds in the spectrum.
We identified these two regions based on PLSR model
calibration, which was conducted on our gold standard
data and removed it in the pre-processing stage. Then the
water absorbance regions removed were 1607 − 1734cm−1

and 3021 − 3707cm−1 [17], [18]. By removing these two
regions, the dimensionality of water free spectrum (X) was
712 × 847. Fig. 5 represents the water absorbance regions
removed spectra.

Scaling MIRS data was not a compulsory approach
since all the features were in the units of absorptions.
Therefore, the water-removed MIRS data was then fed into
PCA dimension reduction stage and the PCs corresponding
to the reconstruction error less than 10−4 were selected;
reconstruction-error is the l2 norm of (X − X̂), where X̂
is the reconstructed X by PCA. These pre-processing steps
could precisely remove the wavenumbers from the original
spectra to obtain pre-processed MIR spectra (say X) for use
in FL. We used Python scikit-learn and tensor flow libraries
for all the analytical work.

4.2 FL performance of MIRS Data with a LSQR model

A LSQR model was formed by including all the parameters
in X (i.e., PCs with reconstruction error ≤ 10−4) and then
federated once by equally distributing the 712 samples
among the 5 clients (≈140 samples per client). With a 10−3

learning rate, the SGD algorithm was then used to train
the model at each client for 103 iterations. The predictive
performance of the FL (i.e., DML) approach (parallel) was
compared with the non-FL (CML) approach. Fig. 6 shows
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Fig. 6. Federated and centralized prediction accuracy of MQTs in the
MIRS dataset (DML with 5 clients).

Fig. 7. Comparison of FL and CML performances of training efficiency
with number of clients obtained using MQTs.

the training accuracy of CML and DML approaches for three
MQTs. The predictive and actual MQT values under the
DML approach are distributed around the straight line (i.e.,
actual y and predicted y (ŷ) should be linearly correlated as
y = mŷ, where m = 1) compared to those under the CML
approach. That is, the DML (FL) predictive performance is
better than that of the CML with LSQR model.

Following the similar procedure used above, the vari-
ability in predictive performance of FL with increasing
number of clients was studied with the results summarized
in Fig. 7. The FL approach achieved higher accuracy and
converged faster than the CML approach. Therefore, having
many clients contributes to improving the FL efficiency by
speeding up the model training process. The effectiveness of
the FL approach mainly depends on the number of clients
as well as the number of samples used by each client to train
the ML model. Having a set of suitable initial model param-
eter values generally guarantees better accuracy when com-
pared to their optimal values. So the updated set of model
parameters that are available at the central processing unit
(e.x., server) is sent to the next client(s) as initial parameter
values. The convergence of SGD gradually becomes faster
as federation progresses.

These results confirm that FL performs better than the
CML approach, but the performance can be improved fur-
ther with increasing number of clients as well as using
larger training samples. However, the limitations of LSQR
mentioned in Section 3.1 might cause a poor predictive
performances for some MQTs [17]. The next section explains
how to overcome those limitations based on the compu-
tational evidence derived from using PLSR and NNPLS
models.

4.3 Centralized (non-FL) and FL performances with
NNPLS model
In this section, non-federated (CML) performance of the
NNPLS model is compared to the LSQR and PLSR models.
Then the performance of FL-NNPLS is explored.

Table 1 represents the non-FL predictive accuracy ob-
tained from the LSQR, PLSR, and NNPLS models for each

Fig. 8. NNPLS model-based FL performance for different MQTs under
the sequential and parallel model updating approaches.

MQT, including the number of LVs. The CNN model is
explained in the next section. The replacement of the LSQR
model by the PLSR and then the NNPLS models contributed
to improving the predictive accuracy of all MQTs; the largest
improvement was for Protein, followed by Lactose. This is
highly likely attributed to the PLSR and NNPLS models
taking into account the multicollinearity in the MIRS data
which is not considered in the LSQR model. Also, the
NNPLS model is capable of capturing non-linear functional
relationships in addition to multicollinearity in MIRS data.
Moreover, NNPSL model follows the SGD optimization to
select the optimal parameter values, which is not considered
in the PLSR model. That is why the accuracy of each
MQT obtained from the NNPLS model is better to that of
the LSQR and PLSR models. Thus, the NNPLS model is
computationally more effective compared to the traditional
NN models and also able to provide more precise learning
outcomes compared to LSQR and PLSR.

With five clients, the NNPLS model of each MQT was
federated for ten times under the sequential and parallel
updating approaches separately, assigning 140 (≈ 712/5)
samples randomly for every client at each federation. This
approach is used in the same training and validation set-
tings, which were used under the non-FL approach. Fig. 8
depicts the variability in the average predictive accuracy
over the five clients obtained from both updating proce-
dures at each federation step. In general, with increasing
number of federation steps, the predictive accuracy of all
MQTs increased in both updating approaches. The accuracy
obtained from the sequential updating was, however, higher
than the parallel updating approach. Furthermore, after
ten federation steps, all MQTs achieved higher accuracy
compared to the non-FL accuracy given in Table 1 for both
updating approaches.

In general, the NNPLS model performed better than
the LSQR and PLSR models with MIRS milk data. At the
same time, the FL-NNPLS approach achieved greater per-
formance compared to the performance obtained from the
CML approach. Moreover, the sequential updating based
FL performance has better performance compared to the
parallel updating based FL approach.

5 DISCUSSION

The FL method can be considered as a realization of
the concept of Data Gravity proposed by Dave McCrory
in 2010. He pointed out that with increasing data sizes,
the computational power should be shifted towards the
data sources. The Fog/edge computing and Cloudlets are
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MQT LSQR (%) LVs PLSR (%) NNPLS (%) CNN(%)
Train: Vali: Train: Vali: Train: Vali: Train: Vali:

Lactose 92.43 91.62 12 94.05 90.86 96.41 93.39 97.85 92.58
Fat 93.49 87.50 5 93.95 91.44 96.11 91.12 96.36 92.21
Protein 83.86 66.87 5 75.62 69.44 87.46 83.09 82.05 77.66

TABLE 1
Centralized (non-FL) training (Train:) and validation (Vali:) accuracy (R2%) of LSQR, PLSR, NNPLS, and CNN models for different milk quality

parameters (MQTs).

two popular DML enablers where this concept is being
practiced [18], [45]. In these DML techniques, FL is one
of the latest optimization approaches which can be used
to perform analytics. Therefore, in this section, first we
discuss the state-of-the-art performances of the FL-NNPLS
approach by using a deep learning technique, which is
the Convolutional NN (CNN). The common issues of the
DML approach are then discussed, including some of the
challenges in FL-NNPLS technique. Subsequently, one of
the critical challenges, which is data imbalance is discussed.
Finally, directions for future research under FL are briefly
discussed.

5.1 Comparison of FL-NNPLS model performance to a
deep NN model

Considering the different CNN models (e.g., LNet, Vgg-19,
and Resnet), which are explained in [18], [46], [47], the CNN
model was selected based on the LNet-5 and Vgg-19 models
such that they are deeper ( i.e., number of layers) than the
LNet-5, but not as deeper as Vgg-19. This means that the
CNN model consisted of three convolution and three dense
layers. Each convolution layer contained a 3×3 sized kernel
and the number of features extracted from each layer was
20, 30, and 40, respectively. Also, each convolution layer was
followed by a max-pooling layer with a kernel of size 2× 2.
A flatten layer was included after the last convolution layer,
and then the dropout layer dropped out by 20% neurons of
the flatten layer. The first dense layer contained 30 neurons.
The number of neurons in the second dense layer was equal
to the number of LVs of the predictor variable used for
learning. The last dense layer contained only one neuron
and used the linear activation function; nevertheless all
other layers of the CNN model used the rectified activation
function. The ADAM optimization technique was used to
train the CNN model. The reason behind selecting a CNN
model architecture between LNet-5 and Vgg-19 was that
training large deep learning models like Vgg-19 under the
FL settings may not be feasible under certain circumstances,
such as limited resources and low complexity.

Under the CML settings, the water-free MIRS dataset
was first compressed by applying PCA with 10−4 recon-
struction error and then the compressed dataset fed into
the CNN model. The model was trained for 103 times
by selecting the initial network weights from the uniform
distribution. The predictive accuracy for each MQT was
then computed and given in Table 1. It is clear that the
NNPLS model has state-of-the-art performance because the
CNN model outcomes are comparable to the NNPLS model.

To train the CNN model under the FL settings, the same
procedure which was used to train the NNPLS model in Sec-
tion 4.3 was followed. However, the initial network weights

Fig. 9. CNN model-based FL performances under the sequential and
parallel updating techniques.

were selected from the uniform distribution. If the square
root of the selected number of PCs was not an integer, then
the PCA compressed data could not reshape it to feed to the
CNN model for training and validation. Therefore, the zero
padding technique was used to adjust the number of feature
variables in the compressed dataset before reshaping. The
number of samples per client was increased up to 250, but
the federation steps were limited up to five as over-fitting
is a common issue with the CNN model due to the small
data size. Fig. 9 represents the validation accuracy for each
MQT with increasing number of federation steps under the
sequential and parallel updating approaches. As shown in
the results, the accuracy improved for all MQTs under two
updating approaches.

Comparing the CNN-based FL performance to the FL-
NNPLS outcomes, the NNPLS model achieved higher ac-
curacy for all MQTs compared to the CNN model under
similar FL settings. Moreover, the convergence efficiency
of the NNPLS was faster than the CNN model, as CNN
requires longer training time to achieve similar performance
to the FL-NNPLS. Therefore, these results prove that the
NNPLS model results in greater performance compared to
the CNN model under similar experimental settings. Fig. 10
depicts the sequential and parallel updating performances
based on the validation accuracy of each MQT obtained
from the NNPLS and CNN models. While the variability in
the predictive accuracy of all the MQTs at each client is dis-
played in Fig. 10(a), Fig. 10(b) represents the change in pre-
dictive accuracy for each MQT with each federation steps.
In general, the predictive performance from the sequential
updating method was higher than the parallel updating
method for both models. Also, under the sequential updat-
ing technique, the NNPLS model based predictive accuracy
was comparable to that from the CNN model for all MQTs.
However, considerable differences were observed for certain
MQTs with the parallel updating approach. Therefore, it can
be concluded that FL with the sequential updating performs
well compared to the parallel updating. Also, the NNPLS
model has comparable performance to the state-of-the-art
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CNN-based deep learning model based on the predictive
performance obtained for the MIRS data of milk.

5.2 Advantages of FL-NNPLS

The DML framework based on the FL-NNPLS approach
can handle most of the issues mentioned heretofore. Since
data will not migrate from the data sources, and ML model
updates do not store them in the server, the FL-NNPLS
optimizes resource consumption as well as data privacy,
security, and data ownership. Also, as every client integrates
updated ML model immediately after each federation, they
can make timely decisions effectively. In many applications,
NNs are the state-of-the-art though selecting a proper net-
work configuration is time and resource-consuming. How-
ever, modern deep learning models ResNnet and Googlenet
can be easily optimized and gain higher accuracy with
increasing depth of the models and can control the computa-
tional cost required with deep learning models, respectively
[46]. Employing them in Fog/Edge computing based DML
systems might not be possible particularly in smart farm-
ing sectors, because such systems mostly rely on resource
limited sensor nodes which cannot train those models.
However, considering the applicability of modern DML
frameworks such as Horovod 1 will be a good alternative
to handle such limitations.

Since NN used in the FL-NNPLS approach is associated
with the PLSR technique in selecting suitable NN config-
urations, the learning process is faster and preserves the
computational power. Having a proper set of initial net-
work weights speeds up the network convergence, cutting
down the computational burden required for deciding the
NN configurations, providing a faster convergence rate.
Since the PLSR technique provides these pre-requirements,
NNPLS-based ML can provide computationally inexpen-
sive, robust, and scalable solutions for a broader range
of applications. Furthermore, PLSR effectively overcomes
the multicollinearity and higher dimensionality, while NN
enables capturing complex functional relationships in the
data. Therefore, the scalability of the FL-NNPLS approach
is better compared to the NN or PLSR methods.

5.3 General Limitations in FL-NNPLS Approach

The ultimate purpose of this DML is for deriving meaning-
ful and timely insights from massively distributed datasets.
Hence the necessity for efficient FL frameworks has a grow-
ing demand with the growing prevalence of big data in a
broad range of applications. Nevertheless, there are some
common critical issues associated with it, and some are
listed as follows:

1. The FL framework is used for learning from large-
scale distributed data, but finding resources in order
to respond to the ever-increasing data volume is
challenging.

2. The datasets involved in FL are typically heteroge-
neous and that brings up constraints such as aggre-
gating the FL model parameters and defining a com-
mon representation for data to be able to apply ML.

1. https://github.com/horovod/horovod

Also the datasets are not complete, balanced, and
uncertain due to a number of reasons such as missing
data or their unavailability, and the un-verifiability
of all data sources. As a result, most ML algorithms
cannot be applied directly so that deriving precise
insights from such data could be challenging.

3. The FL system is totally dependent on the coordina-
tion device which provides services to the collection
by the local model updates and using this to produce
the global model updates. Any functional failure (or
misbehaviour) of this entity could result in a collapse
of the entire system.

4. It has been already warned that significant infor-
mation can be extracted by tampering the model
updates [48]. Hence, extra security efforts are now es-
sential, particularly in smart farming applications for
performing safe communication of model updates
between the clients and the central service units.

5. The FL system is lacking a proper mechanism to
examine the validity of the clients’ data and model
updates as they can inject false information into the
FL system.

Therefore, FL systems should have the potential to under-
stand these factors and be equipped with the necessary
tools in order to efficiently overcome them. For example,
to overcome the data imbalance issue in FL, we propose an
approach by using the FL-NNPLS method and explore its
performance based on the MIRS dataset.

5.3.1 Data imbalance issue in FL-NNPLS
Data imbalance is commonly encountered in many ML
applications most notably in data classification and DML.
This happens when the number of clients that have small
quantity of samples is significantly higher compared to the
total number of clients. Consequently, ML outcomes are
most likely biased towards the clients which have larger
samples. ML algorithms such as data classification consider
the clients are having a small number of samples (minority
samples/classes) as noises and tends to neglect them during
the learning process. In fact, minority classes are usually
more critical. For instance, in dairy herds, there could be
very few sick cows relative to the number of healthy cows,
and this minority group plays a crucial role when identify-
ing animals which are affected. Hence, data imbalance is an
important topic in advanced ML research with the growing
interest in DML. According to a recent study [49], there
are two main approaches to overcome this issue; data-level
and algorithm-level approaches. While the first approach
overcomes data imbalance by using re-sampling techniques,
different techniques such as adding penalty constants are
used in the second approach to overcome the data imbal-
ance issue. Many experimental attempts have proved that
re-sampling, i.e., over-, under-, and hybrid-sampling, is a
promising way to manage data imbalance [49]. However,
the best-suited technique depends on the characteristics of
the imbalanced datasets.

On the other hand, there is another problem associated
with FL-NNPLS approach due to data imbalance; the num-
ber of LVs varies with the data size, and consequently the
NNPLS model configurations vary over the clients and it
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(a) Predictive accuracy of every MQT at
each client.

(b) Variation of predictive accuracy with federation steps.

Fig. 10. Sequential and parallel updating based FL performances obtained from NNPLS and CNN models for three different MQTs.

hampers aggregation of model updates. That is, feature
variables are heterogeneously distributed over clients and
DML system aggregates different ML models in order to
perform learning. In some studies, DML with different ML
models has been named as vertically partitioned data or
dimensionally distributed data [50]. However, these ML
models that include the re-sampling methods cannot solve
the imbalanced data issue alone in FL-NNPLS approach.
Hence, a technique, which can control both issues at the
same time, is required. Therefore, in the present study, a re-
sampling and zero-padding based joint approach was used
to overcome the issue.

Five clients were federated for five times under the
sequential updating FL approach since it performed well
compared to the parallel approach. In each federation step,
the number of samples of every client was allowed to vary
randomly between 50-250. PCA reconstruction error was
set to 10−4 in order to select the optimal number of PCs.
The same procedure was used in Section 3.4.2, but two
additional steps were used here. The first one is to balance
sample sizes of the clients. The random re-sampling was
applied to the current FL participator only if its sample size
was less than the previous client which performed model
updating. Randomly selected samples from its own samples
were used to balance the current sample size to the sample
of the previous client (i.e., random up-sampling). The sec-
ond step was added to the NN weight aggregation stage in
which zero-padding was applied to equalize the sizes of the
NN weight matrices. The variability in predictive accuracy
was computed under both the CML and FL approaches.

Fig. 11 represents the federated and non-federated pre-
dictive accuracy obtained for the milk Fat at each federation
step for every client, including the original sample sizes
and LVs. The predictive accuracy from the FL approach
is generally higher than the non-FL. Therefore, it seems
that the re-sampling and zero padding based approach has
the potential of mitigating data imbalance issues. However,
further research is essential to study the validity of this
approach in different applications.

Fig. 11. The federated and non-federated NNPLS model performances
with imbalance data.

5.4 Future Research Directions

The future research directions can be considered in two
ways; 1) finding solutions to overcome the challenges men-
tioned in Section 5.3 and 2) exploring novel approaches
to enhance the performances of FL-NNPLS in distributed
services.

Some of the possible solutions could be explored further
to overcoming these challenges are:

1. Exploring novel cooperative computing (resource
sharing) approaches such as offloading computations
to neighbouring devices with services as explained in
[51] for minimizing the constraints in resources. Also,
research in effective data compression techniques for
compressing training data as well as communica-
tion over the FL system would be an interesting
approach for minimising the computing and com-
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munication costs. In addition, incorporating the dis-
tributed cloud service model for resource allocation
proposed in [52] and mobile edge computing ap-
proach presented in [45] would be good approaches
to minimize resource limitations.

2. Designing techniques for FL with dynamically
changing central service unit based on factors such as
resource availability and communicability with the
client’s services would also contribute to improving
the stability of the FL system, resulting in the min-
imization of the impact of failure (or misbehaviour)
of the central service unit. The concepts about opti-
mizing the node failure in connected devices given
in [53] would be beneficial exploring a path for
mitigating the impact of central service unit failure
in FL.

3. In order to prevent tampering the model updates of
the services traversing over the FL system, public-
private key based data encryption techniques such as
the authenticated symmetric encryption with Diffie-
Hellman (D-H) key exchange service can be incorpo-
rated with FL. Further exploration on how they facil-
itate to improving data privacy and communication
resources will be required.

4. Proposing techniques for integrating FL with
blockchain services, for validating model updates
and also minimizing the misbehaviour of any FL
participant.

5. Performing FL by selecting only a set of clients’
services, who have good history of providing valid
model updates, to update the final ML model will
also be a promising solution to control the injection
of false information to the FL system.

There are different ways for developing novel ap-
proaches to enhance the FL performance in distributed
services.

1. One of the main goals of the FL approach is to
achieve high accuracy with a minimum number of
federated communication rounds. This goal can be
achieved by using the ML algorithms which have
faster convergence rates. Hence, developing a bet-
ter theoretical understanding about the convergence
properties of such algorithms will be an interesting
future research direction.

2. Since FL is an optimization framework, a convex op-
timization function is essential to guarantee the con-
vergence of the model parameters. However, NN-
based ML yields non-convex function so there is no
evidence regarding the guarantee of convergence of
the optimization algorithm. Therefore, studies of the
FL problems for non-convex objectives is another
direction that may contribute to the efficient applica-
tion of FL for solving even more complex problems
in advanced applications such as object detection and
image processing.

3. Developing a business model based on a token-based
FL approach. This means that the clients who con-
tributes to update the ML model can rent the model
for outsiders who want the model for practicing
different services such as making decisions. In return,

they have to pay a certain amount of tokens, through
a form of currency, to the FL client(s). This method
will facilitate FL-based platforms to provide greater
services to wider range of application domains.

4. The present study assessed the predictive perfor-
mance of the NNPLS model based CML and DML
only. However, exploring the computational effi-
ciency would be an interesting extension of this work
by taking into account various factors. Some of the
factors, which could contribute towards improving
the efficiency of the FL-NNPLS approach, are re-
source availability at the client services and central
service unit, frequency of data collection, and model
update transmission cost.

6 CONCLUSION

This paper presents the applicability and benefits of using a
hyrid model of FL and ML models for distributed services.
A particular application of the services is a case study on
spectral data generated from milk samples, which essen-
tially operates as a tool to predict three milk quality param-
eters. The NNPLS model developed for the FL model based
on the limitations of the LSQR, PLSR, and NN models was
used for predictions under the CML and DML settings. Un-
der the CML settings, the NNPLS model contributed to the
improvement of the predictive performance compared to
the LSQR and PLSR models and also achieved comparable
performances to the state-of-the-art CNN model. Therefore,
the NNPLS model is a good fit for performing predictive
analytics on milk quality data. Under the FL configurations,
our NNPLS model achieved similar performance when
compared to the CML approach, and by only using a few
federation steps. Moreover, with the similar FL settings, FL
performance of the NNPLS model was similar to the state-
of-the-art CNN model. Therefore, FL-based NNPLS model
can provide timely insights regarding the composition of
milk while preserving data privacy and ownership with
minimal resource requirements which are critical challenges
in providing effective services in modern day smart farming
applications. The sequential updating based FL approach
is a good fit for analyzing milk composition as it achieves
better performance with both the NNPSL and CNN mod-
els compared to the parallel updating approach. The re-
sampling and zero-padding based approach contributed to
mitigating the impact of data imbalance in FL. However,
further investigation is required to improve the performance
further.
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Incorporating Block Chain into Internet of Nano
Things for Smart Farming

Dixon Vimalajeewa, Subhasis Thakur, John Breslin, Donagh P. Berry, Sasitharan Balasubramaniam

Abstract—

The integration of Internet of Things (IoT)-based decision-making systems with Block Chain (BC) technology can contribute immensely
to autonomous Edge systems that require improved data security, auditability, and transparency. The recent introduction of the Internet
of Nano Things (IoNT) can further exploit BC to improve reliability as they are able to sense molecules a more granular scale, which in
turn provides a new spectrum of data that can be analyzed. The integration of IoNT into BC-powered IoT systems in any application has
not yet been investigated. This study proposes a BC-powered IoNT (BC-IoNT) system for detecting chemicals at the molecular level in
the context of farm management. This is a critical application for smart farming, which aims to increase sustainable farm productivity
coupled with controlled delivery of chemicals. BC-IoNT system includes an analytical model formed by using the Langmuir molecular
binding model integrated with the Bayesian theory. This model is used as a smart contract for detecting the level of the chemicals.
Moreover, a farm credit model is used to quantify the traceability and credibility of farms to determine if they are compliant with the
chemical standards. The BC-IoNT was validated through simulations to evaluate the accuracy of detecting the level of chemicals of
the distributed BC approach, and it was compared to a centralized analytic approach. The accuracy of the BC-IoNT was≥ 90% and
the centralized approach was ≤ 80%. Also, the efficiency of detecting the level of chemicals depends on the sampling frequency and
variability in chemical level among farms.

Index Terms—IoT-powered Block Chain, Smart Farming, Bayesian Updating, Affinity-based Nano-Sensor, Food Supply Chain.

F

1 INTRODUCTION

With the progressive developments in modern Informa-
tion and Communication Technologies (ICT), a wide range
of application domains such as health-care, transport, and
agri-tech has become further advanced resulting in novel
and intelligent services. The recent advances in the Internet
of Things (IoT), coupled with modern ICT, facilitates con-
tinuous monitoring of spatial and temporal variability that
exist from sensors integrated into each of these application
domains. In particular, sensor technologies have undergone
dramatic advancements due largely to the developments
in other supporting fields such as nanotechnology, which
enables monitoring of molecules at a fine granular scale.
The emerging field of nano-communications allows commu-
nication and networking between devices to be developed
from nano-scale components [1]. The integration of nano-
communications with IoT has led to a new paradigm known
as the Internet of Nano-Things (IoNT), empowering the
potential of creating a broader spectrum of data that can
take the applications described above to unprecedented
levels. Today, IoT and IoNT integrated systems coupled
with Machine Learning (ML) and Artificial Intelligence (AI)
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promises to create high value and novel services that will
transform the different domains already described.

It has been widely acknowledged that collaborative
decision-making systems (DMS) have the potential to adapt
services dynamically, though there are critical challenges
that need to be addressed. Such challenges that hinder col-
laborative operations between devices, systems or services,
include functional incompatibilities, limited built-in secu-
rity, constraints in resources, trust, and transparency. For
these reasons, most DMSs are centralized and depend on
third-party services (e.g., Cloud services) where users have
to submit and share their data with service providers and
have no or limited access to and control of information. Con-
sequently, this increases the risk of removing, tampering,
and misusing the data. At the same time, centralized sys-
tems do not support end-to-end communications, although
that is the key for automation of smart devices for operating
timely services. On the other hand, highly dynamic data,
and the static nature of most of the existing ML and AI
algorithms, limit the capacity of processing data collectively,
preventing the delivery of timely services. Therefore, these
systems have critical risks such as data security threats,
single point failure, and limitations in the scalability.

These challenges have, therefore, gained considerable
attention on the practicality of centralized systems, and
has motivated researchers towards restructuring them into
fully decentralized systems enabling direct and secure inter-
communication and inter-operation, minimizing the depen-
dency on the third-party devices. Block Chain (BC) tech-
nology has become one of the promising solutions to build
fully distributed systems, overcoming those challenges [2].
The BC technology has been widely used in the financial
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sector, though its significance has not yet been fully realized
in many other fields where numerous benefits may exist.
Therefore, this gap is the key motivation for conducting
this study, focusing on how the smart farming sector can
be powered by BC technology to help achieve sustainable
farming practices and effective food supply chain.

Smart farming (SF) is transforming farming practices
by integrating modern ICT to achieve greater productivity
through sustainable practices. IoT and IoNT devices de-
ployed in SF can collectively monitor the farming process
such as production quality and animal welfare. Collected
data are then processed to derive insights which producers
can use to make timely and informed decisions such as
controlled delivery of farm inputs (e.g., quantity of feed,
fertilizer) and early detection of disease. Since the collection
of massive datasets from IoT and IoNT leads to exceeding
resource capacities, limited scalability, and extended latency,
cloud-based data processing methods were extended to Fog
and then Edge computing. Such mechanisms facilitate data
processing in close vicinity to the data sources and integrate
derived insights for collaborative decision-making.

With the rapid expansion and advancement in SF, the
main aim of SF is now, not only to intensify production
but also manage an effective food supply chain. Cloud-
, Fog-, and Edge-computing paradigms coupled with IoT
and IoNT enable performing such operations effectively.
However, several concerns have been raised with regards
to these computing paradigms in that they may not be pro-
viding adequate support for addressing certain criteria ef-
fectively [3]. Most specifically, food quality, safety and trust
in production process, along with transparency, auditability,
and trustability of the practices have become an important
factor with the involvement of various stakeholders along
the food supply chain. For instance, the high demand for
food has created greater market competition, and conse-
quently has increased the availability of similar products
for different brands. Therefore, consumers are now more
conscious about production quality and brand trust for the
products they purchase. Information for ensuring quality
and safety standards is, however, often lacking. This is due
to the data privacy and security issues and fraud behaviors,
where producers are reluctant to share data such as the use
of synthetic chemicals in the food production process for
ensuring food safety and quality. Therefore, considerable
attention has been expended on the urgency of restructuring
the existing mechanisms that enable practices to be more
transparent, auditable, secure, and traceable for the food
supply chain with increasing contribution from as many as
possible stakeholders such as producers, policymakers, and
government bodies.

The contribution of this study is, therefore, to explore
how IoNT, IoT, and BC can be integrated to develop a DMS
based on an application that detects the level of chemical
usage in farmlands. The use of different chemicals such
as synthetic fertilizers (e.g., Nitrogen (N), Phosphorus (P),
and Potassium (K)) and both herbicides and pesticides in
SF is a common practice to maintain optimal soil quality,
increase the yield and quality of crop and vegetables, con-
trol pest attacks and prevalence of diseases, and produce
high-quality pasture. Today, a number of agricultural prac-
tices do not achieve these goals mainly due to the use of

chemicals with insufficient monitoring and requirements.
Consequently, these practices bring critical challenges such
as farmlands becoming more vulnerable to depletion in soil
fertility, reduced productivity, and potential residues. There-
fore, having a mechanism to detect the soil fertility (i.e.,
soil available nutrient content) and then applying necessary
fertilizers and other chemicals based on its need, is crucially
important for maintaining optimal soil fertility for sustain-
able intensification of farm production. Therefore, the BC-
based approach summarized below is the methodology we
propose for identifying the chemical levels (or usage) in
farmlands. It will not only be used for detecting chemical
level but also used to make a platform for strengthening
trust between producers and customers through chemical
usage data that are available to customers as a color token.
In addition, we introduce a token-based credit system to en-
sure the credibility and traceability of farms being compliant
with chemical standards in their production processes.

a Explore the functionality and usability of affinity-
based nano-sensors for sensing the availability of
certain chemicals in soil.

b Incorporate data collected from IoNT sensors with
IoT devices and then using the Bayesian probability
updating approach for deriving insights regarding
the chemical levels in the farm or crop.

c Insights from step [b] are combined with the BC tech-
nology to demonstrate the effectiveness of the BC-
enabled approach for detecting the use of chemicals.

d Form a color token to represent chemical usage and
securely share it through the BC network.

The remainder of the paper is organized as follows.
Section 2 discusses related works and Section 3 explains the
system model. In Section 4, the system model described in
Section 3 is applied to simulated data to detect the level
of chemicals. Section 5 discusses an approach for ensuring
traceability and credibility of the proposed BC system, and
Section 6 concludes the paper.

2 RELATED WORK

This section first discusses IoNT and IoT networks, and
then emphasizes the significance of incorporating the BC
with these networks in various applications. Second, the
BC mechanism and its various applications are explored.
Finally, the significance of the present study is discussed
with respect to the already existing solutions.

2.1 IoNT and IoT based networks
A nano-network is formed by interconnecting a large num-
ber of miniature-size IoNT devices. In such networks, data
sensed by nano-sensors are aggregated at nano-routers to
send to nano-micro interfaces which can consolidate such
data and then communicate with both the nano- and macro-
scale devices (IoT). Communications in such networks are
mostly performed by molecular and electromagnetic com-
munication methods which respectively communicates be-
tween IoNT and nano- and macro-scale devices [1]. Since
these IoNT devices can, however, perform limited tasks due
to limited resources, they are usually operated in integra-
tion with IoT-devices. Therefore, IoNT integrated with IoT
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improve the potential of enhancing, and also scaling up, the
services of existing systems such as controlled delivery of
drugs.

Currently, such integrated networks based DMSs mostly
operate under Cloud-computing paradigm [3]. Extended la-
tency, network congestion, and safety of data are some of the
critical problems that limit the use of this computing method
in many applications. Alternatively, distributed computing
approaches based DMSs like Fog- and Edge-enabled sys-
tems coupled with state-of-the-art ML techniques such as
federated learning and deep learning have been proposed.
Such systems can effectively overcome those issues while
ensuring data privacy and security, thus enhancing the
reliability and timeliness of outcomes [4].

However, trustability, integrity, and functional incompat-
ibility are some of the most important factors which hamper
the interoperability of such advanced computing systems,
technologies, and devices. Consequently, those computing
systems operate in isolation and are poorly scalable, so that
their full potential, as well as the collected data, are signifi-
cantly under-utilized. Therefore, the urgency of developing
alternatives to handle these issues has gained considerable
attention from the wider research community. A number of
recent studies such as [5], [6], [7] have emphasized that BC
and IoT are growing together and codependent, so that they
have a greater potential of overcoming such issues.

2.2 Block Chain(BC)

The distributed ledger technology (DLT) is a fully decentral-
ized peer-to-peer (P2P) method used for recording transac-
tions (i.e., data) in an immutable ledger, with the mechanism
for processing, validating, authorizing transactions. Block
chain (BC) is an application of DLT for securely storing
data and also known as ’internet of value’ [7]. BC generally
consists of three components; blocks containing transaction
data, a P2P network for direct communication, and a shared
ledger for distributed data storage. Each block contains data
with a hash value (a unique identification key) and a pointer
to the hash of the previous block. A consensus algorithm
is used for creating a new block and then appending it
to the ledger. The Proof-of-Work (PoW) mechanism is the
most commonly used consensus algorithm [2], [8]. In PoW,
a hash key is allocated to a block through a mathematical
puzzle, which is hard to solve, but easy to verify. Deriving
a unique hash key is a computationally heavy task so that
nodes which have sufficient resources are used for that and
known as mining nodes.

Today, different versions as well as types of BCs are
available for various applications. The study [8] stated two
versions of BC as BC.01 and BC.02, which uses cryptocur-
rency and smart contracts (explain later), respectively. There
are mainly three types of BC termed consortium-, private-
, and public-BC [7]. While the consortium-BC is a group
of BCs which has a set of members who can control the
BC [9], a trusted central entity controls the private BC
and termed permissioned BC [10]. The public-BC is called
permissionless BC because there is nobody to control it and
also anybody can join (or leave) the BC network at any time.
Selection of the most suitable BC depends on the application
requirements though the study [8] emphasized that there

are unique properties such as irreversibility, traceability,
anonymity, security and transparency that enable the use
of BC in a vast range of applications. Some of their most
prominent applications are intelligent management [11],
smart transportation [12], agriculture [5], and healthcare
[13].

2.3 Integration of IoT with BC

Many attempts have been made to incorporate BC tech-
nology with IoT-based systems. The intention of forming
such integrated systems can be mainly seen under three
categories: overcoming the issues in existing IoT-based plat-
forms, optimizing the resources for efficient BC operations,
and testing usability and improving the reliability of DMSs
in different applications.

Considering the studies conducted to overcome the
issues of the existing IoT-based platforms, the study [4]
proposed a BC-enabled federated learning (BlockFL) method
to overcome general issues in federated learning-based dis-
tributed ML systems such as single point failure. This study
also investigated end-to-end learning competition aiming to
find optimal block generation rate. Meanwhile, an analytical
model proposed in [14] discussed the optimal deployment
of full functional BC nodes for a BC-enabled wireless IoT
system, minimizing data security issues. Finding sufficient
resources for employing BC-powered IoT systems is a crit-
ical challenge that has been taken into a broader consid-
eration. Data management and access control methods for
BC-enable IoT systems given in [15] explained how time-
series data could be stored at the edge of the IoT network for
effective processing. The study [16], for instance, proposed
an auction-based resource allocation method in connection
with Cloud/Fog computing while a BC-based big data-
sharing platform for resource-limited edges was developed
in [17] by considering the challenges in deploying BC in
edge devices. With regards to enhancing the performance
of BC systems, BC-enabled edge computing approach was
proposed in [10], aiming to ensure data privacy and energy
security for power smart grid network. The work presented
in [9] also explains how to manage power for plug-in electric
vehicles in smart grids. Moreover, consortium BCs have
been widely used for enhancing BC performance. The study
[13] discussed a consortium BC-based mechanism for im-
proving the accuracy and effectiveness of disease diagnosis
in health-care.

However, some studies warned that these integrated
systems could have unfavorable responses. The study [7],
for instance, warned that this integration could also create
unnecessary computational overhead and may not generate
any tangible benefits. Therefore, [11] and [7] recommended
to conduct an initial case study to make sure that integration
with BC is necessary, proposing a checklist to conduct such
a feasibility study.

The evidence alresdy provided, however, emphasizes
the significance of BC-powered IoT systems, highlighting
the performance of the existing IoT systems which can be
empowered with improved scalability. On the other hand,
it is already proven that IoNT can contribute to improving
the performance of the IoT-based systems. However, there
is no evidence that any attempt has been made so far to
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Fig. 1: Overall architecture of the system model and a sample BC for five transactions.

integrate IoNT into BC-powered IoT systems. Therefore, this
study aims to fill that gap by exploring how IoNT and IoT
network can be powered by BC mechanism. The next section
presents a system model to explain how IoNT can be used
in BC-powered IoT system.

3 SYSTEM MODEL

The system model presented in this section is an integration
of the functionalities of four components which includes:
IoNT sensors, IoT devices (gateways-TN), miners (FN), and
the BC network. Figure 1 illustrates the system model archi-
tecture, including IoNT sensor and an example BC network.
The IoNT sensors are connected to each gateway, and it is
assumed that IoT devices are connected with each other as
well as with the FNs. The functionality of each component
in the system is explained in the following subsections.

3.1 Affinity-based IoNT sensors)

Among the different types of IoNT sensors, affinity-based
electrical bio-sensors are the most commonly used type for
monitoring the presence of a specific chemical in a medium.
The selective binding between molecules in a chemical
sample and target analytes is the primary mechanism used
for detecting the presence of that chemical [1]. The role of the
affinity-based nano-sensors is, therefore, to facilitate binding
target analytes with bio-molecules (known as receptors),
which are functionalized on the nano-sensor surface. As a
result, the sensor generates a signal reflecting the abundance
of target analytes as a variation in the voltage. Based on the
affinity sensor illustrated in Figure 1, when target analytes
bind with the receptors, the following sequence of operation
occurs:

1. The recognition unit selectively detects the target
analytes.

2. The transducer converts the recognized events to
processable signals in the form of electrical pulses.

3. The processing unit extracts the insights encoded in
the signal.

The next section explains the procedure for deriving in-
sights, which is the analyte concentration from the sensor
signal.

3.1.1 Deriving analyte concentration through affinity-based
nano-sensors signal

The Langmuir model [18], which explains a simple 1 : 1
interaction between two molecules, is used to describe the
functionality of the affinity sensor. The model assumes that
all binding sites are equivalent and independent. When the
binding interaction occurs between an analyte A (i.e., target
molecule) and a receptor molecule B, it forms a chemical
complex C with a ka binding association rate and disasso-
ciating rate kd. The chemical reaction between A and B is
represented as A + B 
 C . Since the number of receptors
([B]) is fixed on the sensor surface, the concentration of A is
proportional to [C]. This means that a change in the sensor
signal (R) is proportional to the concentration of C and,
therefore, the concentration of A. In the present study, R is
computed in response units (RU ), assuming [B] = Bmax
is fixed [19]. The procedure for deriving the formula for
extracting information about the analyte concentration (i.e.
[A]) is explained below in four steps.

1. Considering the first order kinetics of the chemical
reaction between A and B, the rate of change in [C]
and [A] can be written as follows;

d [C]

dt
= ka [A] [B]− kd [C] association, (1)

d [A]

dt
= −ka [A]− kd [C] disassociation, (2)

where ka and kd are the association and disassocia-
tion rates, respectively.
As R ∝ [C], the maximum R, Rmax ∝ Bmax at
any time t, will result in free receptor concentration
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[B] = Bmax − [C], i.e., R ∝ Rmax − Ra. Therefore,
the equations can be re-written as:

dRa
dt

= ka [A] (Rmax −Ra)− kdRa, (3)

dRd
dt

= [A]− kdRd. (4)

2. The expressions for sensor response R in the asso-
ciation and disassociation phases ( Ra and Rd) are
derived by analytically solving the two differential
equations 3 and 4 ( note: [A] = 0 in the disassociation
phase ).

Ra =
ka [A]Rmax
(ka [A] + kd)

(
1− e−t(ka[A]+kd)

)
, (5)

Rd = Rd0e
−kdt, (6)

where Rd0 is the level of signal at the end of the
association.

3. When A+B 
 C reaches its equilibrium state, Ra is
at its maximum (say Req). Therefore, Req is derived
from 5 as:

Req = Rmax
[A]

[A] + kD
, (7)

where kD = kd
ka

is the affinity constant.
4. The response factor (RF ), which represents Req rel-

ative to Rmax, is computed as:

RF =
Req
Rmax

=
[A]

[A] + kD
, (8)

where kD = [A] and RF = 0.5. This means 50%
of receptors (i.e.,B molecules) are occupied by A
molecules at the equilibrium stage. This reaches
100% when the sensor becomes saturated.

To fit a response curve (i.e., RF model), the RF formula
(8) is used for computing RF values for a range of [A]
values. The RF model represents the relationship between
RF and [A] and enables identification of the sensor response
region where a significant change in RF can be obtained in
response to the change in [A]. Also, this model can be used
to derive the [A] corresponding to any RF value. Finally,
this RF value is sent to a gateway node to which the nano-
sensor is connected to. Algorithm 1 presents the process of
computing RF for a given [A]. A detailed discussion about
deriving the RF model can be found in [18] and [20].

3.2 IoT Sensor Node
In the present study, it is assumed that there is one gateway
per farm as illustrated in Figure 1. The gateway processes
data transmitted from nano-sensors within its range which
it sends to the mining nodes, while also storing information
from other mining nodes on the level of chemicals within
the region.

3.2.1 Data Processing Operation
The chemical-detecting indexes such as N, K, and P have
been defined as classes that consists of ranges. For example,
the recommendation for P and K indexes are between 3 and
4 in order to maintain optimum soil fertility level 1. Our

1https://www.teagasc.ie/crops/soil--soil-fertility/soil-analysis/

Algorithm 1: Nano-sensor Response Factor (RF )

Input : ka, kd, Rmax, & [A]
Output: RF

1 Initialization for the association phase ;
R(a,t=0) = ε, t = 0, and εR = 1× 10−5

2 while ε ≥ εR do
3 Ra,t = Ra(t, ka, kd, [A])
4 ε = |Ra,t −Ra,t−1|
5 t = t+ 1
6 end

7 Initialization for the disassociation phase ;
Rd,t = Ra,t, t = t,

8 while ε ≥ εR do
9 Rd,t = Rd(t, kd)

10 ε = |Rd,t −Rd,t−1|
11 t = t+ 1
12 end
13 RF = Max{Ra,t, Rd,t}/Rmax

TABLE 1: Response Classes (RC)

RF (%) <20 20-40 40-60 60-80 >80
RC A B C D E

TABLE 2: One-way response class (RC) frequency (fA =∑N
i=1 fA,i)

RC
Node 1 2 · · · N Total

A fA,1 fA,2 · · · fA,N fA
...

...
...

. . .
...

...
E fE,1 fE,2 · · · fE,N fE

study categorizes RF data collected by each gateway node
from its nano-sensors into five classes termed Response
Classes (RCs). RCs are defined by dividing the sensor’s RF
range (i.e., 0-100%) into five non-overlapping regions, as
presented in Table 1. Therefore, they correspond to the fixed
ranges of [A] in the sensor active region. This is followed by
computing the frequency of the five RCs in each gateway us-
ing the RF values gathered over a period of time, resulting
in Table 2. This table is referred to as a one-way frequency
table as it enables the derivation of conditional one-way
relative frequency (i.e., marginal probability) by dividing
each row by its sum of row frequency values. The relative
frequency values are called conditional probabilities. That
is, for instance, P (1|A) = fA1/fA is the probability of the
gateway node-1 being in the response class A. Algorithm
2 summarizes the process of computing the relative fre-
quencies for period t. We are, however, interested in the
probability of a selected gateway being in a particular RC
(i.e., P (A|1)- inverted value of P (1|A)). Therefore, these
conditional probabilities are fed into the Bayesian updating
method explained in the next section to compute those
probabilities.

3.2.2 Sequential Bayesian Updating
In this section, Bayesian theory is briefly introduced and
then the Sequential Bayesian Updating (SBU) method is
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Algorithm 2: Computing P (TNID|Θ)

Input : TNIDs and # of nano-sensors (K)
Output: P (TNID|Θ)

1 foreach i ∈ {N} do

2 foreach j ← 1 to K do
3 {RFj}i = Algorithm 1
4 end
5 [fi]5×1 ← assign RC labels to {Rf}i and calculate

their frequency
6 collect fis into F5×N
7 end
8 P (TNID|Θ) = Fi×N/

∑N
j=1 Fi,j for i = 1, · · · , 5

discussed for computing the probability distribution of any
selected gateway node (i.e., farm) being in the five RCs.

Bayesian theory is commonly used in statistical infer-
ences as it allows updating the inverted conditional prob-
ability based on the latest collected data/evidence. We as-
sume there areN gateway nodes and two random variables,
which are the selection of a gateway node (G) and a RC
(Θ). For each of these random variables, their sample spaces
are then G = {1, 2, · · · , N} and Θ = {RCs}. If a node
i ∈ G is selected, the probability of the selected node being
in the jth ∈ Θ RC is computed using the Bayes theory as
represented as follows:

P (j ∈ Θ|i ∈ G) =
P (i ∈ G|j ∈ Θ)P (Θ)

P (G)
, (9)

where P (Θ) is known as the prior probability distribution
function (PDF) and represents the strength of the belief of a
node being in the five RCs. The likelihood of the result given
the prior distribution is represented by P (i ∈ G|j ∈ Θ),
where P (G) is known as the evidence (or data) and com-
puted as

∑
∀j∈Θ P (i ∈ G|j ∈ Θ). Applying this formula

for all gateway nodes, the probability of each node being in
the five RCs [P (j|i)Ni=1]5j=1 can be computed to produce the
matrix P (Θ|G)5×N . This matrix is known as the posterior
PDF computed based on the set of RC frequency data
samples over a time period T .

In the SBU, when a new RC frequency data sample is
collected over the time period (T+1), the new posterior PDF
is computed by using P (Θ|G)5×N as the prior probability
matrix, as is represented as

P (Θ|G)(T+1) =
P (G|Θ)(T+1)P (Θ)(T )

P (G)(T+1)
, (10)

where P (Θ)(T ) =
[
Π

(T )
k=0P (G|Θ)k

]
P (Θ)0. Based on this,

the probability of the ith node being in the five RCs over the
time period (T + 1) can be computed as

P (Θ|i)(T+1) =
P (i|Θ)(T+1)P (Θ)(T )

P (i)(T+1)
,

where P (Θ)(T ) =
[
Π

(T )
k=1P (i|Θ)k

]
P (Θ)0.

The P (Θ|G) updating process will continue until there are
changes in the posterior PDF that reaches a certain thresh-
old. Algorithm 3 summarizes the SBU steps. The optimal

Algorithm 3: Computing the posterior probabilities
using SBU

Input : Algorithm 2 & P (Θ)T−1

Output: P (Θ|TNID)T and P (Θ)T

1 Initialization: ε = 1× 10−5

2 while d ≤ ε do
3 P (TNID|Θ)T ← execute Algorithm 2

/* relative frequency */
4 foreach i ∈ {TNID} do

/* Posterior Probability, PoS5×N
*/

5 Pi = fi ∗ pi, where fi ∈ [P (TNID|Θ)T ](5×i)
and pi ∈ [P (Θ)T ]5×i

6 if
∑
Pi == 0 then

7 PoSi = 0
8 else
9 PoSi = Pi/

∑
Pi

10 end
11 collect Pis into a matrix PoS5×N

/* Update Prior Probability, PrI5×N
*/

12 Indexes k of fi where fi == 0
13 if number of k > 0 then
14 Replace entries of Pi at k indexes by the

values of pi such that Pi[k] = pi[k]
15 end

16 collect Pis into a matrix PrI5×N
17 end
18 P (Θ|TNID)T = Pos and P (Θ)T = PrI
19 d =

∑ |P (Θ|TNID)T − P (Θ|TNID)T−1|
20 T = T + 1
21 end

number of updating steps required for detecting the level of
chemicals in a farm will be discussed in detail in the next
section.

3.3 Mining/Functional Nodes

It is assumed that mining nodes are trustable entities and
have the authority to control the BC. The mining nodes also
use the Joint Cloud service for performing block mining [21].
In the Joint Cloud service, the Cloud service providers may
consist of government bodies such as an Agricultural De-
partment Agency or authorized pharmaceutical companies.

3.3.1 Joint Cloud and incentive for mining

The use of IoT sensors in SF is a business model for sensor
Cloud. In this model, the Cloud provides IoT as a service
by collecting and aggregating IoT-sensor data. The Cloud
provider can place the sensors in the farms and collect the
sensor data for the regulators ( miners in the present study)
for verification and traceability. In this business model, the
farms will outsource the IoT data collection and report the
job to the IoT Cloud service. This IoT sensor as a service
model can be implemented using BCs following the two
steps given below.
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1. BC mining can be used as an incentive for proving
the IoT sensor service. For example, in a PoW-based
BC system, the IoT sensor service provider (i.e.,
miner) can gain benefits by collecting mint tokens
as it produces new blocks.

2. The IoT service is a geolocated service, where the
quality of service depends on the location of the sen-
sors and the cloud to reduce latency. The geolocated
property supports joint cloud system. In this system,
there will be multiple IoT cloud providers and they
collaborate to provide a chemical traceability service
for the regulators. In this interaction model between
the service providers, BCs are very useful as IoT
cloud providers that do not have trust between each
other.

The Clouds process the data from each farm (i.e., gate-
way) and offers certification through a colored token, which
represents the level of chemical used on the farm. They also
perform credit and tokens transactions between the farms
and the regulators to offer (or charge) a certain amount of
credits based on the quality of products and tracking the
traceability, respectively. We will first describe the process of
credit exchange and this will be followed by a description
on the full functionality of the mining process of each nodes.

3.3.2 Farm credits
Let us assume that CrT amount of credits is assigned by
a governmental agency or miners to each farm when it
joins the BC network at T = 0. For each mining step,
the credibility is computed following the three steps given
below.

1. Farmers are rewarded or penalized a certain amount
of credits for either complying or not complying with
the chemical standards.

2. A farm is compliant with the chemical standards if it
has a higher probability (i.e., at least of not being in
the class E (i.e., P (∼ E) ≥ .8),

3. The rate of change in the amount of remaining credits
after several mining steps represents the credibility.

For any farm, the amount of credits at the T th mining step
is computed as:

CrT =

{
CrT−1 − P(T,E)L+ P(T,∼E)M f(T,E) 6= f(T−1,E),

CrT−1 otherwise,
(11)

where, L = eαf(T,E) ,M = eαf(T,∼E) and f(T,E) is the
cumulative frequency of a farm being in the class E up to
the T th time step, P(T,E) is the posterior PDF of that farm
being in the class E at the T th mining step, and α ∈ R is a
constant and termed as the credibility tuning parameter.

The amount of credits reduced or reward will expo-
nentially increase if there is a change in the frequency
of the response class E. That is, if f(T,E) 6= f(T−1,E)),
then P(T,E)e

αf(T,E) amount of credits is reduced from the
available credits CrT−1 of farms which belong to the class
E, while the amount of credits is added to the farm for
not being in the class E is P(T,∼E)e

αf(T,∼E) . The amount of
credits remains the same (i.e., CrT = CrT−1) if there is no
change in frequency of being in the class E.

3.3.3 Block Chain Network
This section presents how the BC is incorporated with the
SBU, joint Cloud system, and the credit computing approach
for detecting the level of chemicals used on the farms. The
BC network employed here is a private BC. The gateway
nodes and the mining nodes in the BC network are termed
as the transaction nodes (TN) and functional nodes (FN),
respectively. The TNs collect data and send them to a
selected FN which aggregates the TNs’ data and mines two
blocks for the TN and FN networks (more details are given
below). Furthermore, data communicated between the TN
and FN networks are encrypted in order to protect data
privacy, security, and integrity.

The functionality of the BC network uses three steps;
data sharing, data processing and block mining, and BC
updating, and each of these steps are described as follows
(Algorithm 4 summarizes these steps).

1. Data sharing: Algorithm 2 is executed at each TN
for collecting RC frequency data samples for a period
of time T (this is termed as data stream). Each data
stream is then encrypted and access permissions
are granted by using the authenticated symmetric
encryption under the Advanced Encryption Standard
Galois Mode (AES-GCM)2 and using the Shared Se-
cret Key (SSk). The encrypted data streams are then
submitted to a selected FN, which is the miner.
The AES-GCM enables decryption of data by using
the same SSk key that is used for encrypting the
data. This encryption generates compressed data in
plain-text which contains a key value used for in-
tegrity protection and authentication at the decryp-
tion. Hence, any FN that contains the encrypted key
can verify the integrity of the encrypted data and
perform an authenticated decryption. Each TN will
share the encrypted data and the its Public Key (PK)
with a selected FN.
The PK and secret key (SK) for each TN is generated
using the Diffie-Hellman (D-H) key exchange service,
which facilitates the sharing of a common secret key
between two or more parties. The SSk at a TN is
generated by using its SK and PK of the FN through
the D-H service. This is one of the reliable techniques
for sharing data between unknown parties as the D-
H service avoids sending the SK away from its owner
while also allowing the owner to revoke sharing data
at any time 3.

2. Data processing and block mining: Prior to creating
a block at the FN, the data are processed as follows:

a. Data coming from a TN is decrypted through
the SSk generated using the FN’s SK and the
PK of the TN included in the data.

b. A ML task is executed as a smart contract to
derive insights about the level of a chemical
(this ML task if further described below).

c. By using the insights derived in the previous
step, a color token is generated to represent

2https://cryptography.io/en/latest/hazmat/primitives/aead/
3https://cryptography.io/en/latest/hazmat/primitives/

asymmetric/dh/
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Algorithm 4: Block mining
Input : parameters required for Algorithm 1,2, and 3, and Tw, α
Output: block

1 Initialization: Genesis block containing P (Θ)0 and Cr0

2 foreach T ∈ # of block mining steps do
/* select a FN and generate its SK and PK */

3

4 FNk ← select any id from {FNid}
5 SK(FN,k), PK(FN,k) ← D-H key exchange service

/* Extract the prior probability from the latest block */
6 if T = 0 then
7 P (Θ)T−1 ← from the genesis block
8 else
9 P (Θ)T−1 ← from the last block of the BC of the FNk’s ledger

10 end
/* Collecting and sharing data at TNs */

11

12 ∀i ∈ {TNid}Ni=1

13 SK(TN,i), PK(TN,i) ← D-H key exchange service
14 SSk(TN,i) ← D-H key service(SK(i), PK(FN,k)),
15 collect RC frequency {Fi}Tt=1w ← execute Algorithm 2,
16 ai,T ← AES-GCM encryption({Fi}Tt=1w, SSki),
17 FNk collects Data(i,T ) = [a(i,T ), PK(TN,i)].

/* Processing data and block mining at FN */
18 ∀i ∈ {TNid}Ni=1,
19 PK(TN,i) ← get from data(i, T ),
20 SSk(FN,ki) ← D-H key service(SK(FN,k), PK(TN,i)),
21 b(i,T ) ← AES-GCM decryption(a(i,T ), SSk(FN,ki)),
22 collectb(i,T )toFt.
23 P (Θ|TNID)T ← execute Algorithm 3

24 foreach i ∈ {TNid}Ni=1 do
25 Generate color token (CT(i,T )) ∈← [P (Θ|TNID)T ]5×i
26 Update [fT ](T,E)

27 Credits (Cr(i,T ))← Cr(i,T−1) +
[
P (Θ|i)(T,E)e

α[fi](T,E)

]
+
[
(1− P (Θ|i)(i,∼E))e

α[fi](T,∼E)

]

28 collect
[
CT(i,T ), Cr(i,T )

]
into Data(T )

/* mine TN block */
29 Data(i,T ) ← AES-GCM encryption(

[
CT(i,T ), Cr(i,T )

]
, SSk(FN,ki))

30 mine block for TN network adding [D(i,T ), PK(FN,k)]
31 end

/* mine FN block */
32 mine block for FN network adding [D(T )]

/* Updating ledgers */
33 ∀i ∈ {TNID} and ∀k ∈ {FNID}, update ledgers
34 tn ∈ TNID, SSktn ← keytn(PKFN )
35 end

the level of a chemical used. The color token
represents the variability in chemical levels
over a period of time T .

d. Based on the color token generated for each
farm, the amount of credits held by each farm
is updated.

Smart contract/ML task: The SBU updating process
presented in Algorithm 3 is executed to derive the
updated posterior PDF. Then for each TN, a color

token is derived from its posterior PDF. A color token
consists of five unique colors that correspond to the
five RCs. The region occupied by each color in the
color token is proportional to the probability of the
level of a chemical being in the five RCs (explained
in detail in the next section).
Since the TNs and FNs play two different roles in
this system, the information required to be stored in
the TN and FN networks is different. Therefore, two
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blocks are created for the FN and TN BC networks.
The block created for the FN network includes color
tokens and credit transactions of all TNs because
they are required to perform future block mining.
When creating a block for the TN network, the color
token and credit value of each TN are encrypted
together as they are sent away from the FN network.
The AES-GCM and H-D methods explained above
are used for the encryption. The new block is then
created, including the encrypted data and FN’s PK.
Finally, the FN block is added to the FN ledger while
the TN block is sent to at least one TN to add it to
the TN network. The PoW technique [2] is used for
validation of the new blocks and then adding blocks
into the BC ledgers.

3. Updating BC: After the TN’s and FN’s blocks are
added to their BCs, all FNs and TNs update their
ledgers accordingly. Any TN can derive the SSk by
using its SK and FN’s PK that is contained in the
BC, which is also used for decrypting the data to
have up-to-date information about the current level
of chemicals used on the farm. Similarly, any FN
can be a future miner as all necessary information
required to perform a new mining task is contained
in their BC. At the moment, the miner is selected
randomly.

3.4 Performance metrics
Two performance metrics, Mean Squared Error (MSE) and
Accuracy (AC), are used for assessing the performance of
the BC-IoNT system. While MSE is used as the performance
measure to decide how accurately the proposed BC system
can detect the level of chemicals, the AC is the percentage
of the number of TNs which the RC has identified correctly.
These two metrics are computed as follows:

MSE =

∑N
i=1(yi − ŷi)2

N
,

AC =

∑N
i=1 fi
N

× 100, fi = 1 iff |yi − ŷi| = 0,

where y and ŷ stand for the actual and the predicted RC of
which TN belongs to, respectively, and N is the number of
TNs (i.e., farms).

4 RESULTS

This section will evaluate the use of the proposed BC
system for detecting the levels of chemicals in farmlands.
First, experimental setups used for simulations are briefly
explained. Next, the process of computing the RF values
from the nano-sensor signals is discussed. The variability
in the probability of each farm categorized in the five RCs
is explained as the third step, and this is followed by dis-
cussion on selecting the optimal parameters for generating
color tokens effectively. Finally, the color token is used to
represent the levels of chemicals.

4.1 Experimental setups
It is assumed that the area covered by each gateway (TN) is
the same and corresponds to a farm. However, in reality,

TABLE 3: Simulation Parameters

Parameter Value
Association rate (ka) 10−2(MS−1)
Disassociation rate (kd) 10−3(S−1)
Receptor concentration (Rmax) 100 (Ru)
Number of Farms (N ) 40
gateways (node) per field 1
Nano-sensors per node (K) 100
Analyte concentration ([A]) [U(0, 50)]1×N

Prior probability ([P (Θ)0](5×1)) [0.2](1×5)

IoNT signal threshold (ε) 10−5

Initial credits (Cr0) 100

a farm could contain a collection of such devices. The
experimental procedure is as follows:

1. We assume that a chemical A is applied over the set
of farms at different concentrations and this range
is presented as U(0, 50). The reason for selecting this
range is based on the ka and kd values and explained
in detail in section 4.2. The distribution of [A] on
each farm was also varied by using the Gaussian
distribution in response to different field conditions.

2. For a given period (T ), the TNs collect a set of RC
frequency data samples and then pass this to the FN,
where a smart contract is executed to detect the levels
of chemicals on the farms (i.e., [A]). The optimal
number of RC frequency data samples required for
deriving the level of chemicals in each farm with
p ≤ 0.001 accuracy is discussed later.

3. The last step is to perform credit transactions for each
farm where two blocks are created.

These three steps are repeated for each application of
chemicals. All studies were based on simulated data gener-
ated by using the parameters presented in Table 3. In the
simulation, these parameters are used, unless mentioned
otherwise based on the evaluation.

4.2 IoNT sensor response and response factor
Algorithm 1 was executed for different [A] values to study
the variability in the sensor response (R) over time. Figure
2a presents the variability in the R for different [A] values.
With increasing [A], the maximum R increases, while the
time taken to achieve the maximumR reduces. In particular,
when [A] = 10M (i.e., kD = [A]), the maximum sensor
response is 50% and thus, it proves the theoretical fact men-
tioned in 8, which states that kD = [A], the Rmax = 50%
(i.e., half of the receptors are occupied by the molecules of
A).

Obtaining information on the sensor active regions is
important as it provides prior insights about the sensor
capabilities. Hence, the sensor active regions was derived
using two steps; (1) RF values were derived for a set of
[A] values in the range [10−2, 103] and then randomized by
adding N (0, 1) error terms, and (2) a non-linear regression
model was fitted to the RF values as the theoretical RF
model in (8) is a non-linear function. The fitted RF model
in Figure 2b indicates that the RF indicates a significant
change in response to the change in [A] within the range
10−1 ≤ [A] ≤ 102. Therefore, this range was selected as
the sensor active region and used to set up experiments for
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(a) (b) (c)
Fig. 2: Nano-sensor response, (a) for different [A] values, (b) for a range of [A] values (i.e., response Factor model), and (c)
frequency of RCs over a period of time.

(a) (b)

Fig. 3: Sequential Bayesian updating outcomes (i.e., proba-
bility) for detecting level of A, (a) when [A] varied over the
range [0, 50] , where [A] = 0 means 0 < [A] < 1 and (b)
deviation from the class C .

executing the proposed BC system. As shown in Figure 2b,
the concentration ranges covered by the RCs from A to E
are increasing. Hence, the average maximum level of [A]
was set as 50M , aiming to obtain a fair distribution of RCs
over the farms. Otherwise, the distribution of the RC could
be concentrated towards the RCs corresponding to higher
RCs (e. g., D and E) for the wider range of [A].

4.2.1 Response Class Frequency

To illustrate the variability in the RC frequency data col-
lected in Table 2, Algorithm 2 was executed at TNs for
a period of time. Figure 2c shows the RC frequency dis-
tributions derived by using the kernel density estimation
technique for ten TNs. The five peaks from left to right in
each graph corresponds to the RCs from A to E. Based on
the height of the peaks, the RC of each farm can be deter-
mined. However, the RC frequency distribution is a static
measure and the level of chemicals could variy dynamically
due to the influence of several time-variant factors such as
land usage, weather, and prior chemical usage. Therefore,
using only the RC frequency distribution is not sufficient
enough to describe the availability of a certain chemical that
has been used. Here, the next section discusses how the
current and prior level of a chemical can be incorporated
for dynamically updating the current levels of a chemical
by using the SBU approach integrated with BC technology.

4.3 Probability of deviation from the optimal response
class

This section first discusses the variability in the probability
of the chemical levels on the farms and its position in the
five RCs. This is achieved by randomly varying [A] over the
range [0, 50] and then the probability of deviation from the
optimal RC. The optimal RC was selected as the class C . In
reality, this could be any of the RCs based on the application
requirements.

To compute the posterior PDF, the SBU method in Algo-
rithm 3 was executed for several iterations, assuming that
initially the level of a chemical in every farm has an equal
chance of being in any of the five RCs (i.e., P (Θ) = [0.2]1×5).
Figure 3a, for instance, illustrates the variability in poste-
rior PDF of [A] in six farms that are within the five RCs
with increasing [A] for 15 probability updating steps. The
probability of [A] in farms being in the D and E RCs is
greater for larger values of [A] (at least ≥ 15), but when
[A] is below or around the equilibrium concentration (i.e.,
[A] = 10M ), the farms belong to the A,B, and C RCs.
Similarly, the same procedure was repeated for a number
of iterations by taking into account the variability in [A]
of forty farms and computing the probability of deviation
from the class C as the probability of not being in D in
each updating step. Figure 3b shows that the deviation in
probability reduces with increasing updating steps. Thus, by
performing several probability updating steps, it can easily
be recognized to which RC a selected farms chemical level
is converging, thereby identifying the farms which are not
compliant with the optimal chemical standards.

However, this convergence rate varies depending on
various factors. Two of the most important factors are vari-
ability in [A] within as well as among other farms and the
affinity constant kD. To illustrate their impact, the variability
in the convergence rate of posterior PDF was explored for
different variability levels in [A] as well as a set of kD values.
The outcomes for this analysis are presented in Figure
4. The convergence rate was faster for smaller variability
levels in [A] within farms as well as smaller kD values (i.e.,
larger association rates). Therefore, these outcomes unveil
the criticality of deciding the optimal number of probability
updating steps required for precisely deriving the RC of
each farm.
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(a) (b)

Fig. 4: The convergence of probability of deviation from the
class C for different, (a) variability in levels of [A] and (b)
kD values.

4.4 Optimal probability updating steps (sample fre-
quency)
This section discusses selection of the optimal number of
probability updating steps. That is, the number of samples
(say Sopt) that each TN is required to send to FN based
on the variability in [A] within, as well as among other
farms, and this includes the optimal sample frequency (i.
e., optimal value T value termed as the time-window size
(Tw)).

According to Figure 2a, the time taken to reach the max-
imum response varies with the variability in [A]. Waiting
until all nano-sensor nodes reach their maximum response
to collect sensor responses could create extended latency in
detecting the level of [A]. This issue can be mitigated by
collecting sensor responses within a fixed period of time
(i.e., Tw). However, too small a value of Tw increases the
Sopt, while larger Tw values extends the time for collecting
RC frequency samples. Therefore, the derivation of optimal
values for Tw and Sopt was conducted in two steps as
follows:

1. Assuming that the variability in [A] within farms is
fixed (say σ = 1), the inter-farm variability in [A] is
fixed in step [a] and varied in step [b], respectively.

a. When Tw is fixed to 50, to illustrate how
precisely the system can detect the level of [A],
the behavior of MSE in detecting the RC of a
set of farms was explored while varying inter-
farm [A] over the range [20, 50]. Figure 5a illus-
trates that the MSE reduces with the increasing
number of samples. Under these settings, at
least 12 samples are required (Sopt = 12) to
detect the RC with p ≤ 0.001 accuracy.

b. Figure 5b exhibits the Sopt required for de-
tecting the RC with increasing Tw size and
decreasing inter-farm quantity of [A]. It can
be seen that Sopt is decreasing while increas-
ing Tw and decreasing inter-farm variability
range of [A]. Therefore, this outcome confirms
that when the Tw is large enough and variabil-
ity in the inter-farm quantity of [A] is less, the
level of [A] in a farm can be decided effectively
with a fewer samples (or updating steps). This
means that the convergence is faster.

2. When [A] is varied within as well as among other
farms, Figure 6 exhibits the behavior of the MSE and

(a) (b)

Fig. 5: Selecting optimal number of samples required for
detecting the level of [A], (a) based on the variability in MSE
and (b) with the increasing Tw and range of inter-farm [A].

Sopt with intra-farm variability in [A] (denoted as [A]
variance) and Tw size. Although the MSE becomes
smaller with decreasing variance in [A] regardless
of the Tw size (Figure 6a), the corresponding Sopt
is higher for smaller Tws (Figure 6b). Furthermore,
Figure 6c depicts that the optimal Tw size and Sopt
become higher with larger inter-farm as well as on
a specific farm variance in [A]. This means that
the time taken to detect [A]-level with p ≤ 0.001
accuracy is longer.

Therefore, Figure 5 and 6 reveal that if the system takes
longer period at a slow convergence rate for detecting the
levels of chemicals, it is an early indication that the vari-
ability in the level of that chemical is higher within and/or
among farms which are connected through the BC system.

4.5 Color Tokens and BC System Performance
We assume in this analysis a chemicalAwas applied several
times at a value of ten over forty farms. The average [A]
applied over the farms varied randomly within the range
[0, 50]. Since the average [A] over each farm could vary due
to the variability in field conditions such as land usage, it
was assumed that the amount of this variability randomly
changes over the range [0, 5] (i.e., variability in [A] over
a farm is the average [A] ± p, where p ± U(0, 5)). Values
for Tw and Sopt were selected as 50 and 15, respectively,
because under similar experimental settings, the previous
section showed that with these values, the level of [A] can
be detected effectively with p ≤ 0.001 accuracy.

At each application of A, Algorithm 4 was executed
to derive the probability of [A] in each farm belonging in
the five RCs. The probability values were then converted
into a color token. For instance, Figure 7a and 7b illustrate,
respectively, the total amount of chemicals used and the
corresponding color token created for ten selected farms.
The color token corresponding to the farms B and C, which
have used a higher level of chemicals, indicates greater
probability (> 80%) of being in the RCs D and E. On the
other hand, farms which have used least, for instance, G, H,
and I, are mostly limited to the RCs A and B. Therefore, the
color token is a good indicator to represent the levels of the
chemicals in the farm.

In addition, the accuracy of detecting the RCs of all
farms was also computed by using the proposed BC-IoNT
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(a) (b) (c)
Fig. 6: Deciding the optimal number of SBU steps (Sopt) based on, (a) MSE with variability in [A] and Tw, (b) variability in
[A] and Tw, and (c) MSE with variability in [A]; top - [0, 50], middle - [25− 50], and bottom - [40− 50].

(a) (b) (c)

Fig. 7: Color tokens corresponding to the level of [A]; concentration of A (a) and the corresponding color tokens (b), and
accuracy of detecting RCs for forty farms (c).

system and the centralized approach. Figure 7c shows that
the proposed system achieves higher accuracy than the cen-
tralized approach. That is because the centralized approach
independently decides the RC of each farm without taking
into account the prior chemical usage at each step. On the
other hand, the BC-IoNT uses information in the previous
block for creating the current block to represent the chemical
concentration status.

Moreover, stakeholders in the supply chain such as
policy makers and government bodies may be interested
in looking at the overall status of the level of chemicals
rather than individual farms. That is because it could enable
them to make an overall image of chemical usage and to
generate alarming alerts. It will also help to identify whether
there is any impact from external factors such as weather on
varying chemical levels in the soil, even though the farmers
may claim that a proper amount of chemical has been used.
Therefore, to get an overall view on the level of chemicals
over the area covered by the BC network, the change in the
color tokens over time was explored. Figure8, for instance,
depicts the color tokens obtained after ten chemical appli-
cations, including the corresponding cumulative sum of the
chemical used in all forty farms. Similar to Figure 7, the
probability of the overall status of the chemical level being
in the RCs D and E is higher with the higher cumulative
value of [A].

(a) (b)
Fig. 8: Color tokens corresponding to overall variability in
[A], (a) level of A and (b) color tokens.

5 DISCUSSION

In this section, based on the credit transactions between
farmers and the miners, traceability of the use of chemicals
is first discussed. Secondly, the credibility of each farm is
explored to interpret how well farms are being compliant
with chemical standards in the production process, followed
by the advantages of the proposed system.

5.1 Traceability of the BC system
The proposed system can be used for ensuring traceability
in farm produce. The traceability problems in this case are
as (1) traceability in the amount of chemicals detected in a
single farm, (2) traceability in the total amount of chemicals
used on a farm, and (3) authenticity in the chemicals used on
a single farm authentic, and is approved by the regulators.
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Fig. 9: Traceability assessment process.

Our proposed BC-IoNT system can be used to solve
these traceability problems as follows:

1. A farmer gets a fixed number of tokens with every
purchase of chemicals from a company. These tokens
can be given to the company, along with serial num-
bers to be used in the serialization of a standard unit
of chemical. For example, for 1Kg bag of chemicals
the company gets an unique serial number and a set
of tokens (e.g., say 1000 tokens). After receiving the
bags of chemicals and tokens in exchange for another
fiat currency 4, leading to the farmer initiating two
parallel traceability processes (Figure 9):

a. In the first process, the farmer uses the chem-
icals as required in their farm. The sensor
detects the levels of chemicals and creates a
transaction from the farmer’s account to the
regulator’s account to record the levels of
chemicals detected.

b. In the second process, the farmer decides the
quantity of chemicals to be use in a day and
makes a transaction from their account to a
regulator’s account with the amount corre-
sponding to amount of chemicals that will be
used. For example, if the farmer wants to use
1/10 of a bag of chemicals, this will result in
transfer of 100 tokens.

c. A smart contract is executed by the regulators
to check if the difference between the amount
of tokens in these two processes is within a
threshold. The threshold is calculated as per
the expected accuracy of sensors.

2. This traceability approach can solve the above men-
tioned traceability problems:

1. The level of chemicals on a farm can be traced
by recording the area of farm from which the
item is procured. This procedure will require
labeling units of farms, associating each unit of
farm with sensors and each farm produce with
a set of nearby sensors or the unit of farmland.

2. If the difference in the amount of tokens in
both the traceability process is within a thresh-
old, then it will certify that all chemicals used
by the farm is traceable.

3. If the difference in the amount of tokens in
both traceability processes is within a thresh-
old, then it will certify that all chemicals used

4a kind of national currency that has no intrinsic value and the
value depends on the currency issuer such as country’s central bank

(a) (b)

Fig. 10: Traceability evaluation, (a) amount of credits trans-
ferred corresponding to RCs and (b) traceability with the
variability in [A].

by the farm is authentic. This is because the
regulator supplies the tokens.

Similar to the credit model explained in section 3.3.2, the
amount of tokens transferred to the regulator (i.e., mining
node) corresponding to the five RCs was exponentially
increased as eαi, where α = 0.05 and i = 1, 2, · · · , 5
corresponds to the RCs A,B · · · , E. That is because the
concentration ranges corresponding to the RCs from A to
E increases exponentially (Figure 2c). Figure 11 exhibits the
amount of tokens transferred corresponding to the five RCs.
By considering Figure 10a and 2c (i.e., RF with [A]) to-
gether, the amount of tokens required for different chemical
levels can be decided effectively.

The amount of tokens that each farmer required to send
to the regulator was computed based on the RC detected
by using his color token. Also, each farmer computed the
amounts of tokens based on the level of chemicals used
over the farm. The difference between the amount of tokens
from these two approaches was computed for forty farms
for 15 chemical applications (i.e., mining steps). At each
step, the number of farms that achieved the difference in the
amount of tokens less than 10−3 was computed. This token
difference could, however, be affected due to the variability
in [A] ( σ) and consequently, traceability can be varied
substantially. Therefore, the impact of variability in [A] on
the traceability was also explored. Figure 10b exhibits the
traceability obtained for four different values of σ. For each
σ, the system achieved at least ≥ 98% traceability though
the number of mining steps required for achieving such a
higher traceability is increasing with increasing σ value.

5.2 Credibility of farms

Assuming that initially every farm has 500 credits (i.e.,
Cr0 = 500) and α = 0.05, we explored the variability in
credibility of each farm by computing the credits of each
farm for T = 1, · · · , 100. Figure 11 depicts the variability
in the Cr for selected four farms out of forty farms with
their frequency of being in the RCs D and E, respectively.
The credits earning rate (i.e., steepness of the plots) is high
when the frequency of being in the RCs D and E is less.
This is because farms earn credits compared to the amount
they spend when they are compliant with the chemical
standards. Thus, the steepness of the credit curve is an
indicator of the credibility. Besides, Figure 11 exhibits the
variability in overall credits of forty farms. This helps to
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Fig. 11: Variability in credits for selected farms IDs (top) and
overall credits (bottom).

Fig. 12: Change of overall credits with tuning parameter α.

obtain a comparable idea about the variability in credibility
of a set of farms and also to identify, for instance, the least
credible farms easily, and they notify them to manage the
use of chemicals.

The steepness could, however, be varied with the turning
parametr α. To understand the impact of α, the amount
of credits held by the set of forty farms was computed for
three different values of α. Figure 12 exhibits the behavior of
average credits of all forty farms with the average frequency
of those farms being in the response class E. The steepness
of the credit curve increases with increasing α. Thus, the
credibility of farms can be changed by varying α.

5.3 Benefits of BC-IoNT
This system can be used for effective application of fertiliz-
ers. When applying different fertilizers based on their needs,
variable-rate fertilization (VF) is one of the recommended
and commonly used methods in Smart Farming. The VF
method allows optimizing the soil available nutrient levels,
ensuring sustainable productivity. It is critically important
to have timely accurate information about the soil available
nutrient contents in order to use the VF method, though
factors such as spatial heterogeneity will limit obtaining this
information effectively [22]. In this regard, the VF method
combined with the BC-IoNT system will be a promising
method to set up an effective fertilization strategy as the BC-
IoNT system can be used to detect the soil nutrient content
based on molecular-level data.

The proposed system can also contribute to improving
the performance of the food supply chain. Consumers are
more conscious about the quality and safety of food due
to the lack of transparency in the food supply chain. As a
viable solution, the color token generated in the BC-IoNT

system can be use used as a reliable indicator (e.g., certifi-
cate) to represent the quality of food with respect to the use
of chemicals in the food production process (e.g., identifying
organic vegetables). At the same time, authorized parties,
such as the FNs in the BC system, can assess the variability
in the credibility of farms being compliant with chemical
standards and send early warning alerts to producers to
maintain an optimal chemical level. This could contribute
to reducing farm input, for instance, expenditure on fer-
tilizers and environmental impact. Therefore, the proposed
approach has potential in empowering the validity of such
essential features of the food supply.

6 CONCLUSION

This study focused on incorporating IoNT into BC systems
to develop a distributed decision-making BC-IoNT for de-
tecting the level of chemicals used in farms. The Lang-
muir molecular binding model and the Bayesian probability
updating method based ML model was used as a smart
contract in the system, which can effectively detect the levels
of chemicals. This information can then be shared as a color
token over the BC network. The data analysis confirmed
that BC-IoNT system detected the level of chemicals in
farms with higher accuracy than the centralized approach.
The study concluded further that the efficiency of detecting
the levels of chemicals could be varied due to several
parameters such as variability in chemical concentration
within as well as among farms. Based on this, our study
found that selecting the optimal sampling frequency and
the optimal number of probability updating steps is critical
to improve the efficiency of the system in detection of the
level of chemicals using nano-sensors. Moreover, the rate
of change in the amount of credits held by each farm
can be used as an indicator of the credibility to reward
farms that are compliant with the recommended chemical
standards. Similarly, the token-based traceability method
confirmed that the BC-based system could achieve higher
traceability, but the time taken for that could be varied with
the variability in the level of chemicals over the farms.

This study is, however, a new research direction as
the integration of IoNT into BC-enabled decision-making
systems have not been considered before. Therefore, this
systems can bring several advantages to several application
domains and also lays the foundation for several future
research directions as there are many challenges that need
further attention.
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a  b  s  t  r  a  c  t

The  Internet  of Things  paradigm  is  creating  an  environment  where  the big  data  originators  will  be  located
at the  edge  of  the  Internet.  Accordingly,  data  analytic  infrastructure  is  also  being  relocated  to the  net-
work  edges,  to  fulfill  the philosophy  of  data  gravity,  under  the  umbrella  of  Fog computing.  The extreme
edge  of  the hierarchical  infrastructure  consists  of  sensor  devices  that  constitute  the wireless  sensor  net-
works.  The  role  of  these  devices  has  evolved  tremendously  over  the  past  few years  owing  to  significant
improvements  in  their  design  and computational  capabilities.  Sensor  devices,  today,  are  not  only  capa-
ble  of  performing  sense  and  send  tasks  but also  certain  kinds  of in-network  processing.  As such,  triple
optimization  of  sensing,  computing  and  communication  tasks is  required  to facilitate  the  implementa-
tion  of  data  analytics  on  the  sensor  devices.  A  sensor  node  may  optimally  partition  a  computation  task,
for  instance,  and  offload  sub-tasks  to cooperative  neighbouring  nodes  for parallel  execution  to,  in  turn,
optimize  the  network  resources.  This  approach  is crucial,  especially,  for energy  harvesting  sensor  devices
where the  energy  profile  and,  therefore,  the  computation  capability  of each  device  differs  depending  on
the  node  location  and  time  of  day. Accordingly,  future  in-network  computing  must  capture  the energy
harvesting  information  of  sensor  nodes  to jointly  optimize  the  computation  and  communication  within
the  network.  In this  paper,  we present  a  theoretical  model  for computation  offloading  in micro-solar
powered  energy  harvesting  sensor  devices.  Optimum  data  partitioning  to minimize  the  total  energy
consumption  has  been  discussed  based on the energy  harvesting  status  of  sensor  nodes  for  different  sce-
narios.  The  simulation  results  show  that  our  model  reduced  both  energy  losses  and  waste  due  to energy
conversion  and  overflows  respectively  compared  to  a  data  partitioning  algorithm  that  offloads  compu-
tation  tasks  without  taking  the  energy  harvesting  status  of nodes  into  consideration.  Our  approach  also
improves  energy  balance  of  a  WSN  which  is  an  important  factor  for  its  long-term  autonomous  operation.

©  2017  Elsevier  Inc.  All  rights  reserved.

1. Introduction

With a growing number of devices in the Internet of Things (IoT)
and high adopt-ability of cloud-based Big Data analytic platforms,
the centralized cloud computing architecture has been recently
challenged within the Internet community. Conventional cloud
computing had been designed for monolithic applications assum-
ing high availability of resources at large data centres. It saved CPEX
for SMEs, particularly, the overall energy consumption of main-
taining an Information and Communication Technologies (ICT)

∗ Corresponding author.
E-mail addresses: ckulatunga@tssg.org (C. Kulatunga), kbhargava@tssg.org

(K. Bhargava), dvimalajeewa@tssg.org (D. Vimalajeewa), sivanov@tssg.org
(S. Ivanov).

infrastructure. Furthermore, centralized clouds optimized resource
utilization by statistically multiplexing peak-loads to avoid over-
provisioning. This architecture functioned well until IoT devices
generated some large datasets in remotely connected application
domains such as smart agriculture [9] and Industry 4.0 [1]. Fog
computing [26], is a new computing paradigm, that proposes the
analysis of data (before aggregating it into big data sets) in a hier-
archical and scalable way closer to the data sources. Although the
term was  coined by Cisco in 2012, the philosophy of data gravity
where computation moves towards the data sources as far as they
can, had been presented by Dave McCrory in 2010. Harnessing the
computational power of the network devices for data processing
has the potential to not only reduce the data in the backhaul net-
work and, in turn, the latency experienced by the end users but also
improve the overall energy consumption of the IoT platforms [10].

https://doi.org/10.1016/j.suscom.2017.10.006
2210-5379/© 2017 Elsevier Inc. All rights reserved.
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This is particularly useful for applications in rural agriculture and
Industry 4.0 where backhaul connectivity is limited between the
remote rural farms/factories and the cloud [7].

A number of interpretations of Fog nodes have been proposed, to
date. Authors in [2], for instance, discusses Mobile Edge Computing
where mobile operators leverage resources of the edge devices in
5G rather than the centralized servers used in cloud computing for
data processing. Several forms of ad-hoc cloudlets (micro-clouds)
have been proposed in [4,18]. Certain studies have also extended
the concept of Fog computing towards the extreme edge of the IoT
in the private, enterprise, and community domains. This is primar-
ily due to the design of pervasive low-power wireless technologies
like ULP-PAN and LP-WAN as well as the tremendous improvement
in computation capabilities of small devices (as mini-servers) such
as CCTV cameras, mobile phones, and more recently, sensor devices
that constitute Wireless Sensor Networks (WSN) [8]. In-network
processing within WSN  (referred here as in-network analytics) has
been performed using different techniques such as data fusion,
aggregation, compression and feature extraction [25,21].

It is of particular importance in latency-sensitive applications
such as object tracking, intrusion detection, monitoring structural
and machine failures, where the result of the processing may not
be useful at all times, the response time at event detection is of
the order of fraction of a second. As a result, while numerous stud-
ies in the past have focused on optimizing sensing and networking
tasks to improve the energy efficiency of WSN, attention is being
drawn towards triple optimization that includes on-board compu-
tation given the increased capabilities of sensor nodes. Maximizing
computation within WSN  through resource optimization is more
desirable as future sensor nodes will be powered via energy har-
vesting, for continuous use, from background sources such as solar,
wind, vibration and radio frequency [15].

Cooperative computing via computation offloading has been
suggested for maximizing the use of in-network computational
resources. In computation offloading, a device can select (some-
times in an opportunistic way [5,16]) a proximate infrastructure
edge device (gateway) or another stationary or mobile device
as an offloadee for parallel execution of tasks at different par-
ticipating nodes [19]. Collaborative computing within WSN  can
enhance the capabilities of the resource constrained environment
towards effective cyber-foraging approaches as shown in [20].
Multi-objective intelligent decisions can be made to optimize Fog
computing resources and their application performance. The deci-
sion of how to optimally partition a task and where to offload given
a completion time is an important research question which has not
been much investigated in the literature. An analytical model for
application partitioning in battery-powered WSN  environment has
been presented in [20]. An initiating node (IN) that is responsible
for sensing data is designed that offloads partial computation to a
neighbouring node known as the cooperating node (CN) such that
the given task completion deadline is met  while optimizing the
energy resources of the network.

In this work, we consider in-network computation in WSN  [14]
and extend the cooperative computing approach discussed in [20]
for different scenarios in an energy harvesting WSN. While in con-
ventional WSN, the IN offloads less computation to CN owing to
high communication energy, in case of energy-harvested nodes,
the partitioning must be based on the level of stored energy as well
as the current state of the device that determines the level of har-
vested energy. This is important to avoid over-flow of harvested
energy (hence an energy waste) when battery is fully charged or
energy conversion efficiency (75–65%) incurred by storing har-
vested energy into battery. Accordingly, we develop models for task
partitioning to reduce the overall energy consumption of the net-
work under different scenarios for latency-sensitive applications.
Furthermore, we aim at improving the fairness within the network

to ensure energy balancing. Our model and the simulation results
show that our approach enables optimization of computation and
communication for future energy harvested WSN  and ensures sus-
tainable operation.

2. Computational policies for clean energy

A node in a conventional sensor network forwards data with-
out changing the payload. Instead, in-network processing allows a
Fog node to not only function as a data source or merely relay a
data chunk but also perform some computation on the data. In the
early days of in-network processing, researchers were limited to a
particular application within a sensor network such as calculation
of average humidity or identifying a location of an event based on
statistically correlated data aggregation. However, this is changing
to embed more generic computational functionalities in WSN.

2.1. In-network cooperative computing in wireless sensor
networks

In-network processing has been applied for data aggregation,
fusion, compression and feature abstraction in WSN  to save energy
by reducing the number of bits and, in turn, data packets transmit-
ted to a centralized server. Computations are performed at specific
aggregation nodes (cluster heads) along the path to the destination
node (gateway or server). Offloading decisions are, therefore, sim-
ple and based on the forwarding algorithm used such as LEACH to
answer the question of where rather than what. This has progressed
recently to use a swarm of heterogeneous nodes (such as sensors,
actuators, robots, smart phones, drones, cameras) that collectively
form an in-network analytic platform and requires specification of
where as well as what to send. Authors in [11] propose for instance
a new in-network computation algorithm based on channel fad-
ing to improve the reliability of aggregation function compared to
simultaneously sending all or only one sensor reading.

Computation offloading is a useful distributed computing
paradigm at different levels of network resources from large data
centres to implanted nano-sensors. Highly available cloud comput-
ing provides VM/container level computing resources to the users
to perform computation tasks in geographically distributed data
centres. Mobile edge computing brings cloud resources into the
edge of the operator-managed network to reduce core network
traffic of the operator and provide low-latency for the users. Enter-
prise and community-cloud allow the installation of micro data
centres that execute micro-services at the proximity of a company
office or a community. The concept of cloudlets proposes the use
of a set of mobile devices (different users) that collectively form
an ad-hoc cloud [13]. Mobile computation offloading, for instance,
can facilitate the execution of compute intensive tasks either on
a nearby mobile (in terms of annotations) or on an infrastructure
node (e.g. Androidx86).

Computation offloading in WSN  is becoming increasingly
important as the sensor devices exhibit improved capabilities in
terms of computation power and reduced communication energy
consumption. In conventional networks, sensor nodes transmit raw
data to the sink node where some processing is performed and the
results are communicated to the remote cloud. As a result, sensor
nodes have prior knowledge of where and what to communicate.
Moreover, the energy optimization is included in the algorithms.
In modern-day WSN, sensor nodes can make on-the-fly decisions
of where and what to compute under a subjected application com-
pletion deadline and, in turn, optimize energy usage. Therefore, the
pre-designed computation offloading algorithms must be modified
to make on-the-fly decisions. Accordingly, energy harvesting and
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in-network processing can be combined to develop a sustainable
and autonomous network operation.

2.2. Heterogeneity in energy harvesting sensor nodes

Computational sensor nodes, in future, will be powered using
diverse natural energy harvesting sources such as solar, wind,
radio-frequency, thermal, vibration or piezoelectric [22]. Such
energy sources demonstrate random spatial–temporal generation
patterns leading to heterogeneity in stored energy between sensor
nodes in both outdoor and indoor environments. Changes in the
temporal patterns might be significant only on a macro time scale.
For instance, while weather may  differ from one city to another on
a single day at a given time, a sensor network on a smart farm will
experience the same effect at the same time. On the contrary, spatial
variations among co-located mobile sensor nodes may  be obtained
due to different orientations and obstacles, for e.g., presence of
IMU  and GPS modules [3] for animal mobility and location track-
ing under direct sunlight vs shadows. This heterogeneity will be
higher, particularly, in outdoor WSN  such as those used in agricul-
tural practices for pasture-based dairy farming (e.g. laying animals
with solar-covered tags), site-specific irrigation in cultivation (e.g.
leaves may  grow into or fall onto the senor nodes) and soil mon-
itoring (e.g. shadows of the plants may  cover the soil monitoring
sensors).

Optimal energy management in such environments has been
proposed using adaptive duty cycling, adaptive communication
strategies, routing decision making and application policy man-
agement. Authors in [27], for instance, propose optimization of the
duty cycle to maximize the common active time based on unpre-
dictable heterogeneity of energy harvesting nodes. The authors
propose both online and offline algorithms based on the proba-
bility of the harvested energy obtained using a real deployment
environment.

We consider cooperation between such sensor nodes to collec-
tively perform computation tasks under a heterogeneous energy
harvesting environment. For example, each sensor node in such
a scenario could partially perform some pre-processing or basic
functional tasks such as averaging or compressing data. Balancing
energy usage with computation offloading is important in such a
Fog resource pooling environment due to three perspectives.

(a) Energy harvesting incurs a significant conversion loss while
storing energy into a storage device like a battery or a capacitor.
It accounts for about 25–35% of the total energy in battery storage
and even higher for capacitors [27]. It is, therefore, preferable to
use harvested energy directly whenever possible so as to minimize
the conversion losses. Accordingly, any computation offloading to
a node which is currently on solar power has a safe margin to use
some energy to compensate for the communication overheads.

(b) If the amount of harvested energy is low, the system can-
not perform both the charging and direct energy use operations
together. That is, when the amount of harvested energy (E) is below
a threshold (�) a node must decide to either store the energy or
use it directly but not both. Usually, in such situations, the most
appropriate action is to store the harvested energy and consume
the required energy from the battery. Therefore balancing stored
energy within the nodes of a WSN  is highly advantageous.

(c) Rechargeable batteries are a costly unit for energy harvest-
ing sensor nodes. Therefore, they may  have some limited capacity.
Cooperative computing between the sensors is critical in such net-
works to optimize the energy usage via load balancing and avoid
overflow of energy on nodes that are fully-charged with no compu-
tation task or energy deficit for others. Therefore, balancing energy
consumption without using high capacity batteries is a positive
trend in future WSN  using energy harvesting.

2.3. Related work

Mobile computation offloading has been widely researched in
the recent years with varied objectives such as energy saving,
transparent code migration and scalability. An optimal technique
for application partitioning and fair node selection between two
homogeneous nodes has been discussed in [24]. Computation
offloading in WSN, however, did not gain much attention until
Sheng et al. [20] proposed optimal application partition and cooper-
ation between two  nodes to minimize overall energy consumption.
Their work is based on cooperation between battery-powered
homogeneous sensor nodes and assumes no selfish node behaviour.
A cooperating node selection strategy that balances trade-off
between fairness and energy consumption has been discussed.

Meanwhile, energy harvesting sensor nodes are becoming
widely deployed and several studies discuss the heterogeneity in
harvesting energy [15]. Dang et al. [6] presents predictive solar
energy models for spatial–temporal weather conditions. Authors in
[27] propose a stochastic duty cycling approach to minimize energy
consumption by taking into account the heterogeneous energy har-
vesting sensor networks. In [25], authors discuss the importance
of triple optimization of sensing, networking and in-network data
processing based on energy harvesting. The authors have imple-
mented an optimization algorithm to recycle wasted energy due to
battery overflow in an energy harvesting WSN. In this paper, we
extend the work done by [20] and propose an approach to balance
the energy in computational sensor network using cooperative
computing in energy harvesting networks. We  apply this approach
for the scenario where certain solar powered sensor nodes are
under sunlight while others are obstructed by shadows for a certain
duration within a day.

3. Modelling for cooperative computation

In this section, we  present our application model, computation
and communication energy consumption models, and the micro-
solar based energy harvesting model.

3.1. Application model

In this work, we  consider a lightweight analytic application that
consists of a set of independent processing tasks to be computed
cooperatively between two  peer sensor nodes. We  use the canon-
ical model used in [28] to capture the essential characteristics of
such a task-oriented application. Such tasks are normally arranged
in a computational work-flow using a Dynamic Acyclic Graph (DAG)
to be scheduled for execution in a distributed computing environ-
ment. A single processing task (A) is modelled with input data size
(D) and a deadline for application completion (T). The Initiating
Node (IN), which may  be responsible for sensing the data, divides
a single task into two  sub-tasks for partial offloading to a target
remote peer, referred to as the Cooperating Node (CN). The amount
of processing data at the local node is denoted by L and the amount
of data that is offloaded to the CN is denoted as R, where D = L + R.
We assume there are no dependencies between the sub-tasks. For
instance, in case of calculating average for a sensing variable, L and
R may  consist of nL and nR samples respectively. Note that, only R
amount of input data is offloaded to the CN with no extra amount
of code. We  also assume that the response or the outcome of the
processing sub-task at each node is negligible or locally consumed
by another process. In the mentioned average calculation example,
the local node will transmit only two  values, which is the local aver-
age (AL) and nL, while CN will transmit its own local average (AR)
and nR. An aggregation or the destination node will then calculate
the overall average using the two responses from IN and CN.
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3.2. Computation energy model

The energy consumption in embedded processors is dominated
by dynamic power and can be regulated by the clock frequency
using dynamic voltage and frequency scaling (DVFS) technique.
Several attempts have been made to develop a simple and general
computation energy estimation model for mobile and embedded
processors. According to the literature, the computational energy
consumption is proportional to the CPU load of a processor i.e. the
number of CPU cycles required. Most of the work, therefore, consid-
ers the trade-off between energy (E) and task completion time (T)
such that E. T˛ is a constant for some values of ˛. In [24], the energy
consumption for computing a task locally is calculated using Eq.
(1), where K (in the order of 10−11 starting from ARM to Intel) is
called the computation coefficient. The value of K depends on the
effective switched capacity (determined by the chip architecture
and the clock-frequency), the processing capability of the node,
and the application completion probability used in the model in
[28]. As evident in Eq. (1), a node consumes more energy for short
completion deadlines T. A sensor node may, therefore, prefer more
delay-tolerant tasks for local computation and offload tasks with
large L and small T to a peer sensor node.

EC = KL3

T2
(1)

3.3. Communication energy model

When a task is offloaded to another node, the energy used for
communication depends on the number of bits transmitted [17].
This is energy consumed by the electronics in the physical layer and
depends on the state of nodes – idle, transmit and receive. Accord-
ing to IEEE 802.15.4, energy consumption in the idle state can be
neglected and, therefore, total energy consumption depends on the
transmission of the number of bits at the sender and the reception
of the same bits at the receiver which are equal in value but belong
to two different nodes. A task can be scheduled for transmission to
another node within one or more time-slots. This scheduling has
been modelled using the Markov process based on whether the
Additive White Gaussian Model (AWGN) channel state is good or
bad. The energy used to communicate b bits within a time-slot t
to another computational node depends on the path condition and
the distance between the two nodes (represented as channel gain
g) and is given by the following equation.

e = (2b − 1)
g

According to one-shot channel allocation policy to transmit data
task within a single time-slot, the scheduler must send L bits within
one time-slot T. This is the simplest case in which all the data is sent
within a single time-slot of communication window and the energy
consumed is represented by a convex-monomial function as shown
in Eq. (2).

Et = �
Ln

g
(2)

Here � is the communication coefficient of the link between the
offloader and the offloaded and g[0 · · · 1] is the channel gain of the
link that is calculated proportional to 1/d2 according to AWGN in
free-space propagation where d is the distance between the two
nodes. According to [20], transmission in one-shot policy (n = 1)
only depends on the channel state and it is the most optimal
approach for latency-sensitive applications. It also minimizes the
time shift between local and remote computation since it assumes
a negligible delay in over-the-air transmission. Moreover, it saves
energy that is otherwise incurred by overhead scheduling due to
data split across multiple time-slots.

3.4. Total energy requirement calculation per task

The total energy consumption owing to computation and com-
munication during processing a task between two  nodes can be
calculated as the summation of four components as shown in Eq.
(3). In [20], authors present the energy consumption for different
input data sizes from 512 to 2048 bits. Here the job completion
deadline is set to 20 ms,  K = 5 ×10−11 and � = 0.05. For large data
sizes, the gain in energy consumption is much better in case of
using cooperative computing and varies with the values of the com-
putation and communication coefficients. After a distance of 5 m,
however, cooperative computing is not effective and localized com-
putation becomes the preferred mode for the entire task according
to their analysis.

Total Energy(E) = IN{Computation L + Transmission R}
+CN{Reception R + Computation R} (3)

In this paper we  extend this approach by taking into account the
energy harvesting state of the IN and CN nodes and also the energy
conversion efficiency. We  estimate the required equivalent energy
(E) (i.e. before the conversion) from the energy harvesting source
within the optimization algorithms.

3.5. Micro-solar energy harvesting model

We selected a latitude of 52◦ and longitude of −8◦ where the
experimental smart farm for the project is located in Moorepark,
Co. Cork, Ireland. We chose April 1st as the representative date of
neither a winter day nor a summer day for the solar energy har-
vesting model. We  model the solar energy harvesting pattern as
a Gaussian curve (Fig. 2) with 8 h (T) clear sunlight from 8.00 am
to 4.00 pm according to astronomical model developed by [23,12].
We consider a discrete time model with a time-slot of 1 min. A
solar energy density of 15 mW cm−3 is assumed for 5 cm × 3 cm
area on a micro-solar panel associated with a sensor node. This
implies 735 �J energy can be generated by a sensor node on a day
without any clouds and obstacles shadowing it. We  also modeled a
shadow of 4 h which will randomly cover sensor nodes within the
field. Micro-solar panel inclination was set to 90◦ and orientation
to 45◦ in our model.

4. Energy-aware task partitioning

The aim of this work is to find the optimal data size for a task
that is suitable for local computation (L) and remote computation
(R) based on the state of harvested energy (under shadow, under
sunlight with energy stored being under-flown and under sunlight
with energy stored being over-flown) on both IN and CN. While
we discuss the energy-aware application partitioning by IN and CN
selection (in the following section), the energy state interchanges
among the nodes using a distributed or a centralized approach is
beyond the scope of this paper. The Lagrange Multiplier is used to
solve the equal constrained optimization problem with an objec-
tive to minimize total required energy (E) from the solar panel at
both nodes. When a task is to be processed at any given time, IN and
CN may  be in different states as shown in Table 1, resulting into dif-
ferent EL and ER values compared to non-energy harvesting-aware
partitioning approach proposed by [20]. We  calculate E accordingly
as the summation of EL and ER values. We  consider an energy gain
factor � as the reciprocal of the energy conversion efficiency in the
equations for simplicity of deriving equations. For instance, � = 1.54
represents 65% efficiency (Fig. 1) and implies that if a task consumes
10 �J stored energy from the battery when the node is under a
shadow, the value of E will be 20 �J.
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Table  1
Different energy harvesting states at IN and CN and the amount of total required energy in �J using our energy-harvesting-aware task partitioning at T = 20ms.  Local computing
respectively consumes and computes 41.3 �J (1024 bit).

Fig. 1. Heterogeneity of energy harvested will be captured by an appropriate data
partitioning and in-network computation offloading.

Fig. 2. The set of used energy harvesting astronomical modelling equations.

In the following sub-sections, we discuss the optimal task par-
titioning in terms of number of bits and the total energy required
at both IN and CN to execute the task in �J under the different IN
and CN states (Table 1). The data size (D) is set to 1024 bits and the
task completion deadline is changed from 5 to 100 ms.  The channel
gain between IN and CN is set to 0.9 and the values of K and � are
10−11 and 10−3 respectively. Energy gain factor � = 1.54.

4.1. Shadow–shadow

When IN and CN are under shadow, both nodes consume energy
from the stored battery power for task processing. Such a scenario
does not incur any waste from the harvested energy. In this case, E
can be calculated as the sum of local energy requirement EL at IN
(for computation of local task L and transmission of data R to CN)
and remote energy requirement ER at CN (for reception of data R
from IN and computation of data R).

E = EL + ER = {˛L3 + ˇR}� + {ˇR + ˛R3}� (4)

On solving Eq. (4) using Lagrange constraint optimization in
order to minimize E subjected to the constraint L + R = D, we obtain
the values for L and R.

L = D

2
+ ˇ

3˛D
and R = D

2
− ˇ

3˛D

Even though the amount of task partition is the same as in the
non-energy harvesting case, the energy requirement is multiplied
by the energy gain factor � when we  calculate the amount of surplus
energy to be stored at each node. Fig. 3 shows that cooperative
computing gains with low energy and the amount of the locally
computed data increase with the task completion deadline. After a
certain time of completion deadline, however, IN processes all the
data locally and does not achieve any advantage by cooperating
with a CN.

4.2. Shadow–light

In this case, the CN is under sunlight while energy is being har-
vested during the task processing. Therefore, remote computation R
tends to be larger than in the previous case since energy required at
the CN can be consumed directly from the energy harvesting source
without incurring any conversion loss, if the battery is underflow
(not charged up to the full capacity). Furthermore, it can use abun-
dant energy if the battery overflows (battery fully charged and
harvesting energy being wasted). Accordingly, we analyze this case
separately for the two scenarios as the amount of L and R will be
different.

Energy under-flowing: In this scenario, the energy is directly
used from the solar panel at CN through the input regulator
without incurring battery conversion loss. However, any surplus
harvested energy can be stored in the CN battery without contribut-
ing towards energy waste as the battery is not charged to the full
capacity. Therefore, E can be calculated as follows.

E = EL + ER = {˛L3 + ˇR}� + {ˇR + ˛R3} (5)

On solving Eq. (5) to minimize E, we obtain the values for L and
R as given below, where the value of A is obtained by solving the
quadratic equation aA2 + bA + c = 0 (see Appendix A) such that L < D.

L =
√

A

3˛�)
and R =

√
A − (1 + �)ˇ

3˛)

Furthermore, values of a, b and c are calculated as follows.

a = (1 − �)2

b = 2�(1 + �){(1 − �)  ̌ − 3˛D2}
c = �2[9˛2D4 + ˇ(1 + �){6˛D2 + (1 + �)ˇ}]
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Fig. 3. Cooperative computing gains with low energy when both nodes are under shadows. However, it does not gain any energy saving when completion deadline is larger
than  100 ms.

Energy over-flowing: If the battery at CN is fully charged, the
energy required at CN is not considered for the total energy require-
ment calculation since CN in this case is wasting the harvested
energy. However, transmission energy used for offloading data R
to CN should be considered in the energy consumed at IN, which
prevents offloading all the data D to CN.

E = EL + ER = {˛L3 + ˇR}� + {0} (6)

On solving Eq. (6), we obtain L =
√

(ˇ/3˛) which is a trade-off
between the required computation and communication energy at
IN, and R = D − L. This shows that even though harvested energy
at CN is wasted, IN cannot offload all the task to CN unless the
completion deadline is very low.

As illustrated in Fig. 4, IN offloads more data to the CN when CN
is under sunlight. We  can see that if CN is overflowing, more com-
putation can be offloaded than in the case of CN under-flowing. In
case of the former, significant energy gain is observed for lower task
completion deadlines when compared to the local computation
only.

4.3. Light–shadow

When IN is under sunlight, the size of local computation L tends
to be larger than in the previous case. This is because energy con-
sumed at the IN can be used directly from the energy harvesting
source without incurring conversion loss or from the energy being
wasted according to the level of charge of the battery (similar to
the previous case). Therefore, this case is also investigated under
two scenarios where the amount of L and R is different.

Energy under-flowing: In this scenario, energy is directly used
without conversion loss but harvested energy can be stored in the
IN battery rather than being wasted. Therefore, E can be calculated
as follows.

E = EL + ER = {˛L3 + ˇR}  + {ˇR + ˛R3}� (7)

On solving the optimization problem, we obtain the values for
L and R as under.

L =
√

A

3˛
and R =

√
A − (1 + �)ˇ

3˛�

The value of A can be obtained by solving the quadratic equation
aA2 + bA + c = 0 such that L < D using the following values of a, b and
c.

a = (1 − �)2

b = (1 + �){(� − 1)2  ̌ − 6˛�D2}
c = 9˛2�2D4 + (1 + �)ˇ{6˛�D2 + (1 + �)ˇ}

Energy over-flowing: In this scenario, the energy required at
IN is not considered for the total required energy calculation since
the node is wasting the harvested energy. Furthermore, all the
computation is done locally at IN rather than offloading partial com-
putation to CN. Accordingly, E = EL + ER = 0 +0 and we obtain L = D
and R = 0. Fig. 5 shows that cooperative computing gains when IN
is under sunlight.

4.4. Light–light

This case results in three possibilities for deciding the values of L
and R. The calculation of the total required energy for each scenario
is explained below.

Both nodes energy under-flowing: When both IN and CN are
under sunlight without energy over-flowing, nodes can consume
energy directly from the energy source and store surplus energy in
the battery without any waste. In this case, E can be calculated as
shown in Eq. (8), and the values of L and R can be calculated as in
the shadow-shadow scenario in Section 4.1 (however the energy
required at each node will be differed by a factor of �).

E = EL + ER = {˛L3 + ˇR}  + {ˇR + ˛R3} (8)

On solving Eq. (8) to minimize E subject to the condition L + R = D,
we can obtain the values for L and R as under.

L = D

2
+ ˇ

3˛D
and R = D

2
− ˇ

3˛D

IN energy over-flowing: In this scenario, all the processing
takes place locally at the IN irrespective of the CN state and the
energy required at IN is not considered for the total energy calcu-
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Fig. 4. IN offloads more data to CN when it is under sunlight. CN overflowing can achieve much lesser total energy consumption than underflowing scenario.

Fig. 5. Overflowing IN does not offload any data to a CN. However, underflowing IN offloads data in cooperative computing.

lation. Therefore, total energy is calculated as E = EL + ER = 0 +0 and
we obtain the L = D and R = 0.

IN under-flowing and CN over-flowing: If the battery at CN is
fully charged, the energy required at the CN is not considered for
the total energy (E) calculation since CN, in this scenario, will waste
the harvested energy. However, energy used for offloading data R to
CN must be considered as the energy consumed at IN. Accordingly,
total energy is calculated as given in Eq. (9).

E = EL + ER = {˛L3 + ˇR} + {�} (9)

We then obtain the value of L =
√

ˇ/3  ̨ which is a trade-off
between the required computation and communication energy at
IN, and R = D − L. This shows that again even though harvested
energy at CN is wasted, IN cannot offload all the data to CN. Also,
the energy required by IN does not incur any conversion loss. Fig. 6
shows the gain in cooperative computing in these scenarios. As in
the previous case, IN does not offload any data to CN in case of
energy over-flowing whereas it offloads a considerable amount of
data to CN when CN is over-flowing.

5. Energy-aware node selection strategy

The CN selection strategy must also be modified to make it
suitable for our application model compared to non-energy har-
vesting scenario. In case of a non-energy harvesting environment,
the minimum total energy strategy (MES), where the CN with min-
imum total cooperative energy cost is selected among the set of
neighbouring nodes. This strategy does not consider past energy
consumption (i.e. utilization). The drawback of it is that some
nodes are overused due to cooperation and may  lead to reduced
battery lifetimes or many dead batteries, which affect the long-
term autonomous functioning of the WSN. For example, a node in
close proximity to a computationally-intensive node may  cooper-
ate heavily and may, therefore, be overused unfairly than what they
save from cooperative computing.

In this work, CN selection is performed based on utility func-
tion as in [20], where authors define a utility function (U) based
on the energy saved from cooperative computing compared to
executing the complete data task locally at an IN. Our simplified
utility function incorporating with the energy gain factor is given as
follows.
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Fig. 6. IN does not offload any data when it is overflowing. However, IN does not offload all the data when CN is overflowing due to communication energy used at the IN.

U =
{

ELO − EL if IN

−�ER if CN

Here ELO = KD3

T2 and � = 1 if the CN is under sunlight and � = � if CN
is under shadow and under-flowing. The value of � = 0 if the CN
is over-flowing energy. Utility of IN will not change as the impact
of the sunlight is already calculated in the required energy opti-
mization. A Cooperation Index (CI) is then defined based on the
cumulative utility as given below for t = 0 to t − 1 same as in [20].
A node can be used as a CN at time t if and only if the value of CI is
positive.

CI =
{

1 if U(0 : t − 1) ≥ 0

0 if U(0 : t − 1) < 0

This strategy is called positive utility strategy (PUS) [20]. Larger
utility will have a higher chance to be selected as a CN. Designing an
algorithm for this process based on the harvested energy (either in
the past or predicted) is beyond the scope of this paper and remains
as our future work.

6. Performance evaluation

We  simulated our energy harvesting-aware computation
offloading algorithm (e-COFF) with 30 energy harvesting sensor
nodes using the SimGrid simulator.1 Nodes were randomly located
within a 10 m × 10 m geographical space. We  selected latitude of
53◦, where the project site is located and day of the year as 91 (01st
April) in the micro-solar energy harvesting model, which harvested
energy in a sinusoidal pattern within a day. We  used randomly dis-
tributed obstacles for shadowing for a duration of 4 h. The size of the
solar panel at a node was selected as 5 cm × 3 cm,  which determined
the multiplication factor of the sinusoidal harvesting pattern. We
update the stored and wasted energy at each node per minute based
on the harvested and the consumed energy during that period.
We  compared our results with non-energy harvesting-aware data
offloading algorithm (COFF).

A computational task was created every 2 s randomly by a
selected senor node in the WSN  with a size (D) of 1024 bits. We

1 http://simgrid.gforge.inria.fr.

Fig. 7. The amounts of measured energy performance parameters at two
different energy harvesting sensor nodes for duration of 24 h. Full battery capac-
ity  = 2000 mAh.

used a maximum capacity for a battery storage of a sensor node as
2000 mAh  and set it to its half at the start of the day. Harvested (EH),
required to consume (EC), stored (ES) and wasted (EW) energy at the
end of 24 h duration from 6.00 am were measured. Task completion
time (T), harvesting energy gain factor (�), K and � were set respec-
tively as 20 ms,  1.54, 10−11 and 0.001 unless otherwise changed
in some sections. We calculated channel gain (g) according to the
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Fig. 8. Top: CDF of the sizes of data chunks being offloaded to a remote CN (R).
Bottom: CDF of the stored energy (ES) at the end of the day. K = 10−11, � = 0.001,
D  = 1024 bits, T = 20 ms.

free-space wave propagation of AWGN as,

g = 1

�
√

2�
exp−d2/2�2

where we selected � as 8 in our simulations and d was  calculated
in the units of m.

As shown in Fig. 7, the harvested energy (EH) of Node B does
not experience any shadow while Node A experiences shadow dur-
ing the day. Moreover, Node A demands slightly more energy (i.e.
required energy (EC) for task executions either as an IN or CN before
being converted) than Node B. As we can see in the bottom graph,
Node B saturated with stored energy (ES) from 6.00 pm to 8.00 pm
resulting in a waste of energy (EW). Node A’s battery capacity does
not overflow at any given time and therefore does not experience
any waste of energy. This validates our chosen relative values of
energy performance parameters in order to fulfill a requirement of
self-sustainability of the wireless sensor network.

We then observe the probability distribution of the offloaded
task sizes to a CN (R) and the end of the day stored energy (ES)
for the two algorithms; e-COFF and COFF. The top and the bottom
graphs of Fig. 8 shows the cumulative probability densities of R and
(ES) respectively with 30 different seed values set in the simulator.
As we can see e-COFF offloads more data to a CN than the COFF
algorithm does. The second figure shows COFF leaves with more
sensor nodes towards lower energy levels at the end of the day
while e-COFF leaves more stored energy towards higher energy
levels.

Fig. 9 shows the difference between the consumed energy of
COFF and e-COFF (EC of COFF − EC of e-COFF). We  have changed

Fig. 9. The difference of consumed energy (EC) in mJ between the energy-unaware
(COFF) and our energy-aware (e-COFF) data partitioning and computation offloading
algorithms (task completion deadlines = 20 ms). Both used Positive Utility Strategy
(PUS) in selecting a CN.

Fig. 10. Consumed and stored energy of the two algorithms for different energy gain
factors (�) when t = 20 ms  (top) and for different task completion deadlines when
�  = 1.54 (bottom).

the computation coefficients (K) in the range of 10−11–10−10 and
the communication coefficient (�) in the range of 0.01 and 0.001
both with a step size of 0.1. According to the figure, the perfor-
mance improvements of the e-COFF is apparent for all the values of
computation and communication coefficients since all the values in
figure are positive. When both K and � are higher (top-left corner),
performance improvement is significant.
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Fig. 11. The standard deviation (STD) of the stored energy (ES), where a smaller STD
indicates a better energy balance, of 30 micro-solar energy harvesting sensor nodes
at  the end of the day (completion deadline = 20 ms  and � = 1.54).

Next, we change (top graph in 10 ) the energy gain factor (�)
from 2.5 to 1.0 (i.e. energy conversion efficiency from 0.4 to 1.0)
with a step of 0.5 while keeping T at 20 ms.  In another experiment
we also change task completion deadline (bottom graph in 10) from
5 ms  to 30 ms  with a step size of 5 ms  while keeping � at 1.54.
Figures show the consumed energy during the day and the stored
energy at the end of the day. According to the figure at the top,
e-COFF shows lesser (EC) than the COFF. Our algorithm also shows
that stored energy performance is also higher compared to COFF.
Performance improvement of e-COFF is much better when energy
gain factor � is low. However, the performance improvement is not
very apparent for the changing range of task completion deadline
(T).

We then localize the task generations only to a subset of sensor
nodes to investigate the adverse impact of the overuse of energy at
a CN. In this case, we reduced the number of task originating nodes
from 30 (all, which is the same as before) to 5 with a step size of
5. We  used two CN selection strategies; MES  and PUS, with our e-
COFF algorithm. Fig. 11 shows the standard deviation of the end of
the day stored energy ES, which is lower with the PUS strategy. It
shows that the impact using the utilization factor in micro-energy
harvesting where, if energy level of a node is low, becoming a
CN persistently is critical. According to the figure use of CI solves
the problem of overuse of CNs by INs in a computation intensive
hotspots.

7. Conclusions

Energy-aware cooperative computing is a key technology that
will benefit from energy harvesting in Fog computing applications.
It is particularly important when the energy harvesting patterns
and obstructions are dynamic, thereby, creating spatially hetero-
geneous energy sources. In this paper, we extend the optimal data
partitioning algorithms developed for computation offloading by
taking into account the state of the energy being harvested at the
heterogeneous nodes. We  evaluate our e-COFF algorithm under
different scenarios and compare with COFF algorithm. Our results
illustrate that overall energy consumption can be improved in a
WSN  by minimizing energy losses due to a poor energy conversion
efficiency and waste due to energy overflows under constrained
energy storage capacities. Our algorithm preformed the optimized
data portioning with a positive utility cooperating node selection
strategy, which balances the stored energy of the sensor nodes at
the end of a day, which is useful concern for the sustainability of a
WSN  using micro-scale energy harvesting sources.
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Appendix A

In this appendix, we discuss the optimal data partitioning for
a scenario where the Initiating Node (IN) is under shadow while
the Cooperating Node (CN) is under sunlight. The energy required
by IN is obtained directly from the harvested energy whereas the
energy required by CN is obtained from the battery. The total energy
consumed is calculated as follows.

E = EL + ER = {˛L3 + ˇR}  + {ˇR + ˛R3} + A{D − L − R}

Using gradient optimization with partial derivatives, we get

∂E

∂L
= 3˛L2 − A → L2 = A

3˛

∂E

∂R
=  ̌ + �  ̌ + 3˛R2 − A → R2 = A − (1 + �)ˇ

3˛

After solving the equation (L + R)2 = D2, we get a quadratic equation
aA2 + bA + c = 0 to find the roots for A.
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